Case 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 1 of 43 Page ID #:1

N - N 7 -G VO

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

PEPPER HAMILTON, LLP

Harry P. Weitzel g(jA BAR NO. 149934)
weitzelh@pepperlaw.com

4 Park Plaza, Suite 1200

Telephone: (949) 567-3500

Facsimile: (949) 521-9101

William D. Belanger (MA Bar No. 657184)
belangerw(@pepperlaw.com E
James M. Wodarski (MA Bar No. 627036) ~
wodarskj @p]ejpperlaw‘com

Matthew D. Durell (GA Bar No. 142061)
durel lm@ﬂ)epperlaw.com PR
David ATLoo (MA Bar No. 669305) e
lood@pepperlaw.com s
Pro Hac agplicatz’ons to be filed s
125 High Street

157 Floor, Oliver Street Tower

Boston, Massachusetts 02110

Telephone: 56173 204-5100

LO:h Hd 8- 1300102

Facsimile: (617)204-5150

Attorneys for Plaintiff
NAZOMI COMMUNICATIONS, INC.

UNITED STATES DISTRICT COURT

CENTRAL DISTRICT OF CALIFORNIA

Nazomi Communications, Inc., SA10-CV-01527 AG (RNBx)

Plaintiff, COMPLAINT FOR PATENT

INFRINGEMENT
V.

Samsung Telecommunications, Inc., JURY TRIAL DEMANDED
Samsung Electronics Co., Litd.,
Samsung Electronics America, Inc.,
HTC Corp., HI'C America, Inc., LG
Electronics, Inc., .G Electronics
U.S.A,, Inc., Kyocera Corporation,
Kyocera International, Inc., Kyocera
Communications Inc., and Kyocera
America, Inc.

Defendants.
/f

1. COMPLAINT FOR PATENT INFRINGEMENT

a=and

Cas

NoREe R e,

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

p 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 2 of 43 Page ID #:2

Plaintiff Nazomi Communications, Inc. (“Nazomi”), by and through its
undersigned counsel, complains as follows:

JURISDICTION AND VENUE

1. This infringement action arises under the patent laws of the United
States, Title 35 of the United States Code, including but not limited to 35 U.S.C.
§ 271.

2. This Court has subject matter jurisdiction pursuant to 28 U.S.C.

§§ 1331 and 1338(a).

3. Venue is proper in this judicial district pursuant to 28 U.S.C.

§§ 1391(b), 1391(c), and 1400(b).

THE PARTIES

4. Plaintiff Nazomi Communications, Inc. is a corporation organized and
existing under the laws of the State of Delaware with its principal place of business
at 3561 Homestead Road, Suite 571, Santa Clara, California 95051.

5. On information and belief, Defendant LG Electronics, Inc. is a foreign
corporation organized and existing under the laws of Korea, with its principal place
of business at LG Twin Towers, 20, Yeouido-dong, Yeongdeungpo-gu, Seoul 150-
721, South Korea. On information and belief, Defendant LG Electronics U.S.A.,
Inc. is a corporation organized and existing under the laws of the State of Delaware,
with its principal place of business located at 1000 Sylvan Avenue, Englewood
Cliffs, NJ 07632. LG Electronics, Inc. and LG Electronics U.S.A., Inc. are referred
to collectively herein as “LG.”

6. On information and belief, Defendant Samsung Electronics Co., Ltd. is
a foreign corporation organized and existing under the laws of Korea, with its
principal place of business located at 250, 2-ga, Taepyong-ro, Jung-gu, Seoul 100-
742, Korea. On information and belief, Defendant Samsung Electronics America,
Inc., is a corporation organized and existing under the laws of the State of New

York, with its principal place of business located at 105 Challenger Road,

2 COMPLAINT FOR PATENT INFRINGEMENT

Cas

 8:10-cv-01527-AG -RNB Document 1l Filed 10/08/10 Page 3 of 43 Page ID #:3

Ridgefield Park, NJ 07660. On information and belief, Samsung
Telecommunications America, LLC is a corporation organized and existing under
the laws of the State of Delaware, with its principal place of business located at
1301 Lookout Dr., Richardson, TX 75082. Samsung Electronics Co., Ltd.,
Samsung Electronics America, Inc. and Samsung Telecommunications America,
LLC are referred to collectively herein as “Samsung.”

7. On information and belief, HTC Corp. is a foreign corporation
organized and existing under the laws of Taiwan, with its principal place of
business at 23 Hsin Hua Rd., Taoyuan, 330, Taiwan. On information and belief,
HTC America, Inc. is a corporation organized and existing under the laws of the
State of Texas, with its principle place of business located at 13920 S.E. Eastgate
Way, Suite 400, Bellevue, WA 98005. HTC Corp. and HTC America, Inc. are
referred to collectively herein as “HTC.”

8. On information and belief, Defendant Kyocera Corporation is a
foreign corporation organized and existing under the laws of Japan, with its
principal place of business located at 6 Takeda Tobadono-cho, Fushimi-ku, Kyoto,
612-8501, Japan. On information and belief, Defendant Kyocera International, Inc.
is a corporation organized and existing under the laws of the State of California,
with its principal place of business located at 8611 Balboa Ave., San Diego, CA
92123. On information and belief, Kyocera Communications, Inc. is a corporation
organized and existing under the laws of the State of Delaware, with its principal
place of business located at 10300 Campus Point Dr., San Diego, CA 92121. On
information and belief, Kyocera America, Inc. is a corporation organized and
existing under the laws of the State of California, with its principal place of
business located at 8611 Balboa Ave., San Diego, CA 92123. Kyocera
Corporation, Kyocera International, Inc., Kyocera Communications, Inc., and

Kyocera America, Inc. are referred to collectively herein as “Kyocera.”

3 COMPLAINT FOR PATENT INFRINGEMENT

Cas

(> L =2 TV, e =N

O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

p 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 4 of 43 Page ID #:4

BACKGROUND

9. Nazomi Communications, Inc. was founded in September 1998 by
three Java technology and embedded systems veterans for the purpose of enhancing
the performance of applications that run on the Java platform and other universal
runtime platforms. Nazomi’s pioneering technologies included the JSTAR Java
Coprocessor technology and the JA108 Java and Multimedia Application
Processor, which were targeted at wireless mobile devices, internet appliances, and
embedded systems. Nazomi’s technology and products were adopted by leading
phone manufacturers and incorporated into millions of smart phones. In the years
since Nazomi’s introduction of the JSTAR and JA108 products, Java hardware and
software acceleration has been widely adopted for wireless mobile and embedded
systems applications. Java is now used as a platform on hundreds of millions of
devices.

10. On July 18, 2006, the United States Patent and Trademark Office duly
and legally issued United States Patent No. 7,080,362 entitled “Java Virtual
Machine Hardware for RISC and CISC Processors” (“the ‘362 patent”). A true and
correct copy of the ‘362 patent is attached as Exhibit 1.

11. On May 29, 2007, the United States Patent and Trademark Office duly
and legally issued United States Patent No. 7,225,436 entitled “Java Hardware
Accelerator Using Microcode Engine” (“the ‘436 patent”). A true and correct copy
of the ‘436 patent is attached as Exhibit 2.

12. On January 8, 2002, the United States Patent and Trademark Office
duly and legally issued United States Patent No. 6,338,160 entitled “Constant Pool
Reference Resolution Method” (“the ‘160 patent”). A true and correct copy of the
‘160 patent is attached as Exhibit 3.

13. Nazomi is the owner and possessor of all rights, title, and interest in
the ‘362, ‘436, and ‘160 patents.

14. Defendant Samsung makes, uses, sells, and/or offers for sale within the

4 COMPLAINT FOR PATENT INFRINGEMENT

Cas

[T S L VS N S

Mol s N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

e 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 5 of 43 Page ID #:5

United States and this judicial district consumer electronic devices containing
processor cores capable of Java hardware acceleration including, but not limited to,
the Instinct s30 (SPH-M810) mobile phone. Upon information and belief, the
Instinct s30 (SPH-M810) mobile phone incorporates an ARM926EJ-S processor
core capable of Java hardware acceleration.

15. Defendants Samsung Telecommunications, Inc., Samsung Electronics
Co., Ltd., and Samsung Electronics America, Inc. make, use, sell, and/or offer for
sale within the United States and this judicial district consumer electronic devices
that use a virtual machine (“VM”) to resolve constant pool references including, but
not limited to, the Captivate (SGH-I897) mobile phone. Upon information and
belief, the Captivate (SGH-1897) mobile phone uses a VM to resolve constant pool
references.

16. Defendant HTC makes, uses, sells, and/or offers for sale within the
United States and this judicial district consumer electronic devices that use a VM to
resolve constant pool references including, but not limited to, the Droid Incredible
mobile phone. Upon information and belief, the Droid Incredible mobile phone
uses a VM to resolve constant pool references.

17. Defendant LG makes, uses, sells, and/or offers for sale within the
United States and this judicial district consumer electronic devices containing
processor cores capable of Java hardware acceleration including, but not limited to,
the LX370 mobile phone. Upon information and belief, the LX370 mobile phone
incorporates an ARM926EJ-S processor core capable of Java hardware
acceleration.

18. Defendant LG likewise makes, uses, sells, and/or offers for sale within
the United States and this judicial district consumer electronic devices that use a
VM to resolve constant pool references including, but not limited to, the Ally
(VS740) mobile phone. Upon information and belief, the Ally (VS740) mobile

phone uses a VM to resolve constant pool references.

5 COMPLAINT FOR PATENT INFRINGEMENT

Cas

O W N s

10
11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28

e 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 6 of 43 Page ID #:6

19. Defendant Kyocera makes, uses, sells, and/or offers for sale within the
United States and this judicial district consumer electronic devices containing
processor cores capable of Java hardware acceleration including, but not limited to,
the PRO-700 mobile phone. Upon information and belief, the PRO-700 mobile
phone incorporates an ARM926EJ-S processor core capable of Java hardware
acceleration.

