O 00 1 N AW -

[N S R S T N T N I O o R S I O e T T S S S Y Sy
o N1 N L R WD, O DO 0NN WD —-= O

Case3:10-cv-,03365-JCS Documentl

SPENCER HOSIE (CA Bar No. 101777)
shosie@hosielaw.com

BRUCE WECKER (CA Bar No. 078530)
bwecker@hosielaw.com

GEORGE F. BISHOP (CA Bar No. 89205)
gbishop@hosielaw.com

DIANE S. RICE (CA Bar No. 118303)
drice@hosielaw.com

HOSIE RICE LLP

188 The Embarcadero, Suite 750

San Francisco, CA 94105

(415) 247-6000 Tel.

(415) 247-6001 Fax

Antorneys for Plaintiff
IMPLICIT NETWORKS, INC.

UNITED STATES DISTRICT COURT
FOR THE NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION
IMPLICIT NETWORKS, INC., G X j_ 0 33 6 5
R se No.

Plaintiff,

v, ORIGINAL COMPLAINT AND JUR
DEMAND

F5 NETWORKS, INC,,

Defendant.

ORIGINAL COMPLAINT AND JURY DEMAND

Filed07/30/10 Pagel of 48

o

R,

Y

R Case3:10-cvt3365-JCS Documentl Filed07/30(5) Page2 of 48
i L INTRODUCTION.
) L. Plaintiff Implicit Networks, Inc. (“Implicit” or “Plaintiff”) hereby files its
3| complaint against defendant F5 Networks, Inc. (“F5” or “Defendant”) for patent
4 infringement. For its complaint, Plaintiff alleges, on personal knowledge as to its own
> acts and on information and belief as to all other matters, as follows:
: THE PARTIES
g 2. Plaintiff is a Washington corporation with its principal place of business in
9 Bellevue, Washington.
10 3. Defendant is a corporation organized under the laws of the State of
11} Washington. Defendant conducts business throughout the United States. It has a principal
12| office in this district.
3 JURISDICTION
I: 4. This Court has subject matter jurisdiction pursuant to 28 U.S.C. § 1331 and
16 1338(a) because this action arises under the patent laws of the United States, including 35
171 U.S.C. § 271 et seq. The Court has personal jurisdiction over defendant in that defendant has
18 (| established minimum contacts with the forum. Defendant has marketed and sold infringing
191 products in this district, maintains an office in this district, and conducts research and
20 development activities in this district. The exercise of jurisdiction over said defendant would
2l not offend traditional notions of fair play and substantial justice.
22 VENUE
23
24 5. Defendant does business in this district, as alleged above in 4. Venue is
25 || proper in this district pursuant to 28 U.S.C. § 1331, 1338(a), 1391(b), (c) and (d) and
26| 1400(b).
27 INTRADISTRICT ASSIGNMENT
28 :
ORIGINAL COMPLAINT AND JURY DEMAND 1
/ :

DO 00 9 N L AW -

N N DN N NN N N N — — = e s e e e e e
0 NN N U BRWN = O D 0NN NN R WY~ o

NIE)

e e

Case3:10-cv-6}365-JCS Documentl Filed07/30/10 Page3 of 48

6. Pursuant to Civil LR 3-2(c), this case should be subject to district-wide
assignment because it is an Intellectual Property Action.

1L STATEMENT OF FACTS.

A, Implicit’s Inventions, Patents, and Products.
1. The Problem Implicit Solved.

7. In the early 1990’s, personal computers were stand-alone devices, just like
typewriters before them. Consumers would buy shrink-wrapped software applications, such
as Lotus Notes or the Berkeley Systems “Flying Toasters” screensaver. They would install
the application, the application would run on the computer, and the consumer would use the
computer to perform discreet and well-defined tasks, typically turning on data and document
processing. Every computer was an island, unique unto itself.

8. All of this changed with the advent of computer networking, i.e., computers
hooked together with other computers and, ultimately, other devices entirely. Suddenly,
computers had to be able to talk to other computers. With networking, computers moved
from being standalone devices for running discreet applications to being constituent parts of
much larger linked systems.

9. This physical change brought a corresponding change in use and the content
itself. Computers became communication devices, allowing their users to exchange real-
time text (e-mail), interactive files (conferencing), and multi-media (photos; video). With the
internet, hyperlinks, and the World Wide Web, computer users could shop online, create
individual web pages (Facebook), watch movies on demand (the new Netflix), and do all the
other on-line activities now commonplace. Instead of resources being applied to isolated

data on non-networked machines, computers could be linked together and resources applied

ORIGINAL COMPLAINT AND JURY DEMAND 2

R Case3:10-cv-865-JCS Documentl Filed07/30/10 Page4 of 48

! to data as it flowed from one system to the next. The shift was from processing data

2| (spreadsheet; word processing) to processing the data flow, e.g., data in transit.

3 10. This paradigm shift created a host of new problems, however. In the mid-

4 1990’s, for example, there were many different media formats (WAV; mpeg; Windows

> Media Video), each calibrated to do different things and solve different problems; as the

: richness of what computers could communicate increased, so too did the number of protocols

g for how to communicate. And, along with media formats, there were formats for other fornis

9 of content, e.g. HTML, X HTML, DHTML, etc.... More, there were numerous network
10| protocols, including point-to-point (“PTP”), SPX and IPX (proprietary protocols for Novell’s
11| Network), Apple Talk, Microsoft’s NetBEUI, and the telephony RTP standard. There were
12 also different operating systems on computers, e.g. Windows versus Mac vs. Linux, along
13 with different devices (phones; computers; PDA’s; etc.) with different protocols, needs, and ;
i: capabilities. It was a three dimensional problem: different devices, with different networks,
16 sending different content — the “3D” problem.
17 2. The “Vertical Application” Fix.
18 11. The first solution to the 3D problem lay in building greater intelligence into
19| the applications themselves. For example, a media player in 1995 had to be able to digest
20 different types of formats (WAV; mpeg), and work on various operating systems, e.g.
21 Windows and Mac OS. The developer of the application had to anticipate who would be
Z using the player, and for which devices and content, and then build-in the ability to handle
24 the anticipated demands. In short, the developer had to anticipate use and then configure the
25| design accordingly.
26 12. This model led to ever-increasing complexity, cost, and processing overhead.
27| Given that all anticipated uses had to be preconfigured at build-time, any unanticipated new
28

ORIGINAL COMPLAINT AND JURY DEMAND 3

1. Case3:10-c@365-JCS Documentl Filed07/30/10 Pages5 of 48
1| use.eg.a different format or a different device, would simply break the system. The
2| developer had to have the foresight to specify explicitly all possible configurations in
3| advance, a difficult task in a rapidly changing world.
4 13, Given these inherent inadequacies, there was a real need for a new and
> different approach to solve the 3D problem.
: 3. Implicit’s Solution.
g 14. In 1994, Edward Balassanian was a computer scientist working on networking
’ 9 issues at Microsoft. Microsoft was then promoting proprietary protocols and trying to
10| establish a proprietary standard. But, with the ever more diverse set of devices and demands,
I1| Mr. Balassanian did not think that a monolithic, one size fits all approach would ultimately
2] work. In February 1995, he left Microsoft.
13 15. A year later, he founded Implicit Networks, then known as BeComm (for Be
i: Communicative).
16 16. Mr. Balassanian created Implicit to build a radical new approach to
17| networking —a new solution to the 3D problem. Put most simply, instead of stacking
18 | intelligence into the application, Mr. Balassanian devised a system where every discrete
19 computer function, e.g., processing http server requests over tcp/ip, streaming a video web
20 based clients, or managing voice-over-ip calls. Dynamically, at run-time, an “Intelligence
21 Engine” would receive a stream of data --- say video --- determine what services were
22 necessary to render that content and where the content was to be rendered, and then assemblq
4] - OF string together --- the requisite service beads at run-time. In this fashion, the needs at
25| run-time drove the just-in-time creation of the processing path itself, as against trying to stuff]
26| given data into a stack previously hardwired into the application.
27 17. Any specific service could be encapsulated as a bead, including:
28
ORIGINAL COMPLAINT AND JURY DEMAND 4

O 00 N N AW

[I O T N R O R N R O T O R O L 1 e S N
W NN L AW = O DY NN "D DD W~ o

Case3:10-cvé)3365-JCS Documentl Filed07/3$o Page6 of 48

hardware such as a video display, speaker, microphone, mouse, Ethernet, efc.
protocols such as TCP/IP, HTTP, SOAP, email (POP3, SMTP), etc.
transformational algorithms such as audio/video decoders, etc.
SDK technologies such as speech-recognition engines (e. g.,IBM’s
ViaVoice), text-to-speech generators, etc.

° backend services such as Database, CRM, and Content Management
Systems.

18. Ultimately, Implicit built more than 200 discrete software service beads.
Beads were the building blocks for the processing element applied to a data flow.

19. In this new model, services were designed from the outset to process data
flows. This meant that the intelligence engine picked the right services for the right data
flows, managed the “State” (e.g. status) associated with each data flow, and managed the
flow across the services. In this new system, the Lego blocks needed to process a particular
data flow were assembled when needed and as needed, as against the prior model, where the
blocks were immutably glued together at build-time.

20. The benefits of this new approach were significant: services were reusable,
processing faster and more efficient, and data that required more CPU involvement got it,
when and as needed. Mr. Balassanian called this system “Strings,” as discrete functions were
strung together at run-time.

21. The concept of breaking up applications into discrete services that could be
“strung” together on the fly at runtime was an innovation with profound applicability to real
world problems. It applied to media players since it allowed media
encoding/decoding/transcoding to happen adaptively at runtime. It applied to network stacks
since it allowed network stacks to be responsive to real-time changes in the physical network
(e.g. QoS), transport (e.g. support for new protocols), and application layers (e.g. virus

threats, firewalls etc.).

ORIGINAL COMPLAINT AND JURY DEMAND 5

O 00 9 N AW -

NN NN N N NN N e e e e e e e e e
00 3 O W B W= O DN R W N R S

Case3:10-cv-03365-JCS Documentl Filed07/30/10 Page7 of 48

22. Implicit made and sold products to, e.g., Intel, AMD, and other large
technology companies.

B. Implicit’s Patent Portfolio.

23. Implicit patented all of the core aspects of its String architecture. Captured

graphically by function, below is the portfolio:

FUNCTION PATENT
Creste the Datafiow: Implicit Patents ‘183; ‘022
Strings and Beads
Dynamically Implicit Patent ‘448,
Provision Beads Colloquially “Hot Beads”
Into Data Fiow
Compile Applications Implicit's App Serving
Dynammi on the Fly Patents: '685; '248; ‘985
Discover Content in the Iimplicit's NameSpace
Network and Synch Management Patent: ‘397
Across Device
Route Content Implicit Patents:
Across a Network 1. Data Mapn’m: ‘093
2. Media Printing: ‘349
3. Synchronization and Content
Rendering: ‘791
4. Component Architecture: ‘550
Display Content Implicit Patent ‘349

24. As particularly germane to this Complaint, on September 30, 2003, United
States Patent No. 6,629,163 (“the *163 patent™) entitled “Method and System for

Demultiplexing a First Sequence of Packet Components to Identify Specific Components

Wherein Subsequent Components are Processed Without Re-Identifying Components,” was
duly and legally issued, and assigned to Plaintiff. On December 18, 2008, the 163 patent
was put in re-exam. The "163 patent emerged from re-examination on June 22, 2010,

carrying U.S. Patent No. 6,629,163. It is assigned to Plaintiff, Implicit. True and correct

ORIGINAL COMPLAINT AND JURY DEMAND 6

T ———

O 00 NN N DN WD e

[N N N S R O I N I N L L e e Sy S VGO
00 N N L R WD~ O D 0NN N R WD~ o

e e

Case3:10-cy-03365-JCS Documentl Filed07/30/10 Page8 of 48

copies of the *163 patent and the Ex Parte Reexamination Certificate are attached as Exhibit
A.

25. On October 31, 2007, Edward Balassanian filed a continuation application,
which on May 4, 2010, issued as U.S. Patent No. 7,711,857 (*’857). Mr. Balassanian
assigned the patent to Implicit and Implicit is the sole owner of the patent. See Exhibit B.

C. Defendant’s Infringing Products.

26. Defendant describes itself as “a global leader in Application Delivery
networking. . . .” Defendant makes and sells its TMOS™ platform, which Defendant
describes as a shared product platform that is “the foundation for F5 products.” The
TMOS™ platform is in a modular, extensible, operating system, now central to Defendant’s
BIG-IP products and product line. As a modular and extensible system, TMOS™ has,
according to Defendant, the “unique ability to change its behavior based on real-time, real-
world events. Every event, from client connection initiation through payload processing —
even return traffic from the server back to the client — constitutes an opportunity for TMOS™!
to change its behavior to match the current requirement. This functionality makes TMOS™
the most adaptable and flexible solution available.” Defendant claims that its “revolutionary
TMOS™ architecture is at the heart of all BIG-IP platforms. . ..” TMOS is “a collection of
modules,” each performing a particular function, e.g., a networking driver module, an IP
module, a TCP module. Each is self contained and the system can be extended by simply
adding a new module.

27. Defendant BIG-IP products are sold throughout the United States, including in
this district.

28. Defendant’s TMOS™ platform and associated BIG-IP products infringe the

‘163 and ‘857 Implicit Patents.

ORIGINAL COMPLAINT AND JURY DEMAND 7

O 0 9 O B WD

[N N T N R S T N T N T N T O i N e S g S S G G GG
0 N N L AW = O O NN N DR WY~ o

e — e —

Case3:10-cv-0@35-JCS Documentl Filed07/30/10 Page9 of 48

COUNT 1
(Patent Infringement)

29. Plaintiff incorporates by reference the allegations of paragraphs 1-28, above.

30. On September 30, 2003, United States Patent No. 6,629,163 (“the 163
patent”) entitled “Methods and System for Demultiplexing a First Sequence of Packet
Components to Identify Specific Components Wherein Subsequent Components are
Processed Without Re-Identifying Components™ was duly and legally issued and assigned tq
Plaintiff, its sole owner. On June 22, 2010, the ‘163 patent emerged from reexam, with
amended and new claims. See Exhibit A.

31. Pursuantto 35 U.S.C. § 282, the above-listed United States Patent is presume
valid.

32. Edward Balassanian is the sole inventor of the ‘163 patent. The ‘163 patent
has been assigned to Plaintiff.

33. Defendant has infringed and is infringing the ‘163 Patent, by, without
authority, consent, right or license, and in direct infringement of the patent, making, using,
offering for sale and/or selling products using the methods, processes and apparatuses
claimed in the patent in this country. This conduct constitutes infringement under 35 U.S.C.
§ 271(a).

34. In addition, Defendant has infringed and is still infringing the ‘163 Patent in
this country, through, inter alia, its active inducement of others to make, use, and/or sell the
systems, products and methods claimed in one or more claims of the patent. This conduct
constitutes infringement under 35 U.S.C. § 271(b).

35. Inaddition, Defendant has infringed and are still infringing the 163 Patent in

this country through, inter alia, providing and selling goods and services including products

ORIGINAL COMPLAINT AND JURY DEMAND 8

O 0 N O i AW

NN NN NN N NN = =, e e e e e e e
0 N AW~ O DN NN WD RO

Case3:10-cv&3365-JCS Documentl Filed07/30/10 Pagel0 of 48

designed for use in practicing one or more claims of the ‘163 Patent, where the goods and
services constitute a material part of the invention and are not staple articles of commerce,
and which have no use other than infringing one or more claims of the ‘163 Patent.
Defendant has committed these acts with knowledge that the goods and services it provides
are specially made for use in a manner that directly infringes the ‘163 Patent. This conduct
constitutes infringement under 35 U.S.C. § 271(c).