20. Defendant Kyocera likewise makes, uses, sells, and/or offers for sale
within the United States and this judicial district consumer electronic devices that
use a VM to resolve constant pool references including, but not limited to, the Zio
(M6000) mobile phone. Upon information and belief, the Zio (M6000) mobile
phone uses a VM to resolve constant pool references.

Count 1

INFRINGEMENT OF THE ‘362 PATENT

21. Plaintiff incorporates each of the preceding paragraphs 1-20 as if fully
set forth herein.

22. Defendants Samsung, LG, and Kyocera have been and are directly
infringing the ‘362 patent by making, using, selling, and/or offering for sale within
the United States and this judicial district the products identified in paragraphs 14-
20.

23. The infringement by Defendants of the ‘362 patent has injured
Plaintiff and will cause irreparable injury and damage in the future unless
Defendants are enjoined from infringing the ‘362 patent.

Count 1

INFRINGEMENT OF THE ‘436 PATENT

24. Plaintiff incorporates each of the preceding paragraphs 1-23 as if fully
set forth herein.

25. Defendants Samsung, LG, and Kyocera have been and are directly
infringing the ‘436 patent by making, using, selling, and/or offering for sale within

6 COMPLAINT FOR PATENT INFRINGEMENT

CaseT 8:10-cv-01527-AG -RNB Document1l Filed 10/08/10 Page 7 of 43 Page ID #:7

~N Y s W

oo

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

the United States and this judicial district the products identified in paragraphs 14-
20.

26. The infringement by Defendants of the ‘436 patent has injured
Plaintiff and will cause irreparable injury and damage in the future unless
Defendants are enjoined from infringing the ‘436 patent.

Count 11

INFRINGEMENT OF THE ‘160 PATENT

27. Plaintiff incorporates each of the preceding paragraphs 1-26 as if fully
set forth herein.

28. Defendants Samsung, HTC, LG, and Kyocera have been and are
directly infringing the ‘160 patent by making, using, selling, and/or offering for sale
within the United States and this judicial district the products identified in
paragraphs 14-20.

29. The infringement by Defendants of the ‘160 patent has injured
Plaintiff and will cause irreparable injury and damage in the future unless

Defendants are enjoined from infringing the ‘160 patent.

PRAYER FOR RELIEF

WHEREFORE, Nazomi prays for judgment against all Defendants as
follows:

a) That the Court find that Defendants have each infringed and are each
presently infringing, United States Patent Nos. 7,080,362, 7,225,436, and
6,338,160;

b) That the Court find the 362, ‘436, ‘160 patents valid and enforceable:

c) That the Court award Nazomi damages or other monetary relief,
including prejudgment interest, for Defendants’ infringement;

d) That the Court find this to be an exceptional case entitling Nazomi to

an award of attorney’s fees, expenses, and costs pursuant to 35 U.S.C. § 285;

7 COMPLAINT FOR PATENT INFRINGEMENT

Casg 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 8 of 43 Page ID #:8

1 e) That the Court enjoin Defendants and their officers, directors, agents,

2 | and employees, from infringing, directly or indirectly, the ‘362, ‘436 and ‘160

3 | patents;

4 f) That the Court award Nazomi such other and further relief as the Court

5 | deems just and appropriate.

6 DEMAND FOR JURY TRIAL
7 Plaintiff respectfully requests a jury trial on all issues so triable.
8
9 | Dated: October 8, 2010 PEPPER HAMILTON LLP
10 Respectfully submitted,..

11 @
12 W
13 " Harry P. Weitze\

14 Attorney for Plaintiff
NAZOMI COMMUNICATIONS, INC.

15
16
17
18
19
20
21
22
23
24
25
26
27
28

8 COMPLAINT FOR PATENT INFRINGEMENT

Casg 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 9 of 43 Page ID #:9

] e) That the Court enjoin Defendants and their officers, directors, agents,

2 | and employees, from infringing, directly or indirectly, the ‘362, ‘436 and ‘160

3 | patents;

4 f) That the Court award Nazomi such other and further relief as the Court
5 | deems just and appropriate.

DEMAND FOR JURY TRIAL

~ &

Plaintiff respectfully requests a jury trial on all issues so triable.

o

9 | Dated: October 8, 2010 PEPPER HAMILTON LLP

10 Respectfully submitted,

11

12
13 Harry P. Weitzel

14 Attorney for Plaintiff

s NAZOMI COMMUNICATIONS, INC.
16
17
18
19
20
21
22
23
24
25
26
27
28

8 COMPLAINT FOR PATENT INFRINGEMENT

Case 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 10 of 43 Page ID #:10

EXHIBIT 1

Case 8:10-cv-01527-AG -RNB Document1l Filed 10/08/10 PaEe 11 of 43 Page ID #:11

United States Patent

Us007080362B2

(12) 10y Patent No.: US 7,080,362 B2
Patel et al. 45y Date of Patent: *Jul. 18, 2006
(54) JAVA VIRTUAL MACHINE HARDWARE FOR 4236204 A 11/1980 Groves
RISC AND CISC PROCESSORS 4,524416 A 6/1985 Stanley et al.
4,587,612 A 5/1986 Fisk et al.
(75) Inventors: Mukesh K. Patel, Fremont, CA (US); 4,587,632 A 5/1986 Ditzel
Jay Kamdar, Cupertino, CA (US); V. 4631663 A 12/1986 Chilinski et al.
; M SR S 4763255 A 8/1988 Hopkins et al.
R. Ranganath, Milipitas, CA (US) 4783738 A 11/1988 Li f al,
. B . N 4,860,191 A 8/1989 Nomura et al.
(73) Assignee: !\fazomi‘(,omfnumcation, Inc., Santa 4922414 A 5/1990 Holloway el al.
Clara, CA (US) 4961,141 A 10/1990 Hopkins et al.
4,969,091 A 11/1990 Muller
(*) Notice: Subject to any disclaimer, the term of this 5,077,657 A 121991 Cooper et al.
patent is extended or adjusted under 35 5,113,522 A 5/1992 Dinwiddie, Jr. et al.
U.S.C. 154(b) by 408 days. 5,136,696 A 8/1992 Beckwith et al.
5,142,681 A 8/1992 Driscoll et al.
This patent is subject to a terminal dis- 5,163,139 A 11/1992 Haigh et al.
claimer. 5,193,180 A 3/1993 Hastings
(21) Appl. No.: 09/938,886 (Continued)
OTHER PUBLICATIONS
(22) Filed: Aug. 24, 2001
TITLE: Object and Native Code Thread Mobility Among
(65) Prior Publication Data Heterogeneous Computers, author: Steensgarrd et al, ACM,
1995.*
US 2002/0066083 A1 May 30, 2002
Continued
Related U.S. Application Data ¢)
. . L Primary Examiner—Chameli C. Das
(63) S;I:mrgluz;tsgrg of application No. 09/208.741, filed on (74) Attorney, Agent, or Firm—Hahn and Moodley LLP
1) Int. 1 (57) ABSTRACT
GO6F 9/45 (2006.01)
(52) US.Ch oo, 717/139; 717/136; 717/137, A hardware Java™ accelerator is provided to implement
T17/118; 712/34; T12/43; 712/203; 712/209 portions of the Java™ virtual machine in hardware in order
(58) Field of Classification Search 717/136-140, to accelerate the operation of the system on Java™ byte-
717/146-149. 151-153. 165. 143 118 712/202<203’ codes. The Java'™ hardware accelerator preferably includes
T12/212. 244. 210. 206-209 34. 43- 710/29 Java™ bytecode translation into native CPU instructions.
S e The combination of the Java™ hardware accelerator and a
S lication file f lete search history.
¢ appucation e for complete search story CPU provides a embedded solution which results in an
(56) References Cited inexpensive system to run Java™ programs for use in

U.S. PATENT DOCUMENTS

commercial appliances.

3,889,243 A 6/1975 Drimak 99 Claims, 9 Drawing Sheets
________ o,
! cpu “BRANCH i
24 %2 28| *_—IT |
INSTRUCTION ACCELERATOR | i R i [,
CACHE INSTR ! msmoﬁ}_:__lmsmucrm vemoRy |1, 1
TRANSLATION] H DEC tosic |1
: i (R
]
! {
e e e et e !
JAVA]
el |
REGISTERS stacky] T -
52
- 50 “
~
© &2
s 1 1 T FILE
JAVA
ACCELERATOR |, "srancH o
(CO-PROCESSOR | = TAKEN
UNIT)

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 12 of 43
US 7,080,362 B2
Page 2
U.S. PATENT DOCUMENTS 6,075,940 A 6/2000 Gosling
. 6,076,141 A 6/2000 Tremblay et al.
5,201,056 A 4/1993 Daniel et al. 6.081.665 A 6/2000 Nilsen
5218711 A 6/1993 Yoshida 6085198 A 7/2000 Skinner et al
5,241,636 A %1993 Kohn o o0 < ‘
- 6,091,897 A * 7/2000 Yatesetal. 717/138
5,265,206 A t1/1993 Shacketford et al. 6.108.768 A 8/2000 Koppala et al.
5307492 A 4/1994 Benson 6110‘726 A 82000 Bothner
3313614 A~ 5/1994 Goettelmann et al. 6.118940 A 912000 Alexander, I ef al
5333,296 A 7/1994 Bouchard et al. G.122.638 A 9/2000 Huber e al.
3335344 A 871994 Hastings 6125439 A * 92000 Tremblay et al. 7121202
5,355.460 A 10/1994 Eickemeyer et al. ,
} . 6,131,144 A 10/2000 Koppala
5,430,862 A 7/1995 Smith et al. Nkl
5481684 A 1/1996 Richter et al 6.I3LI91 A 1012000 Cierniak et al.
5490256 A 2/1996 Mooney et al 6.139.199 A 1012000 Rodriguez
5,524,262 A * 6/1996 Colwell et al. .cccoooccc. 712/23 6,141,794 A~ 1072000 Dice et al.
5535329 A 7/1996 Hastings 6,148,391 A 1172000 Petrick
5.542.059 A 7/1996 Blomgren 6,151,702 A 1172000 Overturf et al.
5,574,927 A 11/1996 Scantlin 6,158,048 A 122000 Lueh et al.
5577233 A 11/1996 Goettelmann et al. 6,167,488 A 122000 Koppala
5,584,026 A 12/1996 Knudsen et al. 6,209,077 BI 3/2001 Robertson et al.
5.613,132 A 3/1997 Cliftetal. ..ooocoovennen. 712/217 6,233.678 Bl 5/2001 Vasanth
5,619,665 A 4/1997 Emma 6,247,171 B1* 6/2001 Yellinetal.c....... 717/126
5,619,666 A 4/1997 Coon ct al. 6,275,903 Bl 8/2001 Koppala et al.
5,634,118 A 5/1997 Blomgren 6,275,984 Bl 8/2001 Morita
5638,525 A 6/1997 Hammond et al. 6292883 Bl 92001 Augusteijn et al.
5,650,948 A 7/1997 Gafter 6,298,434 Bl 10/2001 Lindwer
5,659,703 A 8/1997 Moore et al. 6317.872 Bl 11/2001 Gee et al.
?28‘3«?33 : l'f/,:gg; §’°S‘mg 6321323 Bl 112001 Hugroho ef al.
WOy ! saman 5
5727176 A * 3/1998 Clift etal oo 7121217 6,330,659 BL 12/2001 Poff et al.
. . 6,349,377 Bl 2/2002 Lindwer
5,740,441 A 4/1998 Yellin et al.
| 6,374,286 Bl 4/2002 Gee et al.
5,740,461 A 4/1998 Jagger 6532531 Bl 32003 O°C |
5748964 A 5/1998 Gosling 23 onner et al.
5,752,035 A 5/1998 Trimberger 6,606,743 BI ~ 82003 Ra ef al ’
5,761,477 A 6/1998 Wahbe et al. 6,725,356 Bl 4/2004 Hansen et al. 712/210
5,764,908 A 6/1998 Shoji et al. 6,751,665 B1* 6/2004 Philbrick et al. .. 7097224
5,768,593 A 6/ 1998 Walters et al. 6,799,269 B1* 9/2004 Dowling L 7120244
5,774,868 A 6/1998 Cragun et al.
5.778.178 A 7/1998 Arunachalam OTHER PUBLICATIONS
;;Si:s/ég /‘t :’// iggg I\B/Ilomgret“ elt al. TITLE: Java Byte code to Native Code Translation: The
N N 7 oore €t al.
5.794.068 A §/1998 Asghar et al. Caffeine Prqtoty'pe and Preliminary Results, author: Hsieh et
5805895 A 9/1998 Breternitz, Jr. et al. al, IEEE, 1996.) . o
5.809.336 A 9/1998 Moore et al. TITLE: Efficient Java VM Just-in-Time Compilation, Krall,
5,838,165 A 11/1998 Chatter IEEE, 1998 *
5838948 A 1L/1998 Bunza TITLE: A Comparison of Full and Partial Predicated Execu-
5875336 A 21999 Dickol et al. ..ococeveecens 717/143 tion Support for ILP Processors, author: Mahlke et al, ACM,
5,880,006 A 3/1999 Adams 1995 *
5,898,850 A 4/1999 Dickol et al. N . . .
5.808.885 A 4/1999 Dickol et al. TITLE: A performance analysis of automatically managed
5.903,761 A 5/1999 Tyma top of stack buffem, author: Stanley et al, ACM, 1987.*
5,905,895 A 5/1999 Halter TITLE: The Clipper Processor: Instruction set architecture
5.920,720 A 7/1999 Toutonghi et al. and implementation, author: Hollingsworth et al, ACM,
5923892 A 771999 Levy 1989 .*
5925123 A * 771999 Tremblay etal. ... TITLE: Migrating a CISC Computer Family onto RISC via
5926,832 A 771999 Wing et al. Object Code Translation, author: Andrews et al, ACM,
5,937,193 A 8/1999 Evoy 1967
5,944 801 A 8/1999 Gulick ..ovveiirveinneens 710/29 . ’ . . .) .
5953736 A 071999 O"Connor et al. Sun says JAV{% chips w111”vabt1y increase speed, reduce
5953741 A 9/1999 Evoy costs to run JAVA programs,” Interactive Daily, downloaded
5983,334 A 1171999 Coon ct al. from the Internet (Dec. 1996).
5999731 A 121999 Yellin et al. Andreas Krall, “Efficient JAVA VM Just-In-Time Compila-
6,003,038 A 12/1999 Chen tion, " IEEE 1998.
6,009,499 A 12/1999 Koppala Debaere and Campenhout, “Interpretation and Instruction
6,009,511 A 12/1999 ¥,iynch etal .. 712/222 Path Coprocessing,” © 1990 The MIT Press.
6014723 A L2000 Tremblay et al. “SGT WebForce 02 is a one-stop Web authoring platform,”
6,021,469 A 2/2000 Tremblay et al. 711/125 .
; e InfoWorld, Jan. 20, 1997.
6,026,485 A 2/2006 O’Connor et al. 712/226 Krall L. “CACAO—A 64-bit] VM iust-in-t
6031992 A 22000 Cmelik ef al rail, et ai, "CACAD-—A 64-bit Java VM justan-tme
6.038.643 A 3/2000 Tremblay et al. 7117132 compxler. Concurrency: Practice and Experience, vol. 9
6,052,526 A 42000 Chatt (11). pp. 1017-1030, Nov. 1997.
6,065,108 A 5/2000 Tremblay et al. Debaere and Campenhout, “Interpretation and Instruction
6,067.577 A 5/2000 Beard Path Coprocessing,” © 1990 The MIT Press.

Page ID #:12

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 13 of 43 Page ID #:13

US 7,080,362 B2
Page 3

RM. Tomasulo, An Efficient Algorithm For Exploiting
Multiple Arithmetic Units, IBM Journal of Research and
Development, vol. 11, No. 1, Jan. 1967, pp. 25-27.

C. John Glossner and Stamatis Vassiliadis, The DELFT-
JAVA Engine: An Introduction, Euro-Par® 97 Parallel Pro-
cessing. Third Intemational Furo-Par Conference Passau,
Germany. Aug. 26-29, 1997 Proceedings, pp. 767-770.

M. Watheq El-Kharashi and Fayez Elguibaly, Java Micro-
processors: Computer Architecture Implications, 1997 IEEE
Pacific Rim Conference on Communications, Computers
and Signal Processing, PACRIM, Victoria, BC, Canada,
Aug. 20-22, 1997, pp. 277-280.

A.C. Rose, Hardware JAVA Acdelerator, for the ARM7,
Fourth year Undergraduate project in Group d, 1996/1997,
pp. 1-48 plus Appendix.

Otto Steinbusch, Designing Hardware to Interpret Virtual
Machine Instructions, Department of Electrical Engineering
of Eindhoven University of lechnology, Philips Semicon-
ductors 1998, Master’s Degree Thesis, Feb. 1998.
Andrews, et al., “Migrating a CISC computer family onto
RISC via object code translation”, Proceedings of the Fifth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 1992.
Berekovic, et al., “Hardware Realization of a Java Vitural
Machine for High Performance Multimedia Applications”,
IEEE Workshop on Signal Processing Systems 1997, Jan. 1,
1997.

Deutsch, Peter , et al., “Efficient Implementation of the
Smalltalk-80 System”, 11th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, 1984.
ERTL, “A new approach to forth native code generation”,
EuroForth Conference Proceedings, 1992,

ERTL, “Implementation of stack-based languages on regis-
ter machines”, dissertation, Apr. 1996.

ERTL, “Stack caching for interpreters”, SIGPLAN, 1995.
ERTL, “Stack caching for interpreters”, EuroForth Confer-
ence Proceedings 1994.

Glossner, et al., “Delft-Java Link Translation Buffer”, Pro-
ceedings of the 24th EUROMICRO conference, Aug. 1998.
Kieburtz, “A RISC architecture fir symbolic computation”,
ACM 1987.

Maierhofer, et al., “Optimizing stack code”, Forth-Tagung,
1997.

McGhan, et al., “picoJAVA: A Direct Execution Engine for
Java Bytecode”, IEFE, 1998.

Miyoshi, et al,, “lmplementation and Evaluation of Real
Time Java Threads™, /KEE, (Jan. 01, 1997).

O’Conner, et al., “picoJava-I: The Java Virtual Machine in
Hardware”, IEEE, Mar. 1997.

Sun Microsystems, “PicoJava 1 Microprocessor Core Archi-
tecture”, Oct. 1996.

Sun Microsystems, “PicoJava 1, Java Processor Core Data
Sheet”, Dec. 1997.