36. Defendant’s infringing conduct is unlawful and willful. Defendant’s willful
conduct makes this an exceptional case as provided in 35 U.S.C. § 285.

37. Asaresult of Defendant’s infringement, Plaintiff has been damaged, and wil
continue to be damaged, until they are enjoined from further acts of infringement.

COUNT II
(Patent Infringement)

38. On May 4, 2010, the United States Patent No. 7,711,857, entitled “Method
and System for Data Demultiplexing,” was duly and legally issued and assigned to Plaintiff,
its sole owner. See Exhibit B.

39. Pursuant to 35 U.S.C. § 282, the above-listed United States Patent is presume
valid.

40. Edward Balassanian is the sole inventor of the ‘857 Patent. That patent has
been assigned to Plaintiff.

41. Defendant has infringed and is infringing the ‘857 Patent, by, without
authority, consent, right or license, and in direct infringement of the patent, making, using,
offering for sale and/or selling products using the methods, processes and apparatuses
claimed in the patent in this country. This conduct constitutes infringement under 35 U.S.C.

§ 271(a).

ORIGINAL COMPLAINT AND JURY DEMAND 9

O 00 10 YN W\ B W N -

NNNNNNNNNHHHHP—‘HHO—!Q—AQ—A
00 N1 AN W R W N~ O O NN Dl WNN— o

Case3:10-cv403365-JCS Documentl Filed07/30/10 Pagell of 48

“

42. In addition, Defendant has infringed and are still infringing the ‘857 Patent in
this country, through, inter alia, its active inducement of others to make, use, and/or sell the
systems, products and methods claimed in one or more claims of the patent. This conduct
constitutes infringement under 35 U.S.C. § 271(b).

43. In addition, Defendant has infringed and are still infringing the ‘857 Patent in
this country through, inter alia, providing and selling goods and services including products
designed for use in practicing one or more claims of the ‘857 Patent, where the goods and
services constitute a material part of the invention and are not staple articles of commerce,
and which have no use other than infringing one or more claims of the ‘857 Patent.
Defendant has committed these acts with knowledge that the goods and services it provides
are specially made for use in a manner that directly infringes the ‘857 Patent. This conduct
constitutes infringement under 35 U.S.C. § 271(c).

44, Defendant’s infringing conduct is unlawful and willful. Defendant’s willful
conduct makes this an exceptional case as provided in 35 U.S.C. § 285.

45. As aresult of Defendant’s infringement, Plaintiff has been damaged, and will
continue to be damaged, until they are enjoined from further acts of infringement.

PRAYER FOR RELIEF

WHEREFORE, Plaintiff prays:
(a) That this Court find Defendant has committed acts of patent infringement
under the Patent Act, 35 U.S.C. § 271,
(b) That this Court enter judgment that:
(i) The ‘163C1 and ‘857 Patents are valid and enforceable; and

(i) Defendant has willfully infringed those Patents.

ORIGINAL COMPLAINT AND JURY DEMAND 10

O 0 3 O n bW N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:10-cv;03365-JCS Documentl FiIedO?/S&O Pagel2 of 48

() That this Court award Plaintiff the damages to which it is entitled due to
Defendant’s patent infringement, with both pre-judgment and post-judgment interest;

(d) That Defendant’s infringement of the above cited Patents be adjudged
willful and that the damages to Plaintiff be increased by three times the amount found or
assessed pursuant to 35 U.S.C. § 284,

(e) That this be adjudged an exceptional case and that Plaintiff be awarded its
attorney’s fees in this action pursuant to 35 U.S.C. § 285;

® That this Court award Plaintiff its costs and disbursements in this civil
action, including reasonable attorney’s fees; and

(g) That this Court grant Plaintiff such other and further relief, in law or in

equity, both general and special, to which it may be entitl

Dated: July 30, 2010 Respectfully fubmitted,

HOSIE (CA Bar No. 101777)
osielaw.com

BRUCE WECKER (CA Bar No. 078530)
bweckgr@hosielaw.com

GEORGE F. BISHOP (CA Bar No. 89205)
gbishpp@hosielaw.com

DIANE S. RICE (CA Bar No. 118303)
drice@hosielaw.com

HOSIE RICE LLP

188 The Embarcadero, Suite 750

San Francisco, CA 94105

(415) 247-6000 Tel.

(415) 247-6001 Fax

Attorneys for Plaintiff
IMPLICIT NETWORKS, INC.

ORIGINAL COMPLAINT AND JURY DEMAND 11

i#

O 00 2 O Wwn B W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:10-cv-@65-JCS Documentl Filed07/30/3 Pagel3 of 48

DEMAND FOR JURY TRIAL

Plaintiff, by its undersigned attorneys, demands a tria} by jury on all issues so triable

Dated: July 30, 2010 Respectfully s

AAs

. A

SPENCER dSIE (CA Bar No. 101777)
shosie@hogielaw.com

HOSIE RICE LLP

188 The Embarcadero, Suite 750
San Francisco, CA 94105

(415) 247-6000 Tel.

(415) 247-6001 Fax

Attorneys for Plaintiff
IMPLICIT NETWORKS, INC.

ORIGINAL COMPLAINT AND JURY DEMAND 12

Case3:10-cv-03365-JCS Documentl Filed07/30/10 Pagel4 of 48

Exhibit A

[Quick][Advanced][—PatNuﬁ

[Hit List Mprevinuserottom }

[View Gart;g [ndd to Ccﬂ

Images
(60f6))
United States Patent 6,629,163
Balassanian September 30, 20038

Method and system for demultiplexing a first sequence of packet components to
identify specific components wherein subsequent components are processed without
re-identifying components

Abstract

A method and system for demultiplexing packets of a message is provided. The demultiplexing
system receives packets of a message, identifies a sequence of message handlers for processing
the message, identifies state information associated with the message for each message handler,
and invokes the message handlers passing the message and the associated state information. The
system identifies the message handlers based on the initial data type of the message and a target
data type. The identified message handlers effect the conversion of the data to the target data
type through various intermediate data types.

Inventors: Balassanian; Edward (Kirkland, WA)
Assignee: Implicit Networks, Inc. (Bellevue, WA)
Appl. No.: 09/474,664

Filed: December 29, 1999

Current U.S. Class: 710/33 ; 370/401; 370/487; 370/498; 370/535; 370/536;
370/542; 710/1; 710/20; 710/3; 710/316; 710/38; 710/51
Current International Class: HO04L 29/06 (20060101); GO6F 013/00 (); HO4L

012/56 (); HOAL 012/54 (

Field of Search: 710/1,3,33,38,131,132,20,51
370/401,487,498,535,536,542

)

References Cited [Referenced By]

U.S. Patent Documents
5425029 June 1995 Hluchyj et al.
5568478 October 1996 van Loo, Jr. et al.
5710917 January 1998 Musa et al.
5870479 February 1999 Feiken et al.
6101189 August 2000 Tsuruoka

6157622 December 2000 Tanaka et al.

6275507 Case3:10-cv
6359911

03365A%ewt Hdument1 Filedo7/Apdessopebali6 of 48
&/ March 2002 wPhovich et al.

Foreign Patent Documents
0408132 Jan., 1991 EP

Other References

Bhatti, Nina T., et al., "Coyote: A System for Constructing Fine-Grain Configurable
Communication Services," The University of Arizona at Tucson, ACM Transactions
on Computer Systems, vol. 16, No. 4, Nov. 1998, pp. 321-366. .

O'Malley, Sean W. and Larry L. Peterson, "A Dynamic Network Architecture,"
University of Arizona, ACM Transactions on Computer Systems (TOCS), vol. 10, No.
2, May 1992, pp. 110-143. .

Fiuczynski, Marc E. and Brian N. Bershad, "An Extensible Protocol Architecture for
Application-Specific Networking," University of Washington at Seattle, Proceedings
of the 1996 Winter USENIX Technical Conference. .

Pardyak, Przemyslaw and Brian N. Bershad, "Dynamic Binding for an Extensible
System," University of Washington at Seattle, Proceedings of the Second USENIX
Symposium on Operating Systems Design and Implementation (OSDI) 1996. .

Bailey, Mary L. et al., "PathFinder: A Pattern-Based Packet Classifier," University of
Arizona at Tucson, Proceedings of the First Symposium on Operating Systems Design
and Implementation, USENIX Association, Nov. 199%4. .

Mosberger, David, "Scout: A Path-Based Operating System," A Dissertation
Submitted to the Faculty of the Department of Computer Science, The University of
Arizona, pp. 87-97, 1997..

Primary Examiner: Gaffin; Jeffrey
Assistant Examiner: Peyton; Tammara
Attorney, Agent or Firm: Perkins Coie LLP

Claims

What is claimed is:

1. A method in a computer system for processing a message having a sequence of packets, the
method comprising: providing a plurality of components, each component being a software
routine for converting data with an input format into data with an output format; for the first
packet of the message, identifying a sequence of components for processing the packets of the
message such that the output format of the components of the sequence match the input format o)f
the next component in the sequence; and storing an indication of each of the identified
components so that the sequence does not need to be re-identified for subsequent packets of the
message; and for each of a plurality of packets of the message in sequence, for each of a plurality
of components in the identified sequence, retrieving state information relating to performing the
processing of the component with the previous packet of the message; performing the processing
of the identified component with the packet and the retrieved state information; and storing state
information relating to the processing of the component with the packet for use when processing
the next packet of the message.

2. The method of claim 1 wherein the storing of an indication of each of the identified
components includes storing a key for use in retrieving state information relating to the message.

3. The method of claim 1 wherein a second component of the sequence of components that are
identified is identified after the processing of the first packet by a first component is performed.

. The method of elpmy] Whersin fhspalsst max b e psfRmm sy facseguaongitef an
.identified sequence. b ~
5. The method of claim 1 wherein the identified sequence of components for two messages are
different.

6. The method of claim 1 including creating a separate thread for each message.

7. The method of claim 6 wherein the identified sequence of components for a message are
executed by the thread for the message.

8. The method of claim 1 wherein the retrieving of state information includes requesting the
component to provide the state information.

9. The method of claim 1 wherein the performing of the processing of the component includes
deferring performing of the next component in the identified sequence until multiple packets are
processed by the component.

10. The method of claim 1 wherein the identifying of a sequence of components includes
deferring identification of the next component of the sequence until processing of the last
component identified so far in the sequence is performed.

11. The method of claim 1 wherein two messages share one or more components and associated
state information.

12. The method of claim 1 wherein an output format of a component in the identified sequence
for a message matches an input format of the next component in the identified sequence for the
message.

13. The method of claim 1 wherein a component has multiple output formats.

14. The method of claim 1 wherein a plurality of sequences of components are identified for a
message.

15. A method in a computer system demultiplexing packets of messages, the method comprising]:
identifying a sequence of components for processing each message based on the first packet of
the message so that subsequent packets of the message can be processed without re-identifying
the components, wherein different sequences of components can be identified for different
messages, each component being a software routine; and for each packet of each message,
performing the processing of the identified sequence of components of the message wherein stat
information generated by performing the processing of a component for a packet is available to
the component when the component processes the next packet of the message.

W

16. The method of claim 15 wherein the sequence of components is identified as the first packet
of the message is processed.

17. The method of claim 15 wherein a packet of a message as processed by a component of the
identified sequence for the message is available to the next component in the identified sequence.

18. The method of claim 15 wherein the components of an identified sequence for a message are
executed within a thread associate with a single message.

19. The method of claim 15 wherein the state information includes requesting the component
that generated the state information to provide the state information.

20. The method of claim 15 wherein the performing of the processing of the component includes

R e S L e DR C L L

precessed by e com

21. The method of claim 15 wherein the identifying of a sequence of components includes
deferring identification of the next component of the sequence until processing of the last
component identified so far in the sequence is complete.

22. The method of claim 15 wherein two messages share one or more components and associate
state information.

23. The method of claim 15 wherein an output format of a component in the identified sequence
for a message matches an input format of the next component in the identified sequence for the
message.

24. The method of claim 15 wherein a component has multiple output formats.

25. The method of claim 15 wherein a plurality of sequences of components are identified for a
message.

26. A computer system for processing packets of messages, the method comprising: a plurality ¢
components, each component having an input format and an output format; identification means
that identifies a sequence of components for each message after a packet of the message has bee
received, such that the output format of a component in an identified sequence matches the inpu
format of the next component in the identified sequence; receiving means that receives packets
of the messages; and demultiplexing means that routes packets of messages to the sequence of
components identified for each message for performing the processing of the components on the
packets.

27. The computer system of claim 26 including means that stores and retrieves state information
for each component of the identified sequence of components for each message.

28. The computer system of claim 26 wherein a packet of a message as processed by a
component of the identified sequence for the message is available to the next component in the
identified sequence.

29. The computer system of claim 26 wherein the performing of the processing of the componen
includes deferring performing of the next component in the identified sequence until multiple
packets are processed by the component.

30. The computer system of claim 26 wherein identification means deferring identification of th
next component of the sequence until processing of the last component identified so far in the
sequence is complete.

31. The computer system of claim 26 wherein two messages share one or more components and
associated state information.

32. The computer system of claim 26 wherein an output format of a component in the identified
sequence for a message matches an input format of the next component in the identified
sequence for the message.

33. The computer system of claim 26 wherein a component has multiple output formats.

34. The computer system of claim 26 wherein the identification means identifies a plurality of
sequences of components for a message.

35. A computer-readable medium containing instruction demultiplexing packets of messages, by
method comprising: identifying a message-specific sequence of components for processing the

=ty

=4

1t

W

packets of each message u celvi gl:gle first packet of th wherei eguent
. . packets of tﬁ@ﬁ‘i%jdge% 8 geé 51? él%lss ggps%@céjﬁﬁi(seq%ﬁg((:feo?@g@d \%ggmg?h%l 1r§c§;l)acket
was received; and for eaCll packet of the message, invoking the identified sequence of
components in sequence to perform the processing of each component for the packet wherein
each component saves message-specific state information so that that component can use the

save message-specific state information when that component performs its processing on the
next packet of the message.

36. The computer-readable medium of claim 35 wherein a second component of the message-
specific sequence is identified after the first packet is processed by a first component of the
message-specific sequence.

37. The computer-readable medium of claim 35 wherein a packet may be transformed by each
component of an identified sequence.

38. The computer-readable medium of claim 35 including creating a separate thread for each
message.

39. The computer-readable medium of claim 38 wherein the identified sequence of components
for a message is executed by the thread for the message.

40. The computer-readable medium of claim 35 wherein the performing of the processing of the
component includes deferring performing of the next component in the identified sequence until
multiple packets are processed by the component.

41. The computer-readable medium of claim 35 wherein the identifying of a sequence of
components includes deferring identification of the next component of the sequence until
processing of the last component identified so far in the sequence is performed.

42. The computer-readable medium of claim 35 wherein two messages share one or more
components and associated state information.

43. The computer-readable medium of claim 35 wherein an output format of a component in the
identified sequence for a message matches an input format of the next component in the
identified sequence for the message.

44, The computer-readable medium of claim 35 wherein a plurality of sequences of components
are identified for a message.

Description

TECHNICAL FIELD
The present invention relates generally to a computer system for data demultiplexing.
BACKGROUND

Computer systems, which are becoming increasingly pervasive, generate data in a wide variety
of formats. The Internet is an example of interconnected computer systems that generate data in
many different formats. Indeed, when data is generated on one computer system and is
transmitted to another computer system to be displayed, the data may be converted in many
different intermediate formats before it is eventually displayed. For example, the generating
computer system may initially store the data in a bitmap format. To send the data to another
computer system, the computer system may first compress the bitmap data and then encrypt the
compressed data. The computer system may then convert that compressed data into a TCP
format and then into an IP format. The IP formatted data may be converted into a transmission

format, suCings anahemepEsmACTheUotuimthe transtikissisSOrNaL ip dhpsr@nf o receiving

computer system. The rec@ghg computer system would need to peg_am each of these
conversions in reverse order to convert the data in the bitmap format. In addition, the receiving
computer system may need to convert the bitmap data into a format that is appropriate for
rendering on output device.

In order to process data in such a wide variety of formats, both sending and receiving computer
systems need to have many conversion routines available to support the various formats. These
computer systems typically use predefined configuration information to load the correct
combination of conversion routines for processing data. These computer systems also use a
process-oriented approach when processing data with these conversion routines. When using a
process-oriented approach, a computer system may create a separate process for each conversio
that needs to take place. A computer system in certain situations, however, can be expected to
receive data and to provide data in many different formats that may not be known until the data
is received. The overhead of statically providing each possible series of conversion routines is
very high. For example, a computer system that serves as a central controller for data received
within a home would be expected to process data received via telephone lines, cable TV lines,
and satellite connections in many different formats. The central controller would be expected tqg
output the data to computer displays, television displays, entertainment centers, speakers,
recording devices, and so on in many different formats. Moreover, since the various conversion
routines may be developed by different organizations, it may not be easy to identify that the
output format of one conversion routine is compatible with the input format of another
conversion routine.

It would be desirable to have a technique for dynamically identifying a series of conversion
routines for processing data. In addition, it would be desirable to have a technique in which the
output format of one conversion routine can be identified as being compatible with the input
format of another conversion routine. It would also be desirable to store the identification of a
series of conversion routines so that the series can be quickly identified when data is received.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating example processing of a message by the conversion
system.

FIG. 2 is a block diagram illustrating a sequence of edges.

FIG. 3 is a block diagram illustrating components of the conversion system in one embodiment.

FIG. 4 is a block diagram illustrating example path data structures in one embodiment.
FIG. 5 is a block diagram that illustrates the interrelationship of the data structures of a path.

FIG. 6 is a block diagram that illustrates the interrelationship of the data structures associated
with a session.

FIGS. 7A, 7B, and 7C comprise a flow diagram illustrating the processing of the message send
routine.

FIG. 8 is a flow diagram of the demux routine.
FIG. 9 is a flow diagram of the initialize demux routine.
FIG. 10 is a flow diagram of the init end routine.

FIG. 11 is a flow diagram of a routine to get the next binding.

;

FIG. 12 is ¢lQuingram o4 $as 85E Ky B¥iRfients Filed07/30410 Page21 of 48

F I.G. 13 is a flow diagr % the get session routine.

FIG. 14 is a flow diagram of the nail binding routine.

FIG. 15 is a flow diagram of the find path routine.

FIG. 16 is a flow diagram of the process of path hopping routine.
DETAILED DESCRIPTION

A method and system for converting a message that may contain multiple packets from an source
format into a target format. When a packet of a message is received, the conversion system in
one embodiment searches for and identifies a sequence of conversion routines (or more generally
message handlers) for processing the packets of the message by comparing the input and output
formats of the conversion routines. (A message is a collection of data that is related in some way,
such as stream of video or audio data or an email message.) The identified sequence of
conversion routines is used to convert the message from the source format to the target format
using various intermediate formats. The conversion system then queues the packet for processing
by the identified sequence of conversion routines. The conversion system stores the identified
sequence so that the sequence can be quickly found (without searching) when the next packet in
the message is received. When subsequent packets of the message are received, the conversion
system identifies the sequence and queues the packets for pressing by the sequence. Because the
conversion system receives multiple messages with different source and target formats and
identifies a sequence of conversion routines for each message, the conversion systems effectivel
"demultiplexes" the messages. That is, the conversion system demultiplexes the messages by
receiving the message, identifying the sequence of conversion routines, and controlling the
processing of each message by the identified sequence. Moreover, since the conversion routines
may need to retain state information between the receipt of one packet of a message and the next
packet of that message, the conversion system maintains state information as an instance or
session of the conversion routine. The conversion system routes all packets for a message
through the same session of each conversion routine so that the same state or instance
information can be used by all packets of the message. A sequence of sessions of conversion
routines is referred to as a "path." In one embodiment, each path has a path thread associated
with it for processing of each packet destined for that path.

<z

In one embodiment, the packets of the messages are initially received by "drivers," such as an
Ethernet driver. When a driver receives a packet, it forwards the packet to a forwarding
component of the conversion system. The forwarding component is responsible for identifying
the session of the conversion routine that should next process the packet and invoking that
conversion routine. When invoked by a driver, the forwarding component may use a
demultiplexing ("demux") component to identify the session of the first conversion routine of t}le
path that is to process the packet and then queues the packet for processing by the path. A path
thread is associated with each path. Each path thread is responsible for retrieving packets from
the queue of its path and forwarding the packets to the forwarding component. When the
forwarding component is invoked by a path thread, it initially invokes the first conversion
routine in the path. That conversion routine processes the packet and forwards the processed
packet to the forwarding component, which then invokes the second conversion routine in the
path. The process of invoking the conversion routines and forwarding the processed packet to the
next conversion routine continues until the last conversion routine in the path is invoked. A
conversion routine may defer invocation of the forwarding component until it aggregates
multiple packets or may invoke the forwarding component multiple times for a packet once for
each sub-packet.

The forwarding component identifies the next conversion routine in the path using the demux
component and stores that identification so that the forwarding component can quickly identify

the conversion rqutisie. whenssubsequentpacksts af the samganessygoarp ez g demux

cobmponent searches for gnversion routine and session that is t(?(t process a packet. The
demux component then stores the identification of the session and cofiversion routine as partof a
path data structure so that the conversion system does not need to search for the session and
conversion routine when requested to demultiplex subsequent packets of the same message.
When searching for the next conversion routine, the demux component invokes a label map get
component that identifies the next conversion routine. Once the conversion routine is found, the
demux component identifies the session associated with that message by, in one embodiment,
invoking code associated with the conversion routine. In general, the code of the conversion
routine determines what session should be associated with a message. In certain situations,
multiple messages may share the same session. The demux component then extends the path for
processing that packet to include that session and conversion routine. The sessions are identified
so that each packet is associated with the appropriate state information. The dynamic
identification of conversion routines is described in U.S. patent application Ser. No. 09/304,973,
filed on May 4, 1999, entitled "Method and System for Generating a Mapping Between Types of
Data," which is hereby incorporated by reference.

FIG. 1 is a block diagram illustrating example processing of a message by the conversion
system. The driver 101 receives the packets of the message from a network. The driver perform
any appropriate processing of the packet and invokes a message send routine passing the
processed packet along with a reference path entry 150. The message send routine is an
embodiment of the forwarding component. A path is represented by a series of path entries,
which are represented by triangles. Each member path entry represents a session and conversion
routine of the path, and a reference path entry represents the overall path. The passed reference
path entry 150 indicates to the message send routine that it is being invoked by a driver. The
message send routine invokes the demux routine 102 to search for and identify the path of
sessions that is to process the packet. The demux routine may in turn invoke the label map get
routine 104 to identify a sequence of conversion routines for processing the packet. In this
example, the label map get routine identifies the first three conversion routines, and the demux
routine creates the member path entries 151, 152, 153 of the path for these conversion routines.
Each path entry identifies a session for a conversion routine, and the sequence of path entries
151-155 identifies a path. The message send routine then queues the packet on the queue 149 fo
the path that is to process the packets of the message. The path thread 105 for the path retrieves
the packet from the queue and invokes the message send routine 106 passing the packet and an
indication of the path. The message send routine determines that the next session and conversion
routine as indicated by path entry 151 has already been found. The message send routine then
invokes the instance of the conversion routine for the session. The conversion routine processes
the packet and then invokes the message send routine 107. This processing continues until the
message send routine invokes the demux routine 110 after the packet is processed by the
conversion routine represented by path entry 153. The demux routine examines the path and
determines that it has no more path entries. The demux routine then invokes the label map get
routine 111 to identify the conversion routines for further processing of the packet. When the
conversion routines are identified, the demux routine adds path entries 154, 155 to the path. The
messages send routine invokes the conversion routine associated with path entry 154. Eventually,
the conversion routine associated with path entry 155 performs the final processing for the path

wn

—

The label map get routine identifies a sequence of "edges" for converting data in one format into
another format. Each edge corresponds to a conversion routine for converting data from one
format to another. Each edge is part of a "protocol” (or more generally a component) that may
include multiple related edges. For example, a protocol may have edges that each convert data in
one format into several different formats. Each edge has an input format and an output format.
The label map get routine identifies a sequence of edges such that the output format of each edge
is compatible with the input format of another edge in the sequence, except for the input format
of the first edge in the sequence and the output format of the last edge in the sequence. FIG. 2 is
a block diagram illustrating a sequence of edges. Protocol P1 includes an edge for converting
format D1 to format D2 and an edge for converting format D1 to format D3; protocol P2
includes an edge for converting format D2 to format D35, and so on. A sequence for converting

U e
format D1 tq formnat I3 js shawnrhy ths sumsdilines andisglofordcy thayeddzass 4B1:1, P2:1,

- . P3:2,P4.7. ena pav of data in format D1 is processed by{egd sequence, it is converted to
format D15. During the PYocess, the packet of data is sequentially converted to format D2, DS,
and D13, The output format of protocol P2, edge 1 (i.e., P2:1) is format D5, but the input format
of P3:2 is format D10. The label map get routine uses an aliasing mechanism by which two
formats, such as D5 and D10 are identified as being compatible. The use of aliasing allows
different names of the same format or compatible formats to be correlated.

[am—y

FIG. 3 is a block diagram illustrating components of the conversion system in one embodiment
The conversion system 300 can operate on a computer system with a central processing unit 30
I/0 devices 302, and memory 303. The I/0 devices may include an Internet connection, a
connection to various output devices such as a television, and a connection to various input
devices such as a television receiver. The media mapping system may be stored as instructions
on a computer-readable medium, such as a disk drive, memory, or data transmission medium.
The data structures of the media mapping system may also be stored on a computer-readable
medium. The conversion system includes drivers 304, a forwarding component 305, a demux
component 306, a label map get component 307, path data structures 308, conversion routines
309, and instance data 310. Each driver receives data in a source format and forwards the data to
the forwarding component. The forwarding component identifies the next conversion routine in
the path and invokes that conversion routine to process a packet. The forwarding component may
invoke the demux component to search for the next conversion routine and add that conversion
routine to the path. The demux component may invoke the label map get component to identify,
the next conversion routine to process the packet. The demux component stores information
defining the paths in the path structures. The conversion routines store their state information in
the instance data.

—
-

FIG. 4 is a block diagram illustrating example path data structures in one embodiment. The
demux component identifies a sequence of "edges" for converting data in one format into another
format by invoking the label map get component. Each edge corresponds to a conversion routinE
for converting data from one format to another. As discussed above, each edge is part of a
"protocol" that may include multiple related edges. For example, a protocol may have edges that
each convert data in one format into several different formats. Each edge has as an input format
("input label") and an output format ("output label"). Each rectangle represents a session 410,
420, 430, 440, 450 for a protocol. A session corresponds to an instance of a protocol. That is, the
session includes the protocol and state information associated with that instance of the protocol.
Session 410 corresponds to a session for an Ethernet protocol; session 420 corresponds to a
session for an IP protocol; and sessions 430, 440, 450 correspond to sessions for a TCP protocol.
FIG. 4 illustrates three paths 461, 462, 463. Each path includes edges 411, 421, 431. The paths
share the same Ethernet session 410 and IP session 420, but each path has a unique TCP session
430, 440, 450. Thus, path 461 includes sessions 410, 420, and 430; path 462 includes sessions
410, 420, and 440; and path 463 includes sessions 410, 420, and 450. The conversion system
represents each path by a sequence of path entry structures. Each path entry structure is
represented by a triangle. Thus, path 461 is represented by path entries 415, 425, and 433. The
conversion system represents the path entries of a path by a stack list. Each path also has a queue
471, 472, 473 associated with it. Each queue stores the messages that are to be processed by the
conversion routines of the edges of the path. Each session includes a binding 412, 422, 432, 442,
452 that is represented by an oblong shape adjacent to the corresponding edge. A binding for an
edge of a session represents those paths that include the edge. The binding 412 indicates that
three paths are bound (or "nailed") to edge 411 of the Ethernet session 410. The conversion
system uses a path list to track the paths that are bound to a binding. The path list of binding 412
identifies path entries 413, 414, and 415.

FIG. 5 is a block diagram that illustrates the interrelationship of the data structures of a path.
Each path has a corresponding path structure 501 that contains status information and pointers to
a message queue structure 502, a stack list structure 503, and a path address structure 504. The
status of a path can be extend, continue, or end. Each message handler returns a status for the
path. The status of extend means that additional path entries should be added to the path. The

R
status of e’é’a%‘«?%“f6}&‘?\%r , -fé?ﬂ‘baflﬁh thisipoint arebsybssauenbprgssssipgsbould
continue at a new path. Ti§ gatus of continue means that the protoqmes not care how the path
is handled. In one embodiment, when a path has a status of continue, the system creates a copy|
of the path and extends the copy. The message queue structure identifies the messages (or
packets of a message) that are queued up for processing by the path and identifies the path entry
at where the processing should start. The stack list structure contains a list of pointers to the path
entry structures 505 that comprise the path. Each path entry structure contains a pointer to the
corresponding path data structure, a pointer to a map structure 507, a pointer to a multiplex list
508, a pointer to the corresponding path address structure, and a pointer to a member structure
509. A map structure identifies the output label of the edge of the path entry and optionally a
target label and a target key. A target key identifies the session associated with the protocol that
converts the packet to the target label. (The terms "media," "label," and "format" are used
interchangeably to refer to the output of a protocol.) The multiplex list is used during the demux
process to track possible next edges when a path is being identified as having more than one next
edge. The member structure indicates that the path entry represents an edge of a path and
contains a pointer to a binding structure to which the path entry is associated (or "nailed"), a
stack list entry is the position of the path entry within the associated stack list, a path list entry is
the position of the path entry within the associated path list of a binding and an address entry is
the position of the binding within the associated path address. A path address of a path identifies
the bindings to which the path entries are bound. The path address structure contains a URL for
the path, the name of the path identified by the address, a pointer to a binding list structure 506,
and the identification of the current binding within the binding list. The URL (e.g.,
"protocol://tcp(0)/ip(0)/eth(0)") identifies conversion routines (e.g., protocols and edges) of a
path in a human-readable format. The URL (universal resource locator) includes a type field
(e.g., "protocol") followed by a sequence of items (e.g., "tcp(0)"). The type field specifies the
format of the following information in the URL, that specifies that the type field is followed by
sequence of items. Each item identifies a protocol and an edge (e.g., the protocol is "tcp" and th
edge is "0"). In one embodiment, the items of a URL may also contain an identifier of state
information that is to be used when processing a message. These URLs can be used to illustrate
to a user various paths that are available for processing a message. The current binding is the las
binding in the path as the path is being built. The binding list structure contains a list of pointers
to the binding structures associated with the path. Each binding structure 510 contains a pointer
to a session structure, a pointer to an edge structure, a key, a path list structure, and a list of
active paths through the binding. The key identifies the state information for a session of a
protocol. A path list structure contains pointers to the path entry structures associated with the
binding.