Ungar, et al., “Architecture of SOAR: Smalitalk ona RISC”,
11th Symposium on Computer Architecture Jun. 1984,

* cited by examiner

Case 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 14 of 43 Page ID #:14

U.S. Patent Jul. 18, 2006 Sheet 1 of 9 US 7,080,362 B2
20\
DATA
BUS
24~ 28 30\
HARDWARE -
iNS’gZ{éEIEON JAVA CPU Y
ACCELERATOR
\.22 i \-26
POWER 32
ON
NO JUM
'L<4 36 40
RESET NATIVE JUM
% | 1 MopE [
'\ EXCEPTION

INSTRUCTION
EXCEPTION

FIG._2

Case 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 15 of 43 Page ID #:15

US 7,080,362 B2

Sheet 2 of 9

Jul. 18, 2006

U.S. Patent

r Ao
3HOVO
viva P9~
i.mlf% HOSSHON-00)
SETL A B 09~ DL SEHOSINDD
AHONIW n/o - HOLVHIII00Y
2071] ' VAT
$9
4 34 N
yalsozy | |ualsoay Ll
5 Nd VAVT od
9
’ o vy
05~ 2 zg
SYRNE S Ny 95 VLS SuUSIO I_J\
! B .
| | sovg VAP od VvV
| 1 aem | | FHVMAEVH | vawr
| e e e ——————— e —
1 | !
| =t | | U e
| 1
] o901 |l owo1 || 3co0a || wowmms |l _\ NOLLYISNVAL ‘
|t | AHOWIW [T} 3LNO3X3 [| | NOLLONYLSNI[™ 1 [NOLLOMMLSNI[™ 1~ | fe—] NOLLONUISNI 1 JHOVO
1 —s o ! — 1 == | YOLVNI 1300V NOILOMM1SNI
I 1 Pgg 1992 _ I 992 | €92 | 9z VAT oz
|
| NIMVL ! 25—
| HONVE. ndo |
b e e e e e o+ e e e e e e e e et e ————— — o — st —
cz—

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 16 of 43 Page ID #:16

US 7,080,362 B2

Sheet 3 of 9

Jul. 18, 2006

U.S. Patent

NOLIYTISNVHL NOILONYLSNI ¥OLVHITIIOV VAVT

e e e . — — e e ey M e v A o — — —— o —— — — —

Sy41SID3Y
YAV
&.\ ;
.Tn}nn]-fn‘xf{;
|
I ™
| 1] 3NIHOWN | 1
“ | | 3vis [
I !
T a |
it YIA4NY | dnN-M007T = — Vivd
SNOILONY.LSNI !] H NOILONYLSNI 1 101907
JALYN | I pg 3AILYN OL i
[| 30093LAd gs~
“ | YAVl l“
e -
! 81—
zv

-
_
[
|

3300930 | uaddng
TITIVIVA |~ |NOLLONYLSNI

22— el
_

o

|
!
|
|
|
!
|

FHOVD

gl g NOILONYLSNI

AOu4

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 17 of 43 Page ID #:17

U.S. Patent Jul. 18, 2006 Sheet 4 of 9 US 7,080,362 B2

L INSTRUCTION TRANSLATION

JAVA NATIVE
BYTECODE = INSTRUCTION
iadd ADDR1, R2

II. JAVAREGISTER

PC=VALUEA CD PC=VALUEA+1
OPTOP =VALUEB OPTOP =VALUEB -1
(R1) (R2)
VAR =VALUE C VAR=VALUEC
1. JAVA CPU REGISTER FILE
RO 0001 NOT A VALID RO 0001
CONTA(I)I\[J:ST\CI)AF\,L(L;E -»R1 0150 ED STACK VALUE —»R1 0150
R2 1210 CONTAINS VALUE —R2 1360
OPERAND STACK R3 0007 OF THE TOP OF R3 0007
R4 0005 OPERAND STACK R4 0005
R5 0006 R5 0006
CONTAINS FIRST —R6 1221 R6 1221
VARIABLE g7 1361 R7 1361
IV. MEMORY
OPTOP =VALUEB — - 0150 - 0150
(VALUEB-1) - 1210 [4> OPTOP=VALUEB-1 - 1360
- 0007 - 0007
- 0005 - 0005
- 0006 - 0006
- 0001 - 0001
- 4427 - 4427
/-_/‘\/_/ NN
/\/\/"_/ NSNS
VAR = VALUE C - 1221 VAR =VALUE C - 1221
-~ 1361 - 1361
- 1101 - 1101
. J

.y
FIG._5

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 18 of 43 Page ID #:18

U.S. Patent Jul. 18, 2006 Sheet 5 of 9 US 7,080,362 B2

L INSTRUCTION TRANSLATION

JAVA NATIVE
BYTECODE INSTRUCTION
iload_n

iadd ED ADD R6, R1

II. JAVAREGISTER

PC = VALUEA c:{) PC=VALUEA +2

OPTOP = VALUE B OPTOP = VALUE B
(R1) (R1)

VAR = VALUE C VAR = VALUE C

IIL. JAVACPU REGISTER FILE

RO 0001 RO 0001
CONTAINS —>R1 0150 LJ‘> CONTAINS —>R1 1371
RUSCE ™ 7 o WUECE ™ 2 izt

OPERAND STACK ~ R3 0007 STACK R3 0007
R4 0005 R4 0005
R5 0006 R5 0006
CONTAINS FIRST —> R6 1221 CONTAINS —>R6 1221
VARIABLE Ry 1361 v FIREE R7 1361
IV. MEMORY
OPTOP =VALUEB — - 0150 OPTOP=VALUEB - 1371
- 1210 ED - 1210
. 0007 - 0007
- 0005 - 0005
- 0006 - 0006
- 0001 - 0001
- A427 - 4427
Y S N4 e e g
Y e N4 AN~
VAR =VALUEC - 1221 VAR = VALUEC - 1221
- 1361 - 1361
- 1101 - 1101
\ J

FIG._6

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 19 of 43 Page ID #:19

U.S. Patent Jul. 18, 2006 Sheet 6 of 9 US 7,080,362 B2
Opcodes Mnemonic | Opcode xHH | Excep Gen
nop 0x00
aconst_nuit x01
i mi x02
iconst_n(0-5) %03 - x08
lconst 50-1) x08 - x0a
feonst_n({0-2) x0c - x0d
dconst_n{0-1) x0e -x0f
h x10Q
sipush x11
lde x12 y
idc_w x13 y
ldc2 w x14 y
Hoad x15
lkoad X168
fload X7
dioad x18_
aload x19
[llcad_n(0-3) xia-x1d
licad_n(G-3) xie-x21
fload ngo-a) x22 - x2§
| n{0-3 X256 - 29
aload n(0-3 x2a - x2d
iaload x2a
laload x2f
faload x30
daload x31
aaload x32
balcad x33
caload x34
saload %35
istore x36
istore x37
fstore x38
dstroe x39
astroe X3a
store_n(0-3) x3b - x3a
istore_n(0-3) X3f - X42
fstore_n(0-3 _X43 - x48
dstore_n{0-3) XAT - x4a
astore_n(0-3) x4b - x4e
iastora f
lastore x50
fastoe x51
dastore x52
bastora x53
aastore x54
castroe x55
Sasra 58 FIG._7A

Case 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 20 of 43 Page ID #:20

U.S. Patent Jul. 18, 2006 Sheet 7 of 9 US 7,080,362 B2
pop X57
pop2 x58
dup x59
dup_x1 x5a
dup_x2 x50
dup2 X5¢
dup2 5 Bd
dup2 x2 x5e
swap x5t
iadd x60
tadd xB1
fadd X62 y
dadd %63 y
isub x84
Isub X65
Tsub x68 _ y
dsub xB7 y
imul X638
imul X569
fmul x5a y
dmul xBb y
Kiv x6c y
iV xEd y
fdiv xbe y
ddiv Bl y
rem X70 y
irem x71 y
frem X72_ y
drem x73 ¥
neg T4
Ineg x75
fneg X76 y
dneg x77 y
ishi X78
ishi X9
ishr x7a
jshr)
ushe x7c
jushr x7d
iand x7e
land x7f
for xB0
for x81
ixar x82
beor xB3
ling xB4
2 X85 y
| 12 x50 y
2d xB7 y
o w11 FIG._7B
2 xB9 y i
12d xBa y -

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 21 of 43 Page ID #:21

U.S. Patent Jul. 18, 2006 Sheet 8 of 9 US 7,080,362 B2

2 x8b y
2 xBc Y
2d xBd y
d2i xBa y
g2t xBf ¥y
&2t x50 y
i2h 81
2c x92
23 53
lcmp x84 y
fermpl x35 y
m x98 Y
x97 ¥
dempg %98 y
feq x99
ifne _Xg
it xSh
 fge x9¢
ifgt x5d
| fle xSe
if_icmpeq x9f
f kempne xal
it xai
i acmpge xa2
L 23 xa3
¥ laros 4
JCmpeq xad
if acmpne xa6
goto xal
%28
ret xa%
tableswitch Xad y
lookupswitch xab y
irefum Xac
iretum xad
fretum P
draturn xaf
aratum 0
retum xb1
_getstaﬁc xh2 Y
putstatic xbh3 Yy
| gethield xbéd y
xb5 y
invokevitual b8 y
invokaspacial b7 Y
invokestatic xba y
invokeinterface xb9 y
xxunsedon xba Yy
new xkb Y
newarray xbe y
LI =1 1 F|G..7C
araylength xbe y -

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 22 of 43 Page ID #:22

U.S. Patent Jul. 18, 2006 Sheet 9 of 9 US 7,080,362 B2

g

athrow X
checkcast
instanceo!

o

monicrentar
manitorexit
wide
multianewarray
imull

itnonnull
goto_w

r W

g

& P 1 C S PSP P S

B e

idc_quick
Idc_w _quick
Ide2_w_quick
getfield_gquick
putfield quick
getfield2 quick
putfield2 quick xd1
getstac_quick 2
| putstatic_quick
’_gtestadcz quick
putstatic2_quick
invekevirtual _quick
invaokenonvirtual_quick
invakesuper quick
invokestatic_quick
Invokeinterface quick
invokevirtualobject_quick
new_quick
anewarray_quick

muitinewarray _quick
checkeast_quick

SE

ainiadndntnindntaininindedadndnininintndntndndnd ol

e

breakpoint
impdep1
impdap2

FIG._.7D

A
he b h

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 23 of 43 Page ID #:23

US 7,080,362 B2

1

JAVA VIRTUAL MACHINE HARDWARE FOR
RISC AND CISC PROCESSORS

This application is a continuation of application Ser. No.
09/208,741 Dec. 8, 1998.

BACKGROUND OF THE INVENTION

Java™ is an object orientated programming language
developed by Sun Microsystems. The Java™ language is
small, simple and portable across platforms and operating
systems, both at the source and at the binary level. This
makes the Java™ programming language very popular on
the Internet.