T ®

—+

FIG. 6 is a block diagram that illustrates the interrelationship of the data structures associated
with a session. A session structure 601 contains the context for the session, a pointer to a
protocol structure for the session, a pointer to a binding table structure 602 for the bindings
associated with the session, and the key. The binding table structure contains a list of pointers tg
the binding structures 510 for the session. The binding structure is described above with
reference to FIG. 5. The path list structure 603 of the binding structure contains a list of pointers
to path entry structures 505. The path entry structures are described with reference to FIG. 5.

FIGS. 7A, 7B, and 7C comprise a flow diagram illustrating the processing of the message send
routine. The message send routine is passed a message along with the path entry associated with
the session that last processed the message. The message send routine invokes the message
handler of the next edge in the path or queues the message for processing by a path. The message
handler invokes the demux routine to identify the next path entry of the path. When a driver

receives a message, it invokes the message send routine passing a reference path entry. The

message send routine examines the passed path entry to determine (1) whether multiple paths
branch from the path of the passed path entry, (2) whether the passed path entry is a reference
with an associated path, or (3) whether the passed path entry is a member with a next path entry.
If multiple paths branch from the path of the passed path entry, then the routine recursively
invokes the message send routine for each path. If the path entry is a reference with an associated
path, then the driver previously invoked the message send routine, which associated a path with |

the referen&%gg@. SR, hihe g@gne@&ﬁgﬁ]@ﬁ@es;qg@mm ugloy dhengthydf the
- . passed path entry is a n?er with a next path entry, then the ro invokes the message

handler (i.e., conversion Toutine of the edge) associated with the next path entry. If the passed
path entry is a reference without an associated path or is a member without a next path entry,
then the routine invokes the demux routine to 1dent1fy the next path entry. The routine then
recursively invokes the messages send routine passing that next path entry. In decision block
701, if the passed path entry has a multiplex list, then the path branches off into multiple paths
and the routine continues at block 709, else the routine continues at block 702. A packet may b
processed by several different paths. For example, if a certain message is directed to two
different output devices, then the message is processed by two different paths. Also, a message
may need to be processed by multiple partial paths when searching for a complete path. In
decision block 702, if the passed path entry is a member, then either the next path entry indica:Ts

w

a nailed binding or the path needs to be extended and the routine continues at block 704, else the
routine continues at block 703. A nailed binding is a binding (e.g., edge and protocol) is
associated with a session. In decision block 703, the passed path entry is a reference and if the
passed path entry has an associated path, then the routine can queue the message for the
associated path and the routine continues at block 703 A, else the routine needs to identify a patl
and the routine continues at block 707. In block 703 A, the routine sets the entry to the first path
entry in the path and continues at block 717. In block 704, the routine sets the variable position
to the stack list entry of the passed path entry. In decision block 705, the routine sets the variable
next entry to the next path entry in the path. If there is a next entry in the path, then the next
session and edge of the protocol have been identified and the routine continues at block 706, else
the routine continues at block 707. In block 706, the routine passes the message to the message
handler of the edge associated with the next entry and then returns. In block 706, the routine
invokes the demux routine passing the passed message, the address of the passed path entry, and
the passed path entry. The demux routine returns a list of candidate paths for processing of the
message. In decision block 708, if at least one candidate path is returned, then the routine
continues at block 709, else the routine returns.

(=)

Blocks 709-716 illustrate the processing of a list of candidate paths that extend from the passed
path entry. In blocks 710-716, the routine loops selecting each candidate path and sending the
message to be process by each candidate path. In block 710, the routine sets the next entry to th%
first path entry of the next candidate path. In decision block 711, if all the candidate paths have
not yet been processed, then the routine continues at block 712, else the routine returns. In
decision block 712, if the next entry is equal to the passed path entry , then the path is to be
extended and the routine continues at block 705, else the routine continues at block 713. The
candidate paths include a first path entry that is a reference path entry for new paths or that is th
last path entry of a path being extended. In decision block 713, if the number of candidate paths
is greater than one, then the routine continues at block 714, else the routine continues at block
718. In decision block 714, if the passed path entry has a multiplex list associated with it, then
the routine continues at block 716, else the routine continues at block 715. In block 715, the
routine associates the list of candidate path with the multiplex list of the passed path entry and
continues at block 716. In block 716, the routine sends the message to the next entry by
recursively invoking the message send routine. The routine then loops to block 710 to select the
next entry associated with the next candidate path.

w

Blocks 717-718 are performed when the passed path entry is a reference path entry that has a
path associated with it. In block 717, if there is a path associated with the next entry, then the
routine continues at block 718, else the routine returns. In block 718, the routine queues the
message for the path of the next entry and then returns.

[72]

FIG. 8 is a flow diagram of the demux routine. This routine is passed the packet (message) that i
received, an address structure, and a path entry structure. The demux routine extends a path,
creating one if necessary. The routine loops identifying the next binding (edge and protocol) that
is to process the message and "nailing" the binding to a session for the message, if not already
nailed. After identifying the nailed binding, the routine searches for the shortest path through the
nailed binding, creating a path if none exists. In block 801, the routine invokes the initialize |

processing the passed meg _ge. In decision block 802, if there is ag gent status, which was
returned by the demuxkey Toutine that was last invoked (e.g., contirfle, extend, end, or
postpone), then the routine continues at block 803, else the routine continues at block §11. In
block 803, the routine invokes the get next binding routine. The get next binding routine returns
the next binding in the path. The binding is the edge of a protocol. That routine extends the path
as appropriate to include the binding. The routine returns a return status of break, binding, or
multiple. The return status of binding indicates that the next binding in the path was found by
extending the path as appropriate and the routine continues to "nail" the binding to a session as
appropriate. The return status of multiple means that multiple trails (e.g., candidate paths) were
identified as possible extensions of the path. In a decision block 804, if the return status is break,
then the routine continues at block 811. If the return status is multiple, then the routine retums.%lf

demux rouging Ja bloks Qéa%l-%%e_f%midepﬁ&i@m@\;fsow@% of agath for

the return status is binding, then the routine continues at block 805. In decision block 805, if th
retrieved binding is nailed as indicated by being assigned to a session, then the routine loops to
block 802, else the routine continues at block 806. In block 806, the routine invokes the get key
routine of the edge associated with the binding. The get key routine creates the key for the
session associated with the message. If a key cannot be created until subsequent bindings are
processed or because the current binding is to be removed, then the get key routine returns a next
binding status, else it returns a continue status. In decision block 807, if the return status of the
get key routine is next binding, then the routine loops to block 802 to get the next binding, else
the routine continues at block 808. In block 808, the routine invokes the routine get session. The
routine get session returns the session associated with the key, creating a new session if
necessary. In block 809, the routine invokes the routine nail binding. The routine nail binding
retrieves the binding if one is already nailed to the session. Otherwise, that routine nails the
binding to the session. In decision block 810, if the nail binding routine returns a status of
simplex, then the routine continues at block 811 because only one path can use the session, else
the routine loops to block 802. Immediately upon return from the nail binding routine, the
routine may invoke a set map routine of the edge passing the session and a map to allow the edge
to set its map. In block 811, the routine invokes the find path routine, which finds the shortest
path through the binding list and creates a path if necessary. In block 812, the routine invokes the
process path hopping routine, which determines whether the identified path is part of a different
path. Path hopping occurs when, for example, IP fragments are built up along separate paths, but
once the fragments are built up they can be processed by the same subsequent path.

FIG. 9 is a flow diagram of the initialize demux routine. This routine is invoked to initialize the
local data structures that are used in the demux process and to identify the initial binding. The

demux routine finds the shortest path from the initial binding to the final binding. If the current
status is demux extend, then the routine is to extend the path of the passed path entry by adding
additional path entries. If the current status is demux end, then the demux routine is ending the
current path. If the current status is demux continue, then the demux routine is in the process of
continuing to extend or in the process of starting a path identified by the passed address. In block
901, the routine sets the local map structure to the map structure in the passed path entry
structure. The map structure identifies the output label, the target label, and the target key. In the
block 902, the routine initializes the local message structure to the passed message structure and
initializes the pointers path and address element to null. In block 903, the routine sets of the
variable saved status to 0 and the variable status to demux continue. The variable saved status is
used to track the status of the demux process when backtracking to nail a binding whose nail
was,postponed. In decision block 904, if the passed path entry is associated with a path, then the
routine continues at block 905, else the routine continues at block 906. In block 905, the routine
sets the variable status to the status of that path. In block 906, if the variable status is demux

continue, then the routine continues at block 907. If the variable status is demux end, then the
routine continues at block 908. If the variable status is demux extend, then the routine continues
at block 909. In block 907, the status is demux continue, and the routine sets the local pointer
path address to the passed address and continues at block 911. In block 908, the status is demux
end, and the routine invokes the init end routine and continues at block 911. In block 909, the
status is demux extend, and the routine sets the local path address to the address of the path that
contains the passed path entry. In block 910, the routine sets the address element and the current

pinding of ércershy fleher RAIBIACS b Biciprah oiniey ativaddress (e thaddissagnty of the
.member structure'opctlhe @g p?ig entry. In the block 911, the rQe sets the local \8/2riabletlh

status to demux continue dNd sets the local binding list structure to the binding list structure fram
the local path address structure. In block 912, the routine sets the local pointer current binding to
the address of the current binding pointed to by local pointer path address and sets the local

variable postpone to 0. In block 913, the routine sets the function traverse to the function that
retrieves the next data in a list and sets the local pointer session to null. The routine then returns.

FIG. 10 is a flow diagram of the init end routine. If the path is simplex, then the routine creates a
new path from where the other one ended, else the routine creates a copy of the path. In block
1001, if the binding of the passed path entry is simplex (i.e., only one path can be bound to this
binding), then the routine continues at block 1002, else the routine continues at block 1003. In
block 1002, the routine sets the local pointer path address to point to an address structure that is a
copy of the address structure associated with the passed path entry structure with its current
binding to the address entry associated with the passed path entry structure, and then returns. In
block 1003, the routine sets the local pointer path address to point to an address structure that
contains the URL of the path that contains the passed path entry. In block 1004, the routine sets
the local pointer element to null to initialize the selection of the bindings. In blocks 1005 through
1007, the routine loops adding all the bindings for the address of the passed path entry that
include and are before the passed path entry to the address pointed to by the local path address.
In block 1005, the routine retrieves the next binding from the binding list starting with the first.
If there is no such binding, then the routine returns, else the routine continues at block 1006. In
block 1006, the routine adds the binding to the binding list of the local path address structure and
sets the current binding of the local variable path address. In the block 1007, if the local pointer
element is equal to the address entry of the passed path entry, then the routine returns, else the
routine loops to block 1005 to select the next binding.

FIG. 11 is a flow diagram of a routine to get the next binding. This routine returns the next
binding from the local binding list. If there is no next binding, then the routine invokes the
routine label map get to identify the list of edges ("trails") that will map the output label to the
target label. If only one trail is identified, then the binding list of path address is extended by the
edges of the trail. If multiple trails are identified, then a path is created for each trail and the
routine returns so that the demux process can be invoked for each created path. In block 1101,
the routine sets the local pointer binding to point to the next or previous (as indicated by the
traverse function) binding in the local binding list. In block 1102, if a binding was found, then
the routine returns an indication that a binding was found, else the routine continues at block
1103. In block 1103, the routine invokes the label map get function passing the output label and
target label of the local map structure. The label map get function returns a trail list. A trail is a
list of edges from the output label to the target label. In decision block 1104, if the size of the
trail list is one, then the routine continues at block 1103, else the routine continues at block 1112.
In blocks 1105-1111, the routine extends the binding list by adding a binding data structure for
each edge in the trail. The routine then sets the local binding to the last binding in the binding
list. In block 1105, the routine sets the local pointer current binding to point to the last binding in
the local binding list. In block 1106, the routine sets the local variable temp trail to the trail in the
trail list. In block 1107, the routine extends the binding list by temp trail by adding a binding for
each edge in the trail. These bindings are not yet nailed. In block 1108, the routine sets the local
binding to point to the last binding in the local binding list. In decision block 1109, if the local
binding does not have a key for a session and the local map has a target key for a session, then
the routine sets the key for the binding to the target key of the local map and continues at block
1110, else the routine loops to block 1101 to retrieve the next binding in path. In block 1110, the
routine sets the key of the local binding to the target key of the local map. In block 1111, the
routine sets the target key of the local map to null and then loop to block 1101 to return the next
binding. In decision block 1112, if the local session is set, then the demultiplexing is already in
progress and the routine returns a break status. In block 1113, the routine invokes a prepare
multicast paths routine to prepare a path entry for each trail in the trail list. The routine then
returns a multiple status.

T ——

. . key routine to refrieve d§ 4

FIG. 12 is @ flowsdigeram,obibe set deypputinge b setkeopneing invekesepedeas domux-
orﬁ

e session associated with the n{_dhge. The key identifies the
session of a protocol. Th¢demux key routine creates the appropriate key for the message. The
demux key routine returns a status of remove, postpone, or other. The status of remove indicates
that the current binding should be removed from the path. The status of postpone indicates that|
the demux key routine cannot create the key because it needs information provided by
subsequent protocols in the path. For example, a TCP session is defined by a combination of a
remote and local port address and an IP address. Thus, the TCP protocol postpones the creating
of a key until the IP protocol identifies the IP address. The get key routine returns a next binding
status to continue at the next binding in the path. Otherwise, the routine returns a continue statu
In block 1201, the routine sets the local edge to the edge of the local binding (current binding)
and sets the local protocol to the protocol of the local edge. In block 1202, the routine invokes
the demux key routine of the local edge passing the local message, local path address, and local
map. The demux key routine sets the key in the local binding. In decision block 1203, if the
demux key routine returns a status of remove, then the routine continues at block 1204, If the
demux key routine returns a status of postpone, then the routine continues at block 1203, else the
routine continues at block 1206. In block 1204, the routine sets the flag of the local binding to
indicate that the binding is to be removed and continues at block 1206. In block 1205, the routine
sets the variable traverse to the function to list the next data, increments the variable postpone,
and then returns a next binding status. In blocks 1206-1214, the routine processes the postponing
of the creating of a key. In blocks 1207-1210, if the creating of a key has been postponed, then
the routine indicates to backtrack on the path, save the demux status, and set the demux status to
demux continue. In blocks 1211-1213, if the creating of a key has not been postponed, then the
routine indicates to continue forward in the path and to restore any saved demux status. The save
demux status is the status associated by the binding where the backtrack started. In decision
block 1206, if the variable postpone is set, then the routine continues at block 1207, else the
routine continues at block 1211. In block 1207, the routine decrements the variable postpone and
sets the variable traverse to the list previous data function. In decision block 1208, if the variable
saved status is set, then the routine continues at block 1210, else the routine continues at block
1209. The variable saved status contains the status of the demux process when the demux
process started to backtrack. In block 1209, the routine sets the variable saved status to the
variable status. In block 1210, the routine sets the variable status to demux continue and
continues at block 1214. In block 1211, the routine sets the variable traverse to the list next data
function. In decision block 1212, if the variable saved status in set, then the routine continues at
block 1213, else the routine continues at block 1214. In block 1213, the routine sets the variable
status to the variable saved status and sets the variable saved status to 0. In decision block 1214,
if the local binding indicates that it is to be removed, then the routine returns a next binding
status, else the routine returns a continue status.

w

FIG. 13 is a flow diagram of the get session routine. This routine retrieves the session data
structure, creating a data structure session if necessary, for the key indicated by the binding. In
block 1301, the routine retrieves the session from the session table of the local protocol indicated
by the key of the local binding. Each protocol maintains a mapping from each key to the session
associated with the key. In decision block 1302, if there is no session, then the routine continues
at block 1303, else the routine returns. In block 1303, the routine creates a session for the local
protocol. In block 1304, the routine initializes the key for the local session based on the key of
the local binding. In block 1305, the routine puts the session into the session table of the local
protocol. In block 1306, the routine invokes the create session function of the protocol to allow
the protocol to initialize its context and then returns.