Java™’s platform independence and code compaction are
the most significant advantages of Javal™ over conventional
programming languages. In conventional programming lan-
guages, the source code of a program is sent to a compiler
which translates the program into machine code or processor
instructions. The processor instructions are native to the
system’s processor. If the code is compiled on an Intel-based
system, the resulting program will only run on other Intel-
based systems. If it is desired to run the program on another
system, the user must go back to the original source code,
obtain a compiler for the new processor, and recompile the
program into the machine code specific to that other pro-
cessor.

Java™ operates differently. The Java™ compiler takes a
Java™ program and, instead of generating machine code for
a particular processor, generates bytecodes. Bytecodes are
instructions that look like machine code, but aren’t specific
to any processor. o execute a Java™ program, a bytecode
interpreter takes the Java™ bytecode converts them to
equivalent native processor instructions and executes the
Java™ program. The Java™ byte code interpreter is one
component of the Java™ Virtual Machine.

Having the Java™ programs in bytecode form means that
instead of being specific to any one system, the programs
can run on any platform and any operating system as long a
Java™ Virtual Machine is available. This allows a binary
bytecode file to be executable across platforms.

The disadvantage of using bytecodes is execution speed.
System specific programs that run directly on the hardware
from which they are compiled, run significantly faster that
Java™ bytecodes, which must be processed by the Java™
Virtual Machine. The processor must both convert the
Java™ bytecodes into native instructions in the Java™
Virtual Machine and execute the native instructions.

One way to speed up the Java™ Virtual Machine is by
techniques such as the “Just in Time™ (JIT) interpreter. and
even faster interpreters known as “llot Spot JI'1s” interpret-
ers. The JIT versions all result in a JIT compile overhead to
generate native processor instructions. These JIT interpret-
ers also result in additional memory overhead.

The slow execution speed of Java™ and overhead of JIT
interpreters have made it difficult for consumer appliances
requiring local-cost solutions with minimal memory usage
and low energy consumption to run Java™ programs. The
performance requirements for existing processors using the
fastest JITs more than double to support running the Java™
Virtual Machine in software. The processor performance
requirements could be met by employing superscalar pro-
cessor architectures or by increasing the processor clock
frequency. In both cases, the power requirements are dra-
matically increased. The memory bloat that results from JIT
techniques, also goes against the consumer application
requirements of low cost and low power.

16

0
@

40

45

S0

S5

60

65

2

It is desired to have an improved system for implementing
Java™ programs that provides a low-cost solution for run-
ning Java™ programs for consumer appliances.

SUMMARY OF THE INVENTION

The present invention generally relates to a Java™ hard-
ware accelerator which can be used to quickly translate
Java™ bytecodes into native instructions for a central pro-
cessing unit (CPU). The hardware accelerator speeds up the
processing of the Java™ bytecodes significantly because it
removes the bottleneck which previously occurred when the
Java™ Virtual Machine is run in software on the CPU to
translate Java™ bytecodes into native instructions.

In the present invention, at least part of the Java™ Virtual
Machine is implemented in hardware as the Java™ hard-
ware accelerator. The Java™ hardware accelerator and the
CPU can be put together on a single semiconductor chip to
provide an embedded system appropriate for use with com-
mercial appliances. Such an embedded system solution is
less expensive than a powerful superscalar CPU and has a
relatively low power consumption.

The hardware Java'™ accelerator can convert the stack-
based Java™ bytecodes into a register-based native instruc-
tions on a CPU. The hardware accelerators of the present
invention are not limited for use with Java™ language and
can be used with any stack-based language that is to be
converted to register-based native instructions. Also, the
present invention can be used with any language that uses
instructions, such as bytecades, which run on a virtual
machine.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be further understood from the
following description in conjunction with the drawings.

FIG. 1 is a diagram of the system of the present invention
including the hardware Java™ accelerator.

FIG. 2 is a diagram illustrating the use of the hardware
Java™ accelerator of the present invention.

FIG. 3 is a diagram illustrating some the details of a
Java™ hardware accelerator of one embodiment of the
present invention.

FIG. 4 is a diagram illustrating the details of one embodi-
ment of a Java™ accelerator instruction translation in the
system of the present invention.

FIG. 5 is a diagram illustration the instruction translation
operation of one embodiment of the present invention.

FIG. 6 is a diagram illustrating the instruction translation
system of one embodiment of the present invention using
instruction level parallelism.

FIGS. TA-7D) are the tables showing the possible lists of
bytecodes which can cause exceplions in a preferred
embodiment.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

FIG. I is a diagram of the system 20 showing the use of
a hardware Java™ accelerator 22 in conjunction with a
central processing unit 26. The Java™ hardware accelerator
22 allows part of the Java™ Virtual Machine to be imple-
mented in hardware. This hardware implementation speeds
up the processing of the Java™ byte codes. In particular, in
a preferred embodiment. the translation of the Java™ byte-
codes into native processor instructions is at least partially
done in the hardware Java™ accelerator 22. This translation

Case 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 24 of 43 Page ID #:24

US 7,080,362 B2

3

has been part of a bottleneck in the Java™ Virtual Machine
when implemented in software. In FIG. 1, instructions from
the instruction cache 24 or other memory is supplied to the
hardware Java™ accelerator 22. If these instruction are
Java™ bytecode, the hardware Java™ accelerator 22 can
convert these bytecodes into native processor instruction
which are supplied through the multiplexer 28 to the CPU.
If a non-Java™ code is used, the hardware accelerator can
be by-passed using the multiplexer 26.

The Java™ hardware accelerator can do, some or all of
the following tasks:

1. Java™ bytecode decode;

2. identifying and encoding instruction level parallelism
(ILP), wherever possible;

3. translating bytecodes to native instructions:;

4. managing the Java™ stack on a register file associated
with the CPU or as a separate stack;

5. generating exceptions on instructions on predetermined
Java™ byte codes;

6. switching to native CPU operation when native CPU
code is provided;

7. performing bounds checking on array instructions; and

8. managing the variables on the register file associated
with the CPU.

In a preferred embodiment, the Java™ Virtual Machine
functions of bytecode interpreter, Java™ register, and
Java™ stack are implemented in the hardware Java™ accel-
erator. The garbage collection heap and constant pool area
can be maintained in normal memory and accessed through
normal memory referencing.

The major advantages of the Java™ hardware accelerator
is to increase the speed in which the Java™ Virtual Machine
operates, and allow existing native language legacy appli-
cations, software base, and development tools to be used. A
dedicated microprocessor in which the Java™ bytecodes
were the native instructions would not have accesss to those
legacy applications.

Although the Java™ hardware accelerator is shown in
FIG. 1 as separate from the central processing unit, the
Java™ hardware accelerator can be incorporated into a
central processing unit. In that case, the central processing
unit has a Java™ hardware accelerator subunit to translate
Java™ bytecode into the native instructions operated on by
the main portion of the CPU.

FIG. 2 is a state machine diagram that shows the operation
of one embodiment of the present invention. Block 32 is the
power-on state. During power-on, the multiplexer 28 is set
to bypass the Java™ hardware accelerator. In block 34, the
native instruction boot-up sequence is run. Block 36 shows
the system in the native mode executing native instructions
and by-passing the Java™ hardware accelerator.

In block 38, the system switches to the Java™ hardware
accelerator mode. In the Java™ hardware accelerator mode,
Java™ bytecode is transferred to the Java™ hardware
accelerator 22, converled into native instructions then sent to
the CPU for operation.

The Java™ accelerator mode can produce exceptions at
certain Java™ bytecodes. These bytecodes are not processed
by the hardware accelerator 22 but are processed in the CPU
26. As shown in block 40, the system operates in the native
mode but the Java™ Virtual Machine is implemented in the
CPU which does the bytecode translation and handles the
exception created in the Java™ accelerator mode.

The longer and more complicated bytecodes that are
difficult to handle in hardware can be selected to produce the
exceptions.

20

25

30

45

by

55

60

65

4

FIGS. 7TA--7D) are the tables showing the possible lists of
bytecodes which can cause exceptions in a preferred
embodiment.

FIG. 3 is a diagram illustrating details of one embodiment
of the Java™ hardware accelerator of the present invention.
The Java™ hardware accelerator includes Java™ accelera-
tor instruction translation hardware 42. The instruction
translation Unit 42 is used to convert Java™ bytecodes to
native instructions. One embodiment of the Java™ accel-
erator instruction translation hardware 42 is described in
more detail below with respect to FIG. 4. This instruction
translation hardware 42 uses data stored in hardware Java™
registers 44. The hardware Java™ Registers store the Java™
Registers defined in the Java™ Virtual Machine. The Java™
Registers contain the state of the Java™ Virtual Machine,
affect its operation, and are updated after each bytecode is
executed. The Java™ registers in the Java™ virtual machine
include the PC, the program counter indicating what byte-
code is being executed; Optop, a pointer to the top of the
operand stack; Frame, a pointer to the execution environ-
ment of the current method; and Vars, a pointer to the first
local variable available of the currently executing method.
The virtual machine defines these registers to be a single
32-bit word wide. The Java™ registers are also stored in the
Java™ stack which can be implemented as the hardware
Java™ stack 50 or the Java™ stack can be stored into the
CPU associated register file.

In a preferred embodiment, the hardware Java™ registers
44 can include additional registers for the use of the instruc-
tion translation hardware 42. These registers can include a
register indicating a switch to native instructions and a
register indicating the version number of the system.

The Java™ PC can be used to obtain bytecode instruc-
tions from the instruction cache 24. In one embodiment the

5 Java™ PC is multiplexed with the normal program counter

54 of the central processing unit 26 in multiplexer 52. The
normal PC 54 is not used during the operation of the Java™
hardware bytecode translation. In another embodiment, the
normal program counter 54 is used as the Java™ program
counter.