FIG. 14 is a flow diagram of the nail binding routine. This routine determines whether a binding
is already associated with ("nailed to") the session. If so, the routine returns that binding. If not,
the routine associates the binding with the session. The routine returns a status of simplex to
indicate that only one path can extend through the nailed binding. In decision block 1401, if the
binding table of the session contains an entry for the edge, then the routine continues at block
1402, else the routine continues at block 1405. In block 1402, the routine sets the binding to the
entry from the binding table of the local session for the edge. In block 1403, the routine sets the

ke

L. camen bindinglo point o s bindias o thesrisioncin borlohtif ibtapindia s g simpl

then the routine returns ex status, the routine returns. oug 1410 are
performed when there is 1nd1ng in the session for the edge. In Block 1405, the routine sets
the session of the binding to the variable session. In block 1406, the routine sets the key of the
binding to the key from the session. In block 1407, the routine sets the entry for the edge in the
binding table of the local session to the binding. In block 1408, the routine invokes the create
binding function of the edge of the binding passing the binding so the edge can initialize the Jk
binding. If that function returns a status of remove, the routine continues at block 1469. In blo

1409, the routine sets the binding to be removed and then returns.

i

FIG. 15 is a flow diagram of the find path routine. The find path routine identifies the shortest
path through the binding list. If no such path exists, then the routine extends a path to include the
binding list. In decision block 1501, if the binding is simplex and a path already goes through
this binding (returned as an entry), then the routine continues at block 1502, else the routine
continues at block 1503. In block 1502, the routine sets the path to the path of the entry and
returns. In block 1503, the routine initializes the pointers element and short entry to null. In
block 1504, the routine sets the path to the path of the passed path entry. If the local path is not
null and its status is demux extend, then the routine continues at block 1509, else the routine
continues at block 1505. In blocks 1505-1508, the routine loops identifying the shortest path
through the bindings in the binding list. The routine loops selecting each path through the
binding. The selected path is eligible if it starts at the first binding in the binding list and the path
ends at the binding. The routine loops setting the short entry to the shortest eligible path found so
far. In block 1505, the routine sets the variable first binding to the first binding in the binding list
of the path address. In block 1506, the routine selects the next path (entry) in the path list of the
binding starting with the first. If a path is selected (indicating that there are more paths in the
binding), then the routine continues at block 1507, else the routine continues at block 1509. In
block 1507, the routine determines whether the selected path starts at the first binding in the
binding list, whether the selected path ends at the last binding in the binding list, and whether the
number of path entries in the selected path is less than the number of path entries in the shortest
path selected so far. If these conditions are all satisfied, then the routine continues at block 1508,
else the routine loops to block 1506 to select the next path (entry). In block 1508, the routine sets
the shortest path (short entry) to the selected path and loops to block 1506 to select the next path
through the binding. In block 1509, the routine sets the selected path (entry) to the shortest path.
In decision block 1510, if a path has been found, then the routine continues at block 1511, else
the routine continues at block 1512. In block 1511, the routine sets the path to the path of the
selected path entry and returns. Blocks 1512-1516 are performed when no paths have been
found. In block 1512, the routine sets the path to the path of the passed path entry. If the passed
path entry has a path and its status is demux extend, then the routine continues at block 1515,
else the routine continues at block 1513. In block 1513, the routine creates a path for the path
address. In block 1514, the routine sets the variable element to null and sets the path entry to the
first element in the stack list of the path. In block 1515, the routine sets the variable element to
be address entry of the member of the passed path entry and sets the path entry to the passed path
entry. In block 1516, the routine invokes the extend path routine to extend the path and then
returns. The extend path routine creates a path through the bindings of the binding list and sets
the path status to the current demux status.

FIG. 16 is a flow diagram of the process of path hopping routine. Path hopping occurs when the
path through the binding list is not the same path as that of the passed path entry. In decision
block 1601, if the path of the passed path entry is set, then the routine continues at block 1602,
else the routine continues at block 1609. In decision block 1602, if the path of the passed path
entry is equal to the local path, then the routine continues at 1612, else path hopping is occurring
and the routine continues at block 1603. In blocks 1603-1607, the routine loops positioning
pointers at the first path entries of the paths that are not at the same binding. In block 1603, the
routine sets the variable old stack to the stack list of the path of the passed path entry. In block
1604, the routine sets the variable new stack to the stack list of the local path. In block 1605, the
routine sets the variable old element to the next element in the old stack. In block 1606, the
routine sets the variable element to the next element in the new stack. In decision block 1607, the

1608, if the varia 1S set, then e routine is not at the i oppe from path
and the routine contin ock 1609, else routine continues at b ock 1612. In block 1609, the
routine sets the variable entry to the previous entry in the hopped-to path. In block 1610, the
routine sets the path of the passed path entry to the local path. In block 1611, the routine sets the
local entry to the first path entry of the stack list of the local path. In block 1612, the routine
inserts an entry into return list and then returns.

.) routine logps, g@% l{ber%wl Bl@éls Bﬁb@[ﬁ?ﬂe binding isd %6{2 é’i?ﬁl pdlock

Although the conversion system has been described in terms of various embodiments, the
invention is not limited to these embodiments. Modification within the spirit of the invention will
be apparent to those skilled in the art. For example, a conversion routine may be used for routing
a message and may perform no conversion of the message. Also, a reference to a single copy of
the message can be passed to each conversion routine or demuxkey routine. These routines can
advance the reference past the header information for the protocol so that the reference is

positioned at the next header. After the demux process, the reference can be reset to point to the
first header for processing by the conversion routines in sequence. The scope of the invention is
defined by the claims that follow.

L

Images

[View c.art} [Add ta Cart}

() (o) 722)

[Home | ouick |[advenced||patnum || Hel |

Case3:10-cv-p3365-JCS [/ |
oo egeses oeconen RSP
US006629163C1 :

a2 EX PARTE REEXAMINATION CERTIFICATE (7567th)

United States Patent
- Balassanlan

US 6,629,163 C1
Jun. 22,2010

(10) Number:
@s) Certificate Issued:

(54) METHOD AND SYSTEM FOR
DEMULTIPLEXING A FIRST SEQUENCE OF
PACKET COMPONENTS TO IDENTIFY
SPECIFIC COMPONENTS WHEREIN

- SUBSEQUENT COMPONENTS ARE
PROCESSED WITHOUT RE-IDENTIFYING
COMPONENTS

Edward Balassanlan, erkland WA
(Us)

(73) Assignee: Implicit Networks, Inc., Bellevue, WA
us)

(75) Inventor:

Reexamination Request:
No. 90/010,356, Dec. 18, 2008
" Reexamination Certificate for:
Patent No.: 6,629,163
Issued: Sep. 30, 2003
Appl. No.: 09/474,664
Filed: Dec. 29,1999
Certificate of Correction issued Dec. 2, 2003.
(51) Int.Cl
GOG6F 13/60 (2006.01)
HO4L 12/54 (2006.01)
HO4L 12/56 (2006.01)
(52) US.CL ...vvevereennen 710/33; 710/1; 710/3; 710/20;

'710/38; 710/51; 370/401; 370/487; 370/498,;
370/535; 370/536; 370/542

(58) Field of Classification Searchcu.... None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,392,390 A 2/1995 Crozier
5,627,997 A 5/1997 Pearsonet al.
5,768,521 A 6/1998 Dedrick
5848415 A 12/1998 Guck

6,047,002 A 4/2000 Hartmann et al.

872000 Schuetze et al.

6,101,320 A
6,104,704 A 8/2000 Buhleretal.
6,128,624 A 1072000 Papiemiak et al.
6,192,419 Bl 272001 Adithamet al.
6,199,054 Bl 3/2001 Khan et al.
6,212,550 Bl 4/2001 Segur
6,222,536 Bl 4/2001 Kihl et al.
6,246,678 Bl 6/2001 Erb
6,356,529 Bl 372002 Zarom
6,405,254 B1 6/2002 Hadland
6,574,610 B1 6/2003 Claytonetal.
6,651,099 B1 1172003 Dietzetal.
6,785,730 B1 8/2004 Taylor
7,233,948 B1 6/2007 Shamoon et al.
OTHER PUBLICATIO_NS

Internetworking with TCP/IP, vol. 1: Principles, Prot
and Architecture, Second Edition, Douglas E. Comer,

16 (Appendix “B” to Reexam).

TCP/P Illustrated vol. 1, W., Addison-Wesley, 1994,
ard Stevens, chapters 1, 8, and 18; TCP/IP INustrated vol. 2,
Gary Wright and W. Richard Stevens, chapters 22, 24, 28, -
and 29, 1995 (Appendix “C” to Reexam).
Scout: A Path-Based Operating System, David Mosberger,
1997 (Doctoral Dissertation Submitted to the University of
Arizona) (Appendix “D” to Reexam).

Primary Examiner—Matthew Heneghan
(57) ABSTRACT

A method and system for demultiplexing packets of ajmes-
sage is provided. The demultiplexing system receives pack-
ets of a message, identifies a sequence of message ers
for processing the message, identifies state information psso-
ciated with the message for cach message handler, and
invokes the message handlers passing the message and the
associated state information. The system identifies the mes-
sage handlers based on the initial data type of the message
and a target data type. The identified message handlers ¢ffect
the conversion of the data to the target data type through
various intermediate data types.

v

US 6,629,163 C1

1
EXPARTE
REEXAMINATION CERTIFICATE
ISSUED UNDER 35 US.C. 307

THE PATENT IS HEREBY AMENDED AS
INDICATED BELOW,

Matter enclosed in heavy brackets [] appeared In the
patent, but has been deleted and is no longer & part of the
patent; matter printed in italics Indicates additions made
to the patent. .

AS A RESULT OF REEXAMINATION, IT HAS BEEN
DETERMINED THAT:

Claims 1-5,7, 9, 10, 12, 14-18, 20, 21, 23, 25, 26, 35-37,
39-41, 43 and 44 is determined to be patentable as amended.

Claims 6, 8, 11, 13, 19, 22, 24, 27-34, 38 and 42, depen-
dent on an amended claim, are determined to be patentable.

New claim 45 is added and determined to be patentable.

1. A method in a computer system for processing a mes-
sage having a sequence of packets, the method comprising:

providing a plurality of components, each component

being a software routine for converting data with an
input format into data with an output format;

for the first packet of the message,

dynamically identifying a non-predefined sequence of
components for processing the packets of the mes-
sage such that the output format of the components
of the non-predefined sequence maich the input for-
mat of the next component in the non-predefined
sequence, wherein dynamically indentifying includes
selecting individual components to create the non-
predefined sequence of componenss after the first
packel is received; and

storing an indication of each of the identified compo-
nents so that the non-predefined sequence does not
need to be re-identified for subsequent packets of the
message; and

for each of a plurality of packets of the message in

sequence,
for each of a plurality of components in the identified
non-predefined sequence,
retrieving state information relating to performing
the processing of the component with the previous
packet of the message;
performing the processing of the identified compo-
" nent with the packet and the retrieved state infor-
mation; and .
storing state information relating to the processing of
the component with packet for use when process-
ing the next packet of the message.

2. The method of claim 1 wherein the storing of an indica-
tion of each of the dynamically identified components
includes storing a key for use in retrieving state information
relating to the message.

3. The method of claim 1 wherein a second component of
the non-predefined sequence of components that are dynami-
cally identified is identified after the processing of the first
packet by a first component is performed.

4. The method of claim 1 wherein the packet may be

_tranformed by each component of an identified non-

~ predefined sequence.

10

15

20

30

45

50

55

60

65

——

2

$. The method of claim 1 wherein the identified non-
predefined sequence of components for two messages are
different.
7. The method of claim 6 wherein the identified non-
predefined sequence of components for a message are
executed by the thread for the message.
9. The method of claim 1 wherein the performing of the
processing of the component includes deferring performing
of the next component in the identified non-predsfined
sequence until multipie packets are processed by the campo-
nent.
10. The method of claim 1 wherein the dynamically i
tifying of a non-predefined sequence of components
includes deferring identification of the next component of
the non-predefined sequence until processing of the last
component identified so far in the non-predefined s
is performed.
12. The method of claim 1 wherein an output format of a
component in the identified non-predefined sequence for a
message rnatches an input format of the next component in
the identified non-identified sequence for the message.
14. The method of claim 1 wherein a plurality of nion-
predefined sequences of components are dynamically identi-
fied for a message.
15. A method in a computer system for demultiplexing
packets of messages, the method comprising:
dynamically identifying a non-predefined sequence of
components for processing each message based on the
first packet of the message so that subsequent packets
of the message can be processed without re-identifying
the components, wherein different non-predefined
sequences of components can be identified for different
messages, each component béing a software routine,
and wherein dynamically identifying includes selecting
individual components to create the non-prede
Sequence of components; and o

for each packet of each message, performing the process-
ing of the identified non-predefined sequence of co
ponents of the megssage wherein state information
erated by performing the processing of a compone;
a packet is available to the component when the coi
nent processes the next packet of the message.

16. The method of claim 15 wherein the identified

packet of the message is processed.
17. The method of claim 15 wherein a packet of a me
processed by a component of the identified non-pre

in the identified non-predefined sequence.

18. The method of claim 15 wherein the components of an
identified non-predefined sequence for a message |are
executed within a thread [associate] associated with a single
message. _

20. The method of claim 15 wherein the performing of|the
processing of the component includes deferring performing
of the next component in the identified non-predefined
sequence until multiple packets are processed by the compo-
nent.

21. The method of claim 15 wherein the dynamically
identifying of a non-predefined sequence of components

includes deferring identification of the next component of

the non-predefined sequence until processing of the last
component identified so far in the non-predefined sequence
is complete.

23. The method of claim 18 wherein an output format of a
component in the identified non-predefined sequence for a
message matches an input format of the next component in
the identified non-predefined sequence for the message.

w

« Case3d:10-cv-03365-JCS Documentl Filed07/30/10 Page32 of 48

R

Case3:10-cv-03365-JCS Documentl Filed07/30/10

US 6,629,163 C1

3
25. The method of claim 15 wherein the identified non-
predefined sequences of components are identified for a
message.
26. A computer system for processing packets of
messages. the [method] syssem comprising:
a plurality of components. each component having an
input format and an output format;
identification means that identifies a sequence of compo-
nents for each message after a packet of message has
been received, such that the output format of a compo-
nent in an identified sequence matches the input format
of the next component in the identified sequence;
receiving means that receives packets of the messages;
and

demultiplexing means that routes packets of messages to
the sequence of components identified for each mes-
sage for performing the procesiing of the components
on the packets.

35. A computer-readable medivm containing [instruction]
instructions for demultiplexing packets of messages. by
method comprising:

dynamically identifying a message-specific non-

predefined sequence of components for processing the
packets of each message upon receiving the first packet
of the message wherein subsequent packets of the mes-
sage can use the message-specific non-predefined
sequence identified when the first packet was received,
and wherein dynamically identifying includes selecring
individual components to create the message-specific
non-predefined sequence of components; and

for cach packet of each message, invoking the identified

non-predefined sequence of componentsin sequence to
perform the processing of each component for the
packet wherein each compongnt saves message-specific
state information so that that component can use the
[save] saved message-specific state information when
that component performs its processing on the next
packet of the message.

36, The computer-readable miedium of claim 3§ wherein a
second component of the message-specific non-predefined
sequence is identified after the first packet is processed by a
first component of the message-specific non-predefined

sequence.

5

10

]

20

25

30

35

Page33 of 48

-

4

37. The computer-readable medium of claim 35 wherein a
packet may be transformed by each component of an identi-
fied non-predefined sequence.

39. The computer-readable medium of claim 38 wherein
the identified non-predefined sequence of components| for a
message is executed by the thread for the message.

40. The computer-readable medijum of claim 35 wherein
the performing of the processing of the component includes
deferring performing of the next component in the identified
non-predefined sequence untl multiple packets are pro¢esed
by the component.

41. The computer-readable medium of claim 35 wherein
the dynamically identifying of a non-predefined sequence of
components includes deferring identification of the | next
component of the non-predefined sequence until pr
of the last component identified so far in the non-prede
sequence is performed.

43. The computer-readable medium of claim 35 wi

predefined sequence for a message matches an input f
of the next component in the identified non-predefined
sequence for the message. *

44. The computer-readable medium of claim 35 wherein a
plurality of non-predefined sequences of componen
identified for a message.

45. A computer-readable medium containing instructions
Jor demultiplexing packets of a message, by a method com-
prsing: 4

identifying a message-specific sequence of components

Jor processing the packets of each message upon regeiv-
ing the first packet of the message whérein each

specific sequence identified when the first packet
received;

Jor each packet of the message, invoking the idensified
sequence of components in sequence to perform| the
processing of each component for the packes, whepein
each component saves message-specific state info

Case3:10-cv-03365-JCS Documentl Filed07/30/10 Page34 of 48

Exhibit B

USE TCPICEENY T AN e S04 J@Rﬁ%ﬁi‘ﬁﬂs

b’iew gartT' [ndd to Cgrﬂ

Images
(1of1)
United States Patent 7,711,857
Balassanian May 4, 2010

Method and system for data demultiplexing
Abstract

A method and system for demultiplexing packets of a message is provided. The demultiplexing
system receives packets of a message, identifies a sequence of message handlers for processing
the message, identifies state information associated with the message for each message handler,
and invokes the message handlers passing the message and the associated state information. The
system identifies the message handlers based on the initial data type of the message and a target
data type. The identified message handlers effect the conversion of the data to the target data
type through various intermediate data types.

Inventors: Balassanian; Edward (Kirkland, WA)
Assignee: Implicit Networks, Inc. (Kirkland, WA)
Appl. No.: 11/933,022

Filed: October 31, 2007

Related U.S. Patent Documents

Application Number Filing Date Patent Number Issue Date
10636314 Aug., 2003
09474664 Dec., 1999 6629163
Current U.S. Class: 709/246 ; 709/236
Current International Class: GO6F 15/16 (20060101
Field of Search: 709/230,206,246,236 370/231,466

References Cited [Referenced By]

U.S. Patent Documents

5392390 February 1995 Crozier
5627997 May 1997 Pearson et al.
5768521 June 1998 Dedrick
5848415 December 1998 Guck

6047002 April 2000 Hartmann et al.

6101320 Case3:10-cv-03365A0p8st RYumentl Filed07/ScHudtzEetgd36 of 48
- 6104704 &/ August 2000 &fr etal.

6128624 October 2000 Papierniak et al.

6192419 February 2001 Aditham et al.

6199054 March 2001 Khan et al.

6212550 April 2001 Segur

6222536 April 2001 Kihl et al.

6246678 June 2001 Erb

6356529 March 2002 Zarom

6405254 June 2002 Hadland

6574610 June 2003 Clayton et al.

6651099 November 2003 Dietz et al.

6785730 August 2004 Taylor

7233948 June 2007 Shamoon et al.

Other References

Douglas E. Comer, Internetworking with TCP/IP, vol. I: Principles, Protocols, and
Architecture, Second Edition, Prentice Hall, 1991, Chapter 10 and Glossary. cited by
other .

Douglas E. Comer and David L. Stevens, Internetworking with TCP/IP, vol. II:
Design, Implementation, and Internals, Prentice Hall, 1991, Chapters 1-3, 5, 10, 11
and 16. cited by other .

W. Richard Stevens, TCP/IP Illustrated vol. 1, Addison-Wesley, 1994, Chapters 1, 8
and 18. cited by other .

Gary Wright and W. Richard Stevens, TCP/IP Illustrated vol. 2, Addison-Wesley,
1995, Chapters 22, 24, 28 and 29. cited by other .

David Mosberger, Scout: A Path-Based Operating System, Doctoral Dissertation
Submitted to the University of Arizona, 1997, Appendix "D". cited by other .
Dawson R. Engler and M. Frans Kaashoek; DPF: Fast, Flexibible Message
Demultiplexing using Dynamic Code Generation, published 1996 by the Association
for Computing Machinary, Inc. cited by other .

Mahesh Jayaram and Ron K. Cytron; Efficient Demultiplexing of Network Packets by
Automatic Parsing, published Jul. 1995 by Washington University of Computer
Science. cited by other .

Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B. Moss; Efficient
Packet Demultiplexing for Multiple Endpoints and Large Messages, published 1994.
cited by other.

Primary Examiner: Chang; Jungwon
Attorney, Agent or Firm: Gard & Kaslow LLP

Parent Case Text

PRIORITY CLAIM

This application is a continuation of U.S. Ser. No. 10/636,314 filed on Aug. 26, 2003 which isa
continuation of Ser. No. 09/474,664, now U.S. Pat. No. 6,629,163 filed on Dec. 29, 1999.

Claims

) 3 10-cy-03365-JCS Documentl F|Ied07/30/ 0 Page37 of 48
. The 1nvent10n c auned 1U

1. A method in a computer system for processing packets of a message, the method comprising:
receiving a packet of the message and a data type of the message; analyzing the data type of a
first packet of the message to dynamically identify a sequence of components for processing a
plurality of packets of the message such that the output format of the components of the
sequence match the input format of the next component in the sequence, wherein analyzing the
data type of the first packet of the message to dynamically identify the sequence of components
includes selecting individual components to form the sequence of components after the first
packet of the message is received; storing an indication of each of the identified components so
that the sequence does not need to be re-identified for subsequent packets of the message; for
each of a plurality of components in the identified sequence: performing the processing of each
packet by the identified component; and storing state information relating to the processing of
the component with the packet for use when processing the next packet of the message.

2. The method of claim 1 wherein the receiving of the data type includes requesting the data type
from a component that previously processed the packet.

3. The method of claim 1 wherein the component is a protocol with an edge.

4. A method in a computer system for processing a message, the message having a plurality of
headers, the method comprising: analyzing the plurality of headers of a first packet of the
message to dynamically identify a sequence of components for processing a plurality of packets
of the message such that the output format of the components of the sequence match the input
format of the next component in the sequence, wherein analyzing the plurality of headers of the
first packet of the message to dynamically identify the sequence of components includes
selecting individual components to form the sequence of components after the first packet of the
message is received; storing an indication of each of the identified components so that the
sequence does not need to be re-identified for subsequent packets of the message; for each of a
plurality of components in the identified sequence: performing the processing of each packet by,
the identified component; and storing state information relating to the processing of the
component with the packet for use when processing the next packet of the message.

5. The method of claim 4 wherein the analyzing includes identifying a data type associated with
each of the plurality of headers.

6. The method of claim 4 including locating state information based on information in each of
the plurality of headers.

7. The method of claim 4, further comprising receiving from the identified component an
identifier of state information associated with the each of the plurality of messages.

8. The method of claim 4 wherein analyzing the plurality of headers identifies a data type used to
identify a component for processing a message.

o

9. The method of claim 4 wherein analyzing the plurality of headers identifies a data type used t
identify the sequence of components for processing a message.

10. A computer readable storage medium, other than a data transmission medium, containing
instructions for processing packets of a message, the instructions comprising at least one
computer-executable module configured to: receive a packet of the message and a data type of
the message; analyze the data type of a first packet of the message to dynamically identify a
sequence of components for processing a plurality of packets of the message such that the output
format of the components of the sequence match the input format of the next component in the
sequence, wherein analyzing the data type of the first packet of the message to dynamically
identify the sequence of components includes selecting individual components to form the

1
v

.each of the

nents so that the sequence does not . _4to be re-identified for
subsequent packets of essage; for each of a plurality of compOnents in the identified
sequence: perform the processing of each packet by the identified component; and store state
information relating to the processing of the component with the packet for use when processing
the next packet of the message.

sequence o&gag;%e %{ aftesdhe fust pas éﬁhﬁ’ﬁé‘?ﬁiﬂeﬁsﬂ&?j@?@@ %@ss fndiggtion of
th

Description

TECHNICAL FIELD
The present invention relates generally to a computer system for data demultiplexing.
BACKGROUND

The following application is incorporated by reference as if fully set forth herein: U.S.
application Ser. No. 10/636,314 filed Aug. 6, 2003.

Computer systems, which are becoming increasingly pervasive, generate data in a wide variety
of formats. The Internet is an example of interconnected computer systems that generate data in
many different formats. Indeed, when data is generated on one computer system and is
transmitted to another computer system to be displayed, the data may be converted in many
different intermediate formats before it is eventually displayed. For example, the generating
computer system may initially store the data in a bitmap format. To send the data to another
computer system, the computer system may first compress the bitmap data and then encrypt the
compressed data. The computer system may then convert that compressed data into a TCP
format and then into an IP format. The IP formatted data may be converted into a transmission
format, such as an ethernet format. The data in the transmission format is then sent to a receiving
computer system. The receiving computer system would need to perform each of these
conversions in reverse order to convert the data in the bitmap format. In addition, the receiving
computer system may need to convert the bitmap data into a format that is appropriate for
rendering on output device.

In order to process data in such a wide variety of formats, both sending and receiving computer
systems need to have many conversion routines available to support the various formats. These
computer systems typically use predefined configuration information to load the correct
combination of conversion routines for processing data. These computer systems also use a
process-oriented approach ashen processing data with these conversion routines. When using a
process-oriented approach, a computer system may create a separate process for each conversion
that needs to take place. A computer system in certain situations, however, can be expected to
receive data and to provide data in many different formats that may not be known until the data
is received. The overhead of statically providing each possible series of conversion routines is
very high. For example, a computer system that seizes as a central controller for data received
within a home would be expected to process data received via telephone lines, cable TV lines,
and satellite connections in many different formats. The central controller would be expected to
output the data to computer displays, television displays, entertainment centers, to speakers,
recording devices, and so on in many different formats. Moreover, since the various conversion
routines may be developed by different organizations, it may not be easy to identify that the
output format of one conversion routine is compatible with the input format of another
conversion routine.

It would be desirable to have a technique for dynamically identifying a series of conversion
routines for processing data. In addition, it would be desirable to have a technique in which the
output format of one conversion routine can be identified as being compatible with the input
format of another conversion routine. It would also be desirable to store the identification of a
series of conversion routines so that the series can be quickly identified when data is received.

ey .BMEFD%’]‘P@?@%B&A%%%U FiIedO?/?{O/’,O Page39 of 48

FIG. 1 is a block diagram illustrating example processing of a message by the conversion
system.

FIG. 2 is a block diagram illustrating a sequence of edges.

FIG. 3 is a block diagram illustrating components of the conversion system in one embodiment
FIG. 4 is a block diagram illustrating example path data structures in one embodiment.

FIG. 5 is a block diagram that illustrates the interrelationship of the data structures of a path.

FIG. 6 is a block diagram that illustrates the interrelationship of the data structures associated
with a session.

FIGS. 7A, 7B, and 7C comprise a flow diagram illustrating the processing of the message send
routine.

FIG. 8 is a flow diagram of the demux routine.
FIG. 9 is a flow diagram of the initialize demux routine.

FIG. 10 is a flow diagram of the init end routine.

FIG. 11 is a flow diagram of a routine to get the next binding.

FIG. 12 is a flow diagram of the get key routine.

FIG. 13 is a flow diagram of the get session routine.

FIG. 14 is a flow diagram of the nail binding routine.

FIG. 15 is a flow diagram of the find path routine.

FIG. 16 is a flow diagram of the process of path hopping routine.
DETAILED DESCRIPTION

A method and system for converting a message that may contain multiple packets from an source
format into a target format. When a packet of a message is received, the conversion system in
one embodiment searches for and identifies a sequence of conversion routines (or more generally
message handlers) for processing the packets of the message by comparing the input and output
formats of the conversion routines. (A message is a collection of data that is related in some way,
such as stream of video or audio data or an email message.) The identified sequence of
conversion routines is used to convert the message from the source format to the target format
using various intermediate formats. The conversion system then queues the packet for processing
by the identified sequence of conversion routines. The conversion system stores the identified
sequence so that the sequence can be quickly found (without searching) when the next packet in
the message is received. When subsequent packets of the message are received, the conversion
system identifies the sequence and queues the packets for no pressing by the sequence. Because
the conversion system receives multiple messages with different source and target formats and
identifies a sequence of conversion routines for each message, the conversion systems effectively
"demultiplexes" the messages. That is, the conversion system demultiplexes the messages by
receiving the message, identifying the sequence of conversion routines, and controlling the
processing of each message by the identified sequence. Moreover, since the conversion routines

)

1
-

R ——]

-+

.paeket of that message, §__ronversion system maintains state infg_Jation as an instance or
session of the conversion Toutine. The conversion system routes all packets for a message
through the same session of each conversion routine so that the same state or instance
information can be used by all packets of the message. A sequence of sessions of conversion
routines is referred to as a "path." In one embodiment, each path has a path thread associated
with it for processing of each packet destined for that path.

may need tp-retaig i@%@%@@@éﬁ%@mipwmwmof Ramessegsfatel the nex

In one embodiment, the packets of the messages are initially received by "drivers," such as an
Ethernet driver. When a driver receives a packet, it forwards the packet to a forwarding
component of the conversion system. The forwarding component is responsible for identifying
the session of the conversion routine that should next process the packet and invoking that
conversion routine. When invoked by a driver, the forwarding component may use a
demultiplexing ("demux") component to identify the session of the first conversion routine of the
path that is to process the packet and then queues the packet for processing by the path. A path
thread is associated with each path. Each path thread is responsible for retrieving packets from
the queue of its path and forwarding the packets to the forwarding component. When the
forwarding component is invoked by a path thread, it initially invokes the first conversion
routine in the path. That conversion routine processes the packet and forwards the processed
packet to the forwarding component, which then invokes the second conversion routine in the
path. The process of invoking the conversion routines and forwarding the processed packet to th
next conversion routine continues until the last conversion routine in the path is invoked. A
conversion routine may defer invocation of the forwarding component until it aggregates
multiple packets or may invoke the forwarding component multiple times for a packet once for
each sub-packet.

w

The forwarding component identifies the next conversion routine in the path using the demux
component and stores that identification so that the forwarding component can quickly identify
the conversion routine when subsequent packets of the same message are received. The demux
component searches for the conversion routine and session that is to next process a packet. The
demux component then stores the identification of the session and conversion routine as part of a
path data structure so that the conversion system does not need to search for the session and
conversion routine when requested to demultiplex subsequent packets of the same message.
When searching for the next conversion routine, the demux component invokes a label map get
component that identifies the next conversion routine. Once the conversion routine is found, the
demux component identifies the session associated with that message by, in one embodiment,
invoking code associated with the conversion routine. In general, the code of the conversion
routine determines what session should be associated with a message. In certain situations,
multiple messages may share the same session. The demux component then extends the path for
processing that packet to include that session and conversion routine. The sessions are identified
so that each packet is associated with the appropriate state information. The dynamic
identification of conversion routines is described in U.S. patent application Ser. No. 09/304,973,
filed on May 4, 1999, entitled "Method and System for Generating a Mapping Between Types of
Data," which is hereby incorporated by reference.