The Java™ registers are a part of the Java™ Virtual
Machine and should not be confused with the general
registers 46 or 48 which are operated upon by the central
processing unit 26. In one embodiment, the system uses the
traditional CPU register file 46 as well as a Java™ CPU
register file 48. When native code is being operated upon the
multiplexer 56 connects the conventional register file 46 to
the execution logic 26¢ of the CPU 26. When the Java™
hardware accelerator is active, the Java™ CPU register file

o 48 substitutes for the conventional CPU register file 46. In

another embodiment, the conventional CPU register file 46
is used.

As described below with respect to FIGS. 3 and 4, the
Java™ CPU register file 48, or in an alternate embodiment
the conventional CPU register file 46, can be used to store
portions of the operand stack and some of the variables. In
this way, the native register-based instructions from the
Java™ accelerator instruction translator 42 can operate upon
the operand stack and variable values stored in the Java™
CPU register [ile 48, or the values stored in the conventional
CPU register file 46. Data can be written in and out of the
Java™ CPU register file 48 from the data cache or other
memory 58 through the overflow/underflow line 60 con-
nected to the memory arbiter 62, The overflow/underflow
transfer of data to and from the memory to can done
concurrently with the CPU operation. Alternately, the over-
flow/underflow transfer can be done explicitly while the

Case 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 25 of 43 Page ID #:25

US 7,080,362 B2

]

CPUJ is not operating. The overflow/underflow bus 60 can be
implemented as a tri-state bus or as two separate buses to
read data in and write data out of the register file when the
Java™ stack overflows or underflows.

The register files for the CPU could alternately be imple-
mented as a single register file with native instructions used
to manijpulate the loading of operand stack and variable
values to and from memory. Alternately, multiple Java™
CPU register files could be used: one register file for variable
values, another register file {or the operand stack values, and
another register file for the Java™ frame stack holding the
method environment information.

The Java™ accelerator controller (co-pracessing unit) 64
can be used to control the hardware Java™ accelerator, read
in and out from the hardware Java™ registers 44 and Java™
stack 50, and flush the Java™ accelerator instruction trans-
lation pipeline upon a “branch taken” signal from the CPU
execute logic 26¢.

The CPU 26 is divided into pipeline stages including the
instruction fetch 26a, instruction decode 265, execute logic
26c, memory access logic 264, and writeback logic 26¢. The
execute logic 26¢ executes the native instructions and thus
can determine whether a branch instruction is taken and
issue the “branch taken” signal.

FIG. 4 illustrates an embodiment of a Java™ accelerator
instruction translator which can be used with the present
invention. The instruction buffer 70 stores the bytecode
instructions from the instruction cache. The bytecodes are

sent to a parallel decode unit 72 which decodes multiple -

bytecodes at the same time. Multiple bytecodes are pro-
cessed concurrently in order to allow for instruction level
parallelism. That is, multiple bytecodes may be converted
into a lesser number of native instructions.

The decoded bytecodes are sent to a state machine unit 74
and Arithmetic Logic Unit (ALU) 76. The ALU 76 is
provided to rearrange the bytecode instructions to make
them easier to be operated on by the state machine 74. The
state machine 74 converts the bytecodes into native instruc-
tions using the look-up table 78. Thus, the state machine 74
provides an address which indicates the location of the
desired native instruction in the look-up table 78. Counters
are maintained to keep a count of how many entrics have
been placed on the operand stack, as well as to keep track of
the top of the operand stack. In a preferred embodiment, the
output of the look-up table 78 is augmented with indications
of the registers to be operated on at line 80. The register
indications are from the counters and interpreted from
bytecodes. Alternately, these register indications can be sent
directly to the Java™ CPU register file 48 shown in FIG. 3.

The state machine 74 has access to the Java™ registers in
44 as well as an indication of the arrangement of the stack
and variables in the Java™ CPU register file 48 or in the
conventional CPU register filc 46. The buffer 82 supplics the
translated native instructions to the CPU.

The operation of the Java™ hardware accelerator of one
embodiment of the present invention is illustrated in FIGS.
5 and 6. FIG. 5, section I shows the instruction translation
of the Java™ bytecode. The Java™ bytecode corresponding
to the mnemonic iadd is interpreted by the Java™ virtual
machine as an integer operation taking the top two values of
the operand stack, adding them together and pushing the
result on top of the operand stack. The Java™ translating
machine translates the Java™ bytecode into a native instruc-
tion such as the instruction ADD R1. R2. This is an
instruction native to the CPU indicating the adding of value

<

35

45

v
<

5s

60

65

6

in register R1 to the value in register R2 and the storing of
this result in register R2. R1 and R2 are the top two entries
in the operand stack.

As shown in FIG. 5, section [I, the Java™ register
includes a PC value of “Value A” that is incremented to
“Value A+1”. The Optop value changes from “Value B to
“Value B-1" to indicate that the top of the operand stack is
at a new location. The Vars value which points to the top of
the variable list is not modified. In FIG. 5, section 111, the
contents of a Java™ CPU register file, such as the Java™
CPU register file 48 in FIG. 3, is shown. The Java™ CPU
register file starts off with registers RO-RS containing oper-
and stack values and registers R6-~R7 containing variable
values. Before the operation of the native instruction, reg-
ister R1 contains the top value of the operand stack. Register
R6 contains the first variable. After the execution of the
native instruction, register R2 now contains the top value of
the operand stack. Register R1 no longer contains a valid
operand stack value and is available to be overwritten by a
operand stack value from the memory sent across the
overflow/underflow line 60 or from the bytecode stream.

FIG. 5, section 1V shows the memory locations of the
operand stack and variables which can be stored in the data
cache 58 or in main memory. For convenience, the memory
is illustrated without illustrating any virtual memory
scheme. Before the native instruction executes, the address
of the top of the operand stack, Optop. is “Value B”. After
the native instruction executes, the address of the top of the
operand stack is “Value B~1" containing the result of the
native instruction. Note that the operand stack value “4427”
can be written into register R1 across the overflow/under-
flow line 60. Upon a switch back to the native mode, the data
in the Java™ CPU register file 48 should be written to the
data memory.

Consistency must be maintained between the Hardware
Java™ Registers 44, the Java™ CPU register file 48 and the
data memory. The CPU 26 and Java™ Accelerator Instruc-
tion Translation Unit 42 are pipelined and any changes to the
hardware Java™ registers 44 and changes to the control
mformation for the Java™ CP1J register file 48 must be able
to be undone upon a “branch taken™ signal. The system
preferably uses buffers (not shown) to ensure this consis-
tency. Additionally, the Java™ instruction translation must
be done so as to avoid pipeline hazards in the instruction
translation unit and CPU.

FIG. 6 is a diagram illustrating the operation of instruction
level parallelism with the present invention. In FIG. 6 the
Java™ bytecodes iload_n and iadd are converted by the
Java™ bytecode translator to the single native instruction

o ADD R, R1. In the Java™ Virtual Machine, iload_n pushes

the top local variable indicated by the by the Java™ register
VAR onto the operand stack.

In the present invention the Java™ hardware translator
can combine the iload_n and iadd bytecode into a single
native instruction. As shown in FIG. 6, section 11, the Java™
Register, PC, is updated from “Value A” to “Value A+2”.
The Optop value remains “value B”. The value Var remains
at “value C”.

As shown in FIG, 6, section I11, after the native instruction
ADD R6, R1 executes the value of the first local variable
stored in register R6, 12217, is added to the value of the top
of the operand stack contained in register R1 and the result
stored in register R1. In F1G. 6, section IV, the Optop value
does not change but the value in the top of the register
contains the result of the ADD instruction, 1371.

The Java™ hardware accelerator of the present invention
18 particularly well suited to a embedded solution in which

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 26 of 43 Page ID #:26

US 7,080,362 B2

7

the hardware accelerator is positioned on the same chip as
the existing CPU design. This allows the prior existing
software base and development tools for legacy applications
to be used. In addition, the architecture of the present
embodiment is scalable to fit a variety of applications
ranging from smart cards to desktop solutions. This scal-
ability is implemented in the Java™ accelerator instruction
translation unit of FIG. 4. For example, the lookup table 78
and state machine 74 can be modified for a variety of
different CPU architectures. These CPU architectures
include reduced instruction set computer (RISC) architec-
tures as well as complex instruction set computer (CISC)
architectures. The present invention can also be used with
superscalar CPUs or very long instruction word {(VLIW)
computers.

While the present invention has been described with
reference to the above embodiments, this description of the
preferred embodiments and methods is not meant to be
construed in a limiting sense. For example, the term Java™

in the specification or claims should be construed to cover 2

successor programming languages or other programming
languages using basic Java™ concepts (the use of generic
instructions, such as bytecodes, to indicate the operation of
a virtual machine). It should also be understood that all
aspects of the present invention are not to be limited to the
specific descriptions, or to configurations set forth herein.
Some modifications in form and detail the various embodi-
ments of the disclosed invention, as well as other variations
in the present invention, will be apparent 1o a person skilled
in the art upon reference to the present disclosure. It is
therefore contemplated that the following claims will cover
any such modifications or variations of the described
embodiment as falling within the true spirit and scope of the
present invention.

We claim:

1. A method for processing instructions in a central
processing unit (CPU) capable of executing instructions of
a plurality of instruction sets, including a stack-based and a
register-based instruction set, the method, comprising:

maintaining data for register-based instructions from the

register-based instruction set and an operand stack for
operands associated with stack-based instructions from
the stack-based instruction set in a first register file,
wherein at least some of the operands are moved
between the register file and memory via at least one of
an overflow and underflow mechanism;

maintaining an indication of a depth of the operand stack;

and

processing the register-based instructions including gen-

erating a first output, and processing the first output in
an execution vnit using the data from the first register
file: and

processing the stack-based instructions inclading gener-

ating a second output, and proccssing the second output
in the execution unit using the operands from the first
register file; and generating exceptions in respect of
selected stack-based instructions.