FIG. 1 is a block diagram illustrating example processing of a message by the conversion
system. The driver 101 receives the packets of the message from a network. The driver performs
any appropriate processing of the packet and invokes a message send routine passing the
processed packet along with a reference path entry 150. The message send routine is an
embodiment of the forwarding component. A path is represented by a series of path entries,
which are represented by triangles. Each member path entry represents a session and conversion
routine of the path, and a reference path entry represents the overall path. The passed reference
path entry 150 indicates to the message send routine that it is being invoked by a driver. The
message send routine invokes the demux routine 102 to search for and identify the path of
sessions that is to process the packet. The demux routine may in turn invoke the label map get
routine 104 to identify a sequence of conversion routines for processing the packet. In this
example, the label map get routine identifies the first three conversion routines, and the demux

rouin cregi he s PO eniis ol e ofshe s soprersiamputincs
.Each path entry identifi§ jsession for a conversion routine, and ¢ . equence of path entries
151-155 identifies a path®™The message send routine then queues t® packet on the queue 149 foL-
the path that is to process the packets of the message. The path thread 105 for the path retrieves
the packet from the queue and invokes the message send routine 106 passing the packet and an
indication of the path. The message send routine determines that the next session and conversion
routine as indicated by path entry 151 has already been found. The message send routine then
invokes the instance of the conversion routine for the session. The conversion routine processes
the packet and then invokes the message send routine 107. This processing continues until the
message send routine invokes the demux routine 110 after the packet is processed by the
conversion routine represented by path entry 153. The demux routine examines the path and
determines that it has no more path entries. The demux routine then invokes the label map get
routine 111 to identify the conversion routines for further processing of the packet. When the
conversion routines are identified, the demux routine adds path entries 154, 155 to the path. She
messages send routine invokes the conversion routine associated with path entry 154. Eventually,
the conversion routine associated with path entry 155 performs the final processing for the path.

The label map get routine identifies a sequence of "edges" for converting data in one format into
another format. Each edge corresponds to a conversion routine for converting data from one
format to another. Each edge is part of a "protocol" (or more generally a component) that may
include multiple related edges. For example, a protocol may have edges that each convert data in
one format into several different formats. Each edge has an input format and an output format.
The label map get routine identifies a sequence of edges such that the output format of each edge
is compatible with the input format of another edge in the sequence, except for the input format
of the first edge in the sequence and the output format of the last edge in the sequence. FIG. 2 is
a block diagram illustrating a sequence of edges. Protocol P1 includes an edge for converting
format D1 to format D2 and an edge for converting format D1 to format D3; protocol P2
includes an edge for converting format D2 to format D5, and so on. A sequence for converting
format D1 to format D15 is shown by the curved lines and is defined by the address "P1:1, P2:1,
P3:2, P4:7." When a packet of data, in format D1 is processed by this sequence, it is converted to
format D15. During the process the packet of data is sequentially converted to format D2, D5,
and D13. The output format of protocol P2, edge 1 (i.e., P2:1) is format D5, but the input format
of P3:2 is format D10. The label map get routine uses an aliasing mechanism by which two
formats, such as D5 and D10 are identified as being compatible. The use of aliasing allows
different names of the same format or compatible formats to be correlated.

FIG. 3 is a block diagram illustrating components of the conversion system in one embodiment.
The conversion system 300 can operate on a computer system with a central processing unit 301
1/0 devices 302, and memory 303. The I/0O devices may include an Internet connection, a
connection to various output devices such as a television, and a connection to various input
devices such as a television receiver. The media mapping system may be stored as instructions
on a computer-readable medium, such as a disk drive, memory, or data transmission medium.
The data structures of the media mapping system may also be stored on a computer-readable
medium. The conversion system includes drivers 304, a forwarding component 305, a demux
component 306, a label map get component 307, path data structures 308, conversion routines
309, and instance data 310. Each driver receives data in a source format and forwards the data to
the forwarding component. The forwarding component identifies the next conversion routine in
the path and invokes that conversion routine to process a packet. The forwarding component may
invoke the demux component to search for the next conversion routine and add that conversion
routine to the path. The demux component may invoke the label map get component to identify
the next conversion routine to process the packet. The demux component stores information
defining the paths in the path structures. The conversion routines store their state information in
the instance data.

FIG. 4 is a block diagram illustrating example path data structures in one embodiment. The
demux component identifies a sequence of "edges" for converting data in one format into another
format by invoking the label map get component. Each edge corresponds to a conversion routine

) "psotocol" may in¢

for conve ﬁ:‘gai_té i ther As (11sc1'1§?eg 6]? 6] cthg(%(% 4 %%gf

Fs6'ed es Fot exam protocol may have edges
that each convert data in'Ghe format into several dlfferent formats Wach edge has as an input
format ("input label") and an output format ("output label"). Each rectangle represents a session
410, 420, 430, 440, 450 for a protocol. A session corresponds to an instance of a protocol. That
is, the session includes the protocol and state information associated with that instance of the
protocol. Session 410 corresponds to a session for an Ethernet protocol; session 420 correspond
to a session for an IP protocol; and sessions 430, 440, 450 correspond to sessions for a TCP
protocol. FIG. 4 illustrates three paths 461, 462, 463. Each path includes edges 417, 421, 431.
The paths share the same Ethernet session 410 and IP session 420, but each path has a unique
TCP session 430, 440, 450. Thus, path 461 includes sessions 410, 420, and 430; path 462
includes sessions 410, 420, and 440; and path 463 includes sessions 410, 420, and 450. The
conversion system represents each path by a sequence of path entry structures. Each path entry
structure is represented by a triangle. Thus, path 461 is represented by path entries 415, 425, and
433, The conversion system represents the path entries of a path by a stack list. Each path also
has a queue 471, 472, 473 associated with it. Each queue stores the messages that are to be
processed by the conversion routines of the edges of the path. Each session includes a binding
(412, 422, 432, 442, 452 that is represented by an oblong shape adjacent to the corresponding
edge. A binding for an edge of a session represents those paths that include the edge. The
binding 412 indicates that three paths are bound (or "nailed") to edge 411 of the Ethernet session
410. The conversion system uses a path list to track the paths that are bound to a binding. The
path list of binding 412 identifies path entries 413, 414, and 415.

[2]

FIG. § is a block diagram that illustrates the interrelationship of the data structures of a path.
Each path has a corresponding path structure 501 that contains status information and pointers t
a message queue structure 502, a stack list structure 503, and a path address structure 504. The
status of a path can be extend, continue, or end. Each message handler returns a status for the
path. The status of extend means that additional path entries should be added to the path. The
status of end means that this path should end at this point and subsequent processing should
continue at a new path. The status of continue means that the protocol does not care how the path
is handled. In one embodiment, when a path has a status of continue, the system creates a copy
of the path and extends the copy. The message queue structure identifies the messages (or
packets of a message) that are queued up for processing by the path and identifies the path entry
at where the processing should start. The stack list structure contains a list of pointers to the path
entry structures 505 that comprise the path. Each path entry structure contains a pointer to the
corresponding path data structure, a pointer to a map structure 507, a pointer to a multiplex list
508, a pointer to the corresponding path address structure, and a pointer to a member structure
509. A map structure identifies the output label of the edge of the path entry and optionally a
target label and a target key. A target key identifies the sessions associated with the protocol that
converts the packet to the target label. (The terms "media." "label.”" and "format" are used
interchangeably to refer to the output of a protocol.) The multiplex list is used during the demux
process to track possible next edges when a path is being identified as having more than one next
edge. The member structure indicates that the path entry represents an edge of a path and
contains a pointer to a binding structure to which the path entry is associated (or "nailed"), a
stack list entry is the position of the path entry within the associated stack list, a path list entry is
the position of the path entry within the associated path list of a binding and an address entry is
the position of the binding within the associated path address. A path address of a path identifies
the bindings to which the path entries are bound. The path address structure contains a URL for
the path, the name of the path identified by the address, a pointer to a binding list structure 506,
and the identification of the current binding within the binding list. The URL (e.g.,
"protocol://tcp(0)/ip(0)/eth(0))") identifies conversion routines (e.g. protocols and edges) of a
path in a human-readable format. The URL (universal resource locator) includes a type field
(e.g., "protocol") followed by a sequence of items (e.g., "tcp(0)"). The type field specifies the
format of the following information in the URL, that specifies that the type field is followed by
sequence of items. Each item identifies a protocol and an edge (e.g., the protocol is "tcp" and the
edge is "0"). In one embodiment, the items of a URL may also contain an identifier of state
information that is to be used when processing a message. These URLs can be used to illustrate

=

o)

Ai:2

s e

to the binding structures @5sociated with the path. Each binding stficture 510 contains a pointer
to a session structure, a pointer to an edge structure, a key, a path list structure, and a list of
active paths through the binding. The key identifies the state information for a session of a
protocol. A path list structure contains pointers to the path entry structures associated with the
binding.

FIG. 6 is a block diagram that illustrates the interrelationship of the data structures associated
with a session. A session structure 601 contains the context for the session, a pointer to a
protocol structure for the session, a pointer to a binding table structure 602 for the bindings
associated with the session, and the key. The binding table structure contains a list of pointers ta
the binding structures 510 for the session. The binding structure is described above with _
reference to FIG. 5. The path list structure 603 of the binding structure contains a list of pointers
to path entry structures 505. The path entry structures are described with reference to FIG. 5.

FIGS. 7A, 7B, and 7C comprise a flow diagram illustrating the processing of the message send
routine. The message send routine is passed a message along with the path entry associated with
the session that last processed the message. The message send routine invokes the message
handler of the next edge in the path or queues the message for processing by a path. The messag
handler invokes the demux routine to identify the next path entry of the path. When a driver
receives a message, it involves the message send routine passing a reference path entry. The
message send routine examines the passed path entry to determine (1) whether multiple paths
branch from the path of the passed path entry, (2) whether the passed path entry is a reference
with an associated path, or (3) whether the passed path entry is a member with a next path entry
If multiple paths branch from the path of the passed path entry, then the routine recursively
invokes the message send routine for each path. If the path entry is a reference with an associated
path, then the driver previously invoked the message send routine, which associated a path with
the reference path entry, and the routine places the message on the queue for the path. If the
passed path entry is a member with a next path entry, then the routine invokes the message
handler (i.e., conversion routine of the edge) associated with the next path entry. If the passed
path entry is a reference without an associated path or is a member without a next path entry,
then the routine invokes the demux routine to identify the next path entry. The routine then
recursively invokes the messages send routine passing that next path entry. In decision block
701, if the passed path entry has a multiplex list, then the path branches off into multiple paths
and the routine continues at block 709, else the routine continues at block 702. A packet may be
processed by several different paths. For example, if a certain message is directed to two
different output devices, then the message is processed by two different paths. Also, a message
may need to be processed by multiple partial paths when searching for a complete path. In
decision block 702, if the passed path entry is a member, then either the next path entry indicates
a nailed binding or the path needs to be extended and the routine continues at block 704, else the
routine continues at block 703. A nailed binding is a binding (e.g., edge and protocol) is
associated with a session. In decision block 703, the passed path entry is a reference and if the
passed path entry has an associated path, then the routine can queue the message for the
associated path and the routine continues at block 703A, else the routine needs to identify a path
and the routine continues at block 707. In block 703 A, the routine sets the entry to the first path
entry in the path and continues at block 717. In block 704, the routine sets the variable position
to the stack list entry of the passed path entry. In decision block 705, the routine sets the variable
next entry to the next path entry in the path. If there is a next entry in the path, then the next
session and edge of the protocol have been identified and the routine continues at block 706, els¢
the routine continues at block 707. In block 706, the routine passes the message to the message
handler of the edge associated with the next entry and then returns. In block 706, the routine
invokes the demux routine passing the passed message, the address of the passed path entry, and
the passed path entry. The demux routine returns a list of candidate paths for processing of the
message. In decision block 708, if at least one candidate path is returned, then the routine
continues at block 709, else the routine returns.

[¢]

w

. 1abl , N
iading n 53%%%@?&%?%%@&?; o A M oimers.

y b

Blocks 709-716 illystrate cessing of a list of candidat, t exte 0 passed
. path entry. ?ﬁa gﬁ)%%ﬁ?@%ﬁge‘iﬁineﬁ ﬁ)%%@see%%tinﬁ%c c%tee%ﬁ% getn ing the
b

message to be process ach candidate path. In block 710, the ro@tine sets the next entry to the
first path entry of the next candidate path. In decision block 711, if all the candidate paths have
not yet been processed, then the routine continues at block 712, else the routine returns. In
decision block 712, if the next entry is equal to the passed path entry, then the path is to be
extended and the routine continues at block 705, else the routine continues at block 713. The
candidate paths include a first path entry that is a reference path entry for new paths or that is th
last path entry of a path being extended. In decision block 713, if the number of candidate paths
is greater than one, then the routine continues at block 714, else the routine continues at block
718. In decision block 714, if the passed path entry has a multiplex list associated with it, then
the routine continues at block 716, else the routine continues at block 715. In block 715, the
routine associates the list of candidate path with the multiplex list of the passed path entry and
continues at block 716. In block 716, the routine sends the message to the next entry by
recursively invoking the message send routine. The routine then loops to block 710 to select the
next entry associated with the next candidate path.

W

Blocks 717-718 are performed when the passed path entry is a reference path entry that has a
path associated with it. In block 717, if there is a path associated with the next entry, then the
routine continues at block 718, else the routine returns. In block 718, the routine queues the
message for the path of the next entry and then returns.

FIG. 8 is a flow diagram of the demux routine. This routine is passed the packet (message) that i
received, an address structure, and a path entry structure. The demux routine extends a path,
creating one if necessary. The routine loops identifying the next binding (edge and protocol) tha
is to process the message and "nailing" the binding, to a session for the message, if not already
nailed. After identifying the nailed binding, the routine searches for the shortest path through the
nailed binding, creating a path if none exists. In block 801, the routine invokes the initialize
demux routine. In blocks 802-810, the routine loops identifying a path or portion of a path for
processing the passed message. In decision block 802, if there is a current status, which was
returned by the demux routine that was last invoked (e.g., continue, extend, end, or postpone),
then the routine continues at block 803, else the routine continues at block 811. In block 803, the
routine invokes the get next binding routine. The get next binding routine returns the next
binding in the path. The binding is the edge of a protocol. That routine extends the path as
appropriate to include the binding. The routine returns a return status of break, binding, or
multiple. The return status of binding indicates that the next binding in the path was found by
extending the path as appropriate and the routine continues to "nail" the binding to a session as
appropriate. The return status of multiple means that multiple trails (e.g., candidate paths) were
identified as possible extensions of the path. In a decision block 804, if the return status is break,
then the routine continues at block 811. If the return status is multiple, then the routine returns. If
the return status is binding, then the routine continues at block 805. In decision block 805, if the
retrieved binding is nailed as indicated by being assigned to a session, then the routine loops to
block 802, else the routine continues at block 806. In block 806, the routine invokes the get key
routine of the edge associated with the binding. The get key routine creates the key for the
session associated with the message. If a key cannot be created until subsequent bindings are
processed or because the current binding is to be removed, then the get key routine returns a next
binding status, else it returns a continue status. In decision block 807, if the return status of the
get key routine is next binding, then the routine loops to block 802 to get the next binding, else
the routine continues at block 808. In block 808, the routine invokes the routine get session. The
routine get session returns the session associated with the key, creating a net session if necessary.
In block 809, the routine invokes the routine nail binding. The routine nail binding retrieves the
binding if one is already nailed to the session. Otherwise, that routine nails the binding to the to
session. In decision block 810, if the nail binding routine returns a status of simplex, then the
routine continues at block 811 because only one path can use the session, else the routine loops
to block 802. Immediately upon return from the nail binding routine, the routine may invoke a
set map routine of the edge passing the session and a map to allow the edge to set its map. In
block 811, the routine invokes the find path routine, which finds the shortest path through the

7]

—r

binding i . 15 the routing. th
& _bopping ii%%%%@%@%ﬁ%%%Zﬁ?%ﬁ%ﬁﬁﬁeﬁ”&m@%ﬁ?ﬁ%ﬁ% Path

hopping occurs when, fof'cxample, IP fragments are built tip alon3*Separate paths, but once the
fragments are built up they can be processed by the same subsequent path.