2. The method of claim 1, further comprising storing
variables associated with the stack-based instructions in a
second register lile.

3. The method of claim 2, further comprising storing
virtual machine registers in a third register file.

4. The method of claim 3, wherein the first, second, and
third register files are the same register file.

5. The method of claim 4, wherein the operand stack is
maintained in a {irst portion of the register file, and variables

—
(=)

o
<

35

45

[
=

65

8

associated with the stack-based instructions are maintained
in a second portion of the register file.

6. The method of claim 1, wherein the overflow mecha-
nism generates an overflow indication for the stack-based
operands.

7. The method of claim 1, wherein the underflow mecha-
nism generates an underflow indication for the stack-based
operands.

8. The method of claim 1, further comprising generating
a branch taken indication in respect of a selected stack-based
branch instruction.

9. The method of claim 8, further comprising flushing at
least part of a pipeline associated with the processing of the
selected stack-based instructions if the branch taken indica-
tion is generated.

10. The method of claim 8, wherein the selected stack-
based branch instruction is selected from the group consist-
ing of ifeq, ifne, ifit, ifge, ifgt, ifle, if_icmpeq, if_icmpne,
if_icmplt, if_acmpge, if cmpgt, if_icmple, if_acmpeq,
if_acmpne, ifnull, ifnonull, lemp, fempl, fempg, dempl, and
dempg.

11. The method of claim 1, wherein a memory arbiter is
used to facilitate at least one of a loading and a storing of
operands between the register file and the memory via the at
least one of the overflow and underflow mechanism.

12. The method of claim 1, wherein at least one of the
operands is moved between the register file and the memory
as a result of executing at least one of a store and load
operation due to at least one of the overflow and underflow
indication.

13. The method of claim 11 or claim 12, wherein the
memory is a data cache.

14. The method of claim 12, wherein executing the load
or the store operation is due to executing a load or a store
instruction associated with the register-based instruction set.

15. The method of claim 1, further comprising further
processing the selected stack-based instructions for which
exceptions were generated using the register-based instruc-
tion set.

16. The method of claim 15, wherein the further process-
ing occurs within a virtual machine.

17. The method of claim 15 or claim 16, further com-
prising reverting to processing the stack-based instructions
after the further processing.

18. The method of claim 1, wherein instructions of the
stack-based instruction set include virtual machine byte-
codes.

19. 'The method of claim 1, wherein a common program
counter register is used for the plurality of instruction sets.

20. The method of claim 1, wherein a program counter for
each of the plurality of instruction sets is in at least one or
more program counter registers.

21. The method of claim 19 or claim 20. wherein the
program counter register is part of a register file for the CPU.

22. The method of claim 1, wherein instructions for the
plurality of instruction sets are stored in a shared instruction
cache.

23. The method of claim 1, wherein the CPU maintains an

o indication of which registers in the register file contain

operands associated with the stack-based instructions.

24. The method of claim 23, wherein at least a top two
operands of the operand stack in the register file are refer-
enced when executing the stack-based instructions.

25. The method of claim 1, further comprising maintain-
ing a counter that counts how many operands are placed in
the operand stack.

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 27 of 43 Page ID #:27

US 7,080,362 B2

9

26. The method of claim 1, further comprising keeping
track of the top of the operand stack.
27. A method for processing instructions in a central
processing unit (CPU), the method comprising;
decoding instructions of a stack-based instruction set;
maintaining an operand stack for operands associated
with the instructions of the stack-based instruction set
in a register file including moving at least some oper-
ands between the regjster file and memory via at least
one of an overflow and underflow mechanism;

decoding instructions of a register-based instruction set;

maintaining data associated with the instructions of the
register-based instruction set in the register file;

sending an output of the decoding of the instructions of
the stack and register-based instruction sets, to an
execution unit; and

processing the output in the execution unit, including

processing exceptions in respect of selected instruc-
tions of the stack-based instruction set in a virtual
machine.

28. The method of claim 27, further comprising setting at
least one bit to indicate which instruction set to use for the
processing.

29. The method of claim 28, wherein the processing of the
exceptions is performed using the register-based instruction
set.

30. The method of claim 28, wherein the at least one bit
is set in respect of those instructions of the stack-based
instruction set for which an exception is generated.

31. The method of claim 30, further comprising main-
taining a program counter for the stack-based instruction set
and a program counter for the register-based instruction set
in the same register.

32. The method of claim 30, wherein a program counter
for instructions of the stack-based and register-based
instruction sets are in at least one or more registers.

33. The method of claim 27, wherein the output of
decoding-instructions of the stack-based instruction set is
sent to the execution unit via the second decode unit.

34. The method of claim 27, wherein a memory arbiter is
used to facilitate the loading and storing of operands
between the register file and memory via the at least one of
an overflow and underflow mechanism.

35. The method of claim 34, wherein the memory includes
a data cache.

36. The method of claims 27, further comprising, prior to
processing the output in the execution unit, processing the
instructions of the stack-based instruction set in a hardware
accelerator.

37. The method of claims 36, wherein processing the
instructions of stack-based instruction set in the hardware
accelerator comprising generating the exceptions, each in
respect of a selected instruction of the stack-based instruc-
tion set.

38. A method, comprising:

switching a processing system to an accelerator mode,

wherein stack-based instructions are executed directly
in hardware;

generating an exception in respect of a selected stack-

based instruction while in the accelerator mode:
switching the processing system to a first native mode in
which the exception is handled within a virtual machine
by executing a register-based instruction; and
switching the processing system to a second native mode
upon a further exception generated while in the first
native mode, wherein in the second native mode the

10

30

50

n
<

65

10

virtual machine is non-operative and handling of the
further exception is by executing a register-based
instruction.

39. The method of claim 38, wherein the stack-based
instructions include virtual machine bytecodes.

48. In a processing system, comprising a central process-
ing unit (CPU) having an execution unit and a register file,
and being capable of processing instructions of a plurality of
instruction sets including a register-based instruction set and
a stack-based instruction set, wherein an operand stack for
operands associated with the stack-based instruction set is
maintained in the register file, and the operands are moved
between the register file and memory due to at least one of
an overflow and underflow mechanism, and wherein the
processing system further comprises a first state in which the
CPU processes instructions using the register-based instruc-
tion set without a virtual machine, a second state in which
the CPU processes using the non-stack-based instruction set
within a virtual machine, and a third state in which the CPU
processes instructions using the stack-based instruction set
within the virtual machine, a method of operating the CPU
comprising;

switching the processing system to the first state due to at
least one of a reset command and a power-on condition;

switching the CPU to the second state;

processing instructions in the second state; and

upon encountering an exception while processing the
instructions in the second state, switching the CPU to
the first state.

41. The method of claim 40, further comprising switching

the CPU from the second state to the third state.

42. The method of claim 41, further comprising, upon
receiving a reset command, switching the CPU from the
third state to the first state.

43. The method of claim 41, further comprising, upon
encountering an exception while processing instructions in
the third state, switching the CPU from the third state to the
second state.

44. The method of claim 41, wherein the switching to the
third state is while in a virtual machine to execute the
stack-based instruction set.

45. The method of claim 40, further comprising setting at
least one bit to indicate to the CPU which instruction set to
use.

46. The method of claim 27, claim 38, or claim 40,
wherein the stack-based instructions include virtual machine
byte codes.

47. The method of claim 1, claim 27, claim 38, or claim
40, wherein the stack-based instruction generating an excep-
tion is selected_trom the group consisting of tableswitch,
lookupswitch, getstatic, putstatic, getfield, putfield,
invokevirtual, invokespecial, invokestatic, invokeinterface,
new, newarray, arraylength, athrow, checkeast, instanceof,
monitorenter, monitorexit, breakpoint, anewarray, imdepl,
and imdep2.

48. A central processing unit (CPU), capable of executing
a plurality of instruction sets comprising:

an execution unit and associated register file, the execu-
tion unit to execute instructions of a plurality of instruc-
tion sets, including a stack-based and a register-based
instruction set;

a mechanism to maintain at least some data for the
plurality of instruction sets in the register file including
maintaining an operand stack for the stack-based
instructions in the register file and an indication of a
depth of the operand stack;

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 28 of 43 Page ID #:28

US 7,080,362 B2

11

a stack control mechanism that includes at least one of an
overflow and underflow mechanism, wherein at least
some of the operands are moved between the register
file and memory: and

a mechanism (o generate an exception in respect of
selected stack-based instructions.

49. The central processing unit of claim 48, wherein the
register file is a first register file, the central processing unit
further comprising a second register file to store variables
associated with the stack-based instructions.

50. The central processing unit of claim 49, further
comprising a third register file to store virtual machine
registers.

51. The central processing unit of claim 50, wherein the
first, the second, and the third register files are the same
register file.

52. The central processing unit of claim 51, wherein the
operand stack is maintained in a first portion of the register
file, and variables associated with the stack-based instruc-
tions are maintained in a second portion of the register file.

53. The central processing unit of claim 48, wherein the
overflow mechanism generates an overflow indication for
the operand stack.

54. The central processing unit of claim 53, wherein the
underflow mechanism generates an underflow indication for
the operand stack.

55. The central processing unit of claim 48, further
comprising a mechanism to generate a branch taken indica-
tion in respect of a selected stack-based instruction.

56. The central processing unit of claim 55, further
comprising a mechanism to flush at least part of a pipeline
associated with the processing of the selected stack-based
instruction, if the branch taken instruction is generated.

57. The central processing unit of claim 48, further
comprising a memory arbiter to facilitate at least one of a
loading and a storing of operands between the register file
and the memory and via the stack control mechanism.

58. The central processing unit of claim 48, wherein the
operands are moved between the register file and the
memory as a result of executing at least one of a load and a
store operation due to at least one of the overflow and
underflow indication.

59. The central processing unit of claim 58, wherein
executing at least one of the load and store operation is due
to executing a load or a store instruction associated with the
register-based instruction set.