FIG. 9 is a flow diagram of the initialize demux routine. This routine is invoked to initialize the
local data structures that are used in the demux process and to identify the initial binding. The
demux routine finds the shortest path from the initial binding to the final binding. If the current
status is demux extend, then the routine is to extend the path of the passed path entry by adding
additional path entries. If the current status is demux end then the demux routine is ending the
current path. If the current status is demux continue, then the demux routine is in the process of
continuing to extend or in the process of starting a path identified by the passed address. In block
901, the routine sets the local map structure to the map structure in the passed path entry
structure. The map structure identifies the output label, the target label, and the target key. In the
block 902, the routine initializes the local message structure to the passed message structure and
initializes the pointers path and address element to null. In block 903, the routine sets of the
variable saved status to 0 and the variable status to demux continue. The variable saved status is
used to track the status of the demux process when backtracking to nail a binding whose nail was
postponed. In decision block 904, if the passed path entry is associated with a path, then the
routine continues at block 905, else the routine continues at block 906. In block 905, the routine
sets the variable status to the status of that path. In block 906, if the variable status is demux
continue, then the routine continues at block 907. If the variable status is demux end, then the
routine continues at block 908. If the variable status is demux extend, then the routine continues
at block 909. In block 907, the status is demux continue, and the routine sets the local pointer
path address to the passed address and continues at block 911. In block 908, the status is demux
end, and the routine invokes the init end routine and continues at block 911. In block 909, the
status is demux extend, and the routine sets the local path address to the address of the path that
contains the passed path entry. In block 910, the routine sets the address element and the current
binding of the path address pointed to by the local pointer path address to the address entry of the
member structure of the passed path entry. In the block 911, the routine sets the local variable
status to demux continue and sets the local binding list structure to the binding list structure from
the local path address structure. In block 912, the routine sets the local pointer current binding to
the address of the current binding pointed to by local pointer path address and sets the local
variable postpone to 0. In block 913, the routine sets the function traverse to the function that
retrieves the next data in a list and sets the local pointer session to null. The routine then returns

FIG. 10 is a flow diagram of the init end routine. If the path is simplex, then the routine creates a
new path from where the other one ended, else the routine creates a copy of the path. In block
1001, if the binding of the passed path entry is simplex (i.e., only one path can be bound to this
bindings then the routine continues at block 1002, else the routine continues at block 1003. In
block 1002, the routine sets the local pointer path address to point to an address structure that is
copy of the address structure associated with the passed path entry structure with its current
binding to the address entry associated with the passed path entry structure, and then returns. In
block 1003, the routine sets the local pointer path address to point to an address structure that on
contains the URL of the path that contains the passed path entry. In block 1004, the routine sets
the local pointer element to null to initialize the selection of the bindings. In blocks 1005 through
1007, the routine loops adding all the bindings for the address of the passed path entry that
include and are before the passed path entry to the address pointed to by the local path address.
In block 1005, the routine retrieves the next binding from the binding list starting with the first.
If there is no such binding, then the routine returns, else the routine continues at block 1006. In
block 1006, the routine adds the binding to the binding list of the local path address structure and
sets the current binding of the local variable path address. In the block 1007, if the local pointer
element is equal to the address entry of the passed path entry, then the routine returns, else the
routine loops to block 1005 to select the next binding.

[S]

FIG. 11 is a flow diagram of a routine to get the next binding. This to routine returns the next
binding from the local binding list. If there is no next binding, then the routine invokes the

[ke 2

uti lb "
_::r‘\lgtgtl?a;el)%%bntg E‘gﬂ?ﬁ%‘? tﬁgﬁpﬁé{kmdﬁ@ %?t&z[% adi%% 1ts2§;(%21?'?ectiobt)l}:he

edges of the trall If multiple trails are 1dent1ﬁed then a path is credted for each trail and the
routine returns so that the demux process can be invoked for each created path. In block 1101,
the routine sets the local pointer binding to point to the next or previous (as indicated by the
traverse function) binding in the local binding list. In block 1102, if a binding was found, then
the routine returns an indication that a binding was found, else the routine continues at block
1103. In block 1103, the routine invokes the label map get function passing the output label and
target label of the local map structure. The label map get function returns a trail list. A trail is a
list of edges from the output label to the target label. In decision block 1104, if the size of the
trail list is one, then the routine continues at block 1105, else the routine continues at block 1112.
In blocks 1105-1111, the routine extends the binding list by adding a binding data structure for
each edge in the trail. The routine then sets the local binding to the last binding in the binding
list. In block 1105, the routine sets the local pointer current binding to point to the last binding in
the local binding list. In block 1106, the routine sets the local variable temp trail to the trail in th
trail list. In block 1107, the routine extends the binding list by temp trail by adding a binding for
each edge in the tail. These bindings are not yet nailed. In block 1108, the routine sets the local
binding to point to the last binding in the local binding list. In decision block 1119, if the local
binding, does not have a key for a session and the local map has a target key for a session, then
the routine sets the key for the binding to the target key of the local map and continues at block
1110, else the routine loops to block 1101 to retrieve the next binding in path. In block 1110, the
routine sets the key of the local binding to the target key of the local map. In block 1111, the
routine sets the target key of the local map to null and then loop to block 1101 to return the next
binding. In decision block 1112, if the local session is set, then the demultiplexing is already in
progress and the routine returns a break status. In block 1113, the routine invokes a prepare
multicast paths routine to prepare a path entry for each trail in the trail list. The routine then
returns a multiple status.

W

FIG. 12 is a flow diagram of the get key routine. The get key routine invokes an edge's demux-
key routine to retrieve a key for the session associated with the to message. The key identifies th
session of a protocol. The demux key routine creates the appropriate key for the message. The
demux key routine returns a status of remove postpone, or other. The status of remove indicates
that the current binding should be removed from the path. The status of postpone indicates that
the demux key routine cannot create the key because it needs information provided by
subsequent protocols in the path. For example, a TCP session is defined by a combination of a
remote and local port address and an IP address. Thus, the TCP protocol postpones the creating
of a key until the IP protocol identifies the IP address. The get kelp routine returns a next binding
status to continue at the next binding in the path. Otherwise, the routine returns a continue status
In block 1201, the routine sets the local edge to the edge of the local binding (current binding)
and sets the local protocol to the protocol of the local edge. In block 1202, the routine invokes
the demux key routine of the local edge passing the local message, local path address, and local
map. The demux key routine sets the key in the local binding. In decision block 1203, if the
demux key routine returns a status of remove, then the routine continues at block 1204. If the
demux key routine returns a status of postpone, then the routine continues at block 1205, else the
routine continues at block 1206. In block 1204, the routine sets the flag of the local binding to
indicate that the binding is to be removed and continues at block 1206. In block 1205, the routine
sets the variable traverse to the function to list the next data, increments the variable postpone,
and then returns a next binding status. In blocks 1206-1214, the routine processes the postponing
of the creating of a key. In blocks 1207-1210, if the creating of a key has been postponed, then
the routine indicates to backtrack on the path, save the demux status, and set the demux status to
demux continue. In blocks 1211-1213, if the creating of a key has not been postponed, then the
routine indicates to continue forward in the path and to restore any saved demux status. The save
demux status is the status associated by the binding where the backtrack started. In decision
block 1206, if the variable postpone is set, then the routine continues at block 1207, else the
routine continues at block 1211. In block 1207, the routine decrements the variable postpone and
sets the variable traverse to the list previous data function. In decision block 1208, if the variable
saved status is set, then the routine continues at block 1210, else the routine continues at block

L]

1209. The variahle spyed staius;containg the statusiaf theiderenm pupcgsspihsathedemux

. »- _process started to backt 4 In block 1209, the routine sets the v le saved status to the
' variable status. In block 1210, the routine sets the variable status emux continue and

continues at block 1214. In block 1211, the routine sets the variable traverse to the list next data
function. In decision block 1212, if the variable saved status in set, then the routine continues at
block 1213, else the routine continues at block 1214. In block 1213, the routine sets the variable
status to the variable saved status and sets the variable saved status to 0. In decision block 1214,
if the local binding indicates that it is to be removed, then the routine returns a next binding
status, else the routine returns a continue status.

FIG. 13 is a flow diagram of the get session routine. This routine retrieves the session data
structure, creating a data structure session if necessary, for the key indicated by the binding. In
block 1301, the routine retrieves the session from the session table of the local protocol indicated
by the key of the local binding. Each protocol maintains a mapping from each key to the session
associated with the key. In decision block 1302, if there is no session, then the routine continues
at block 1303, else the routine returns. In block 1303, the routine creates a session for the local
protocol. In block 1304, the routine initializes the key for the local session based on the key of
the local binding. In block 1305, the routine puts the session into the session table of the local
protocol. In block 1306, the routine invokes the create session function of the protocol to allow
the protocol to initialize its context and then returns.

FIG. 14 is a flow diagram of the nail binding routine. This routine determines whether a binding
is already associated with ("nailed to") the session. If so, the routine returns that binding. If not,
the routine associates the binding with the session. The routine returns a status of simplex to
indicate that only one path can extend through the nailed binding. In decision block 1401, if the
binding table of the session contains an entry for the edge, then the routine continues at block
1402, else the routine continues at block 1405. In block 1409, the routine sets the binding, to the
entry from the binding table of the local session for the edge. In block 1403, the routine sets the
current binding to point to the binding from the session. In block 1404, if the binding is simplex,
then the routine returns a simplex status, else the routine returns. Blocks 1405 through 1410 are
performed when there is no binding in the session for the edge. In block 1405, the routine sets
the session of the binding to the variable session. In block 1406, the routine sets the key of the
binding to the key from the session. In block 1407, the routine sets the entry for the edge in the
binding table of the local session to the binding. In block 1408, the routine invokes the create
binding function of the edge of the binding passing the binding so the edge can initialize the
binding. If that function returns a status of remove, the routine continues at block 1409. In block
1409, the routine sets the binding to be removed and then returns.

W

FIG. 15 is a flow diagram of the find path routine. The find path routine identifies the shortest
path through the binding list. If no such path exists, then the routine extends a path to include tﬂPe
binding list. In decision block 1501, if the binding is simplex and a path already goes through
this binding (returned as an entry), then the routine continues at block 1502, else the routine
continues at block 1503, in block 1502, the routine sets the path to the path of the entry and
returns. In block 1503, the routine initializes the pointers element and short entry to null. In
block 1504, the routine sets the path to the path of the passed path entry. If the local path is not
null and its status is demux extend, then the routine continues at block 1509, else the routine
continues at block 1505. In blocks 1505-1508, the routine loops identifying the shortest path
through the bindings in the binding list. The routine loops selecting each path through the
binding. The selected path is eligible if it starts at the first binding in the binding list and the p
ends at the binding. The routine loops setting the short entry to the shortest eligible path found so
far. In block 1505, the routine sets the variable first binding to the first binding in the binding list
of the path address. In block 1506, the routine selects the next path (entry) in the path list of th
binding starting with the first. If a path is selected (indicating that there are more paths in the
binding), then the routine continues at block 1507, else the routine continues at block 1509. In
block 1507, the routine determines whether the selected path starts at the first binding in the
binding list, whether the selected path ends at the last binding in the binding list and whether the
number of path entries in the selected path is less than the number of path entries in the shortest

path selectedhse fan dfthasg gendittons aueall satisfied, then the soptioe eoatiaugsdt bipck 1508
. -else the routine loops tof. <k 1506 to select the next path (entryy ablock 1508, the routine set

. the shortest path (short efftry) to the selected path and loops to blofR 1506 to select the next path
through the binding. In block 1509, the routine sets the selected path (entry) to the shortest path.
In decision block 1510, if a path has been found, then the routine continues at block 1511, else
the routine continues at block 1512. In block 1511, the routine sets the path to the path of the
selected path entry and returns. Blocks 1512-1516 are performed when no paths have been
found. In block 1512, the routine sets the path to the path of the passed path entry. If the passed
path entry has a path and its status is demux extend, then the routine continues at block 1515,
else the routine continues at block 1513. In block 1513, the routine creates a path for the path
address. In block 1514, the routine sets the variable element to null and sets the path entry to the
first element in the stack list of the path. In block 1515, the routine sets the variable element to
be address entry of the member of the passed path entry and sets the path entry to the passed pa
entry. In block 1516, the routine invokes the extend path routine to extend the path and then
returns. The extend path routine creates a path through the bindings of the binding list and sets
the path status to the current demux status.

FIG. 16 is a flow diagram of the process of path hopping routine. Path hopping occurs when the
path through the binding list is not the same path as that of the passed path entry. In decision
block 1601, if the path of the passed path entry is set, then the routine continues at block 1602,
else the routine continues at block 1609. In decision block 1602, if the path of the passed path
entry is equal to the local path, then the routine continues at 1612, else path hopping is occurrin
and the routine continues at block 1603. In blocks 1603-1607, the routine loops positioning
pointers at the first path entries of the paths that are not at the same binding. In block 1603, the
routine sets the variable old stack to the stack list of the path of the passed path entry. In block
1604, the routine sets the variable new stack to the stack list of the local path. In block 1605, th
routine sets the variable old element to the next element in the old stack. In block 1606, the
routine sets the variable element to the next element in the new stack. In decision block 1607,
routine loops until the path entry that is not in the same binding is located. In decision block
1608, if the variable old entry is set, then the routine is not at the end of the hopped-from path
and the routine continues at block 1609, else routine continues at block 1612. In block 1609, th:
routine sets the variable entry to the previous entry in the hopped-to path. In block 1610, the
routine sets the path of the passed path entry to the local path. In block 1611, the routine sets th
local entry to the first path entry of the stack list of the local path. In block 1612, the routine
inserts an entry into return list and then returns.

Although the conversion system has been described in terms of various embodiments, the
invention is not limited to these embodiments. Modification within the spirit of the invention
be apparent to those skilled in the art. For example, a conversion routine may be used for routirig
a message and may perform no conversion of the message. Also, a reference to a single copy o
the message can be passed to each conversion routine or demux key routine. These routines ¢
advance the reference past the header information for the protocol so that the reference is
positioned at the next header. After the demux process, the reference can be reset to point to th
first header for processing by the conversion routines in sequence. The scope of the invention i
defined by the claims that follow.

% %k Kk % %k

Images

lVieg Cart} [ﬂdd to CﬂrtJ

(“rome) Gt asuansa) ot |