60. The central processing unit of claim 48, wherein the
memory is a data cache.

61. The central processing unit of claim 55, wherein the
selected stack-based instruction is selected from the group
consisting of ifeq, ifne, ifit. ifge, ifgt, ifle, if_icmpeq, if_ic-
mpne, if_icmplt, if_acmpge, if_cmpgt, if_icmple, if_ac-
mpeq, #_acmpne, ifnull, ifnonull, lemp, fempl, fempg,
dempl, and dempg.

62. The central processing unit of claim 48, further
comprising further processing the selected stack-based
instructions for which exceptions were generated using the
register-based instruction set.

63. The central processing unit of claim 62, wherein the
further processing occurs within a virtual machine.

64. The central processing unit of claim 63, wherein the
execution unit reverts to processing the stack-based instruc-
tions, after the further processing.

65. The central processing unit of claim 48, wherein
instructions of the stack-based instruction set includes vir-
tual machine bytecodes.

5

10

20

30

50

60

12

66. The central processing unit of claim 48, further
comprising a common program counter register for the
plurality of instruction sets.

67. The central processing unit of claim 48, further
comprising at least one program counter register to imple-
ment a pragram counter for each of the plurality of instruc-
tion sets.

68. The central processing unit of claims 66 or claim 67,
wherein at least some of the program counter is imple-
mented within the register file.

69. The central processing unit of claim 48, wherein
instructions for the plurality of instruction sets are stored in
a shared instruction cache.

70. The central processing wnit of claim 48, further
comprising a mechanism that maintains an indication of
which registers in the register file contain operands associ-
ated with the stack-based instructions.

71. The central processing unit of claim 70, wherein at
least a top two operands of the operand stack in the register
file are referenced when executing the stack-based instruc-
tions.

72. The central processing unit of claim 48, further
comprising for the instructions of the stack-based instruction
set, processing said instructions in a hardware accelerator to
process instructions of the stack-back instruction set prior to
the processing of said instructions in the execution unit.

73. The central processing unit of claim 72, wherein the
hardware accelerator generates the exceptions.

74. A central processing unit (CPU) comprising:

a decoding mechanism to decode instructions of a plu-
rality of instruction sets including a -stack-based
instruction set and a register-based instruction set;

a register file, wherein an operand stack to store operands
associated with instructions of the stack-based instruc-
tion set is maintained; and wherein data associated with
instructions of the register-based instruction set is
maintained;

at least one of an overflow and underflow mechanism to
cause the operands to—be moved between the register
file and memory; and

an execution unit that processes the output of the decod-
ing of the instructions of the stack-based instruction set,
and the decoding of the instructions of the register-
based instruction set, including processing exceptions
in respect of selected instructions of the stack-based
instruction set within a virtual machine.

75. The central processing unit of claim 74, further
comprising a mechanism to sct at least one bit to indicate
which instruction set is to be used for the processing.

76. The central processing unit of claim 75, wherein the
at least one bit is set in respect of those instructions of the
stack-based instruction set for which an exception is gener-
ated.

77. The central processing unit of claim 75, further
comprising a register within which a program counter for the
stack-based instruction set and a program counter for the
register-based instruction set is maintained.

78. The central processing unit of claim 74, wherein an
indication of the depth of the operand stack for the stack-
based_instruction set is maintained.

79. The central processing unit of claim 48 or claim 78,
further comprising a counter to count how many operands
are in the operand stack.

80. The central processing unit of claim 48 or claim 78,
further comprising a mechanism to keep track of the top of
the operand stack.

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 29 of 43 Page ID #:29

US 7,080,362 B2

13

81. The central processing unit of claim 74, wherein the
decode unit comprises a first subunit and a second subunit,
and wherein the first subunit decodes instructions of the
stack-based instruction set and sends an output of the
decoding to the execution unit via the second subunit.

82. The central processing unit of claim 74, further
comprising a memory arbiter that facilitates at least one of
the loading or storing of operands between the register file
and memory via at least one of an overflow and underflow
mechanism.

83. The central processing unit of claim 82, wherein the
memory includes a data cache.

84. The central processing unit of claim 74, further
comprising for the instructions of the stack-based instruction
set, processing said instructions in a hardware accelerator to
process instructions of the stack-back instruction set prior to
the processing of said instructions in the execution unit.

85. The central processing unit of claim 84, wherein the
hardware accelerator generates the exceptions.

86. A processing system, comprising:

an accelerator mode in which a central processing unit
(CPU) of the processing system processes stack-based
instructions directly in hardware;

a first native mode in which the processing system pro-
cesses instructions using a non-stack-based instruction
set within a virtual machine; and

a second native mode in which the processing system
processes instructions using non-stack-based instruc-
tions, in which the virtual machine is non-operative,
wherein

the processing system is switched to the accelerator mode
to process stack-based instructions while in the accel-
erator mode, the processing of the stack-based instruc-
tions including generating an exception in respect of a
selected stack-based instruction while in the accelerator
mode, and switching to the first native mode in which
the selected stack-based instruction for which the
exception was generated is further processed within the
virtual machine using the non-stack-based instruction
set, and wherein if an exception is generated while in
the first native mode, the processing system switches to
the second native mode.

87. A processing system, comprising:

a central processing unit (CPU) which includes an execu-
tion unit and a associated register file, the execution
unit to process instructions of a plurality of instructions
sets including a register-based instruction set and a
stack-based instruction set;

a mechanism to maintain an operand stack for the stack-

based instruction set in the register file with at least one s

of an underflow and overflow mechanism, wherein the
processing system has a first state in which the CPU
processes instructions using the register-based instruc-
tion set without a virtual machine, a second state in

which the CPU processes instructions using the regis- :

ter-based instruction set within the virtual machine, and

20

[)
W

30

40

45

14

a third state in which the CPU processes instructions
using the stack-based instruction set within the virtual
machine, the processing system being configured to
perform a method, comprising:

switching to the first state due to a reset command while

in the third state or after power-on;

thereafter switching to the second state;

processing instructions while in the second state; and

switching to the third state.

88. The processing system of claim 87, wherein upon
encountering an exception while in the third state, switching
to the second state for further processing.

89. The processing system of claim 88, wherein upon
encountering an exception while in the third state, the
processing system switches to the second state for further
processing of the exception.

90. The processing system of claim 88, wherein due to an
exception while in the second state, the processing system
switches from the second state to the first state.

91. The processing system of claim 88, wherein the
processing system switches to the third state while in the
virtual machine to execute the stack-based instruction set.

92. The processing system of claim 88 or claim 91,
wherein an exception is generated for selected stack-based
instructions.

93. The processing system of claim 91, wherein the
stack-based instructions are virtual machine bytecodes.

94. The central processing unit of claim 74, claim 86, or
claim 88, wherein the stack-based instruction generating an
exception is selected from the group consisting of
tableswitch, lookupswitch, getstatic, putstatic, getfield, put-
field, invokevirtual, invokespecial, invokestatic,
invokeinterface, new, newarray, arraylength, athrow, check-
cast, instanceof, monitorenter, monitorexit, breakpoint,
anewarray, imdepl, and imdep2.

95. The processing system of claim 87, wherein the
processing is done using register-based instructions for the
first and second states.

96. The processing system of claim 95, wherein the
processing system switches to the third state while in the
virtual machine.

97. The processing system of claim 87, wherein an error
while in the third state switches the processing system to the
second state.

98. The processing system unit of claim 87, further
comprising for the instructions of the stack-based instruction
set, processing said instructions in a hardware accelerator to
process instructions of the stack-back instruction set prior to
the processing of said instructions in the execution unit.

99. The processing system unit of claim 98, further
comprising for the instructions of the stack-based instruction
set, processing said instructions in a hard accelerator to
process instructions of the stack-back instruction set prior to
the processing of said instructions in the execution unit.

* ok ok kK

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 30 of 43 Page ID #:30

EXHIBIT 2

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 31 of 43 Page ID #:31

0 0 0

(12)

United States Patent
Patel

US007225436B1

US 7,225,436 B1
*May 29, 2007

(10) Patent No.:
(45) Date of Patent:

(54)

(7%

(73)

")

@h
(22)

(63)

(60)

(51

(52)

(58)

(56)

JAVA HARDWARE ACCELERATOR USING
MICROCODE ENGINE

Inventor: Mukesh K. Patel, Fremont, CA (US)

Assignee: Nazomi Communications Inc., Santa
Clara, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 315 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 09/687,777

Filed: Oct. 13, 2000

Related U.S. Application Data

Continuation-in-part of application No. 09/208,741, filed on
Dec. 8, 1998, now Pat. No. 6,332,215,

Provisional application No. 60/239,298, filed on Oct. 10,
2000.

Int. CL
GO6F 9/45 (2006.01)
GO6F 9/44 (2006.01)
GO6F 15/00
US.CL i 717/139; 717/118; 717/148;
712/41
Field of Classification Search 717/136-140,

717/118, 148, 131, 143, 116, 134-137, 139,
717/165, 190; 712/137, 202, 203, 210, 36,
712/229;711/108, 1, 103

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

3,889,243 A 6/1975 Drimak
4,236,204 A 11/1980 Groves
4524416 A 6/1985 Stanley ct al.

OTHER PUBLICATIONS

Title: Fast, Effective Code Getteration in a Just-in-time Java
Compiler, author: Reza et al, ACM, May 1998.*

Title: A Software High Performane APL Interpreter, author:
Saal et al, ACM, 1979.*

“SGI Webliorce 02 is a one- -stop Web authoring platform,”
InfoWorld, Jan. 20, 1997.

Krall, et al.,, “CACAO—A 64-bit Java VM just-in-time
compiler,” Concurrency: Practice and Experience, vol. 9
(11), pp. 1017-1030, Nov. 1997.

“Sun says JAVA chips will vastly increased speed, reduce
costs to run JAVA programs,” Interactive Daily (Dec. 1996)
downloaded from the Internet.

Andreas Krall, “Efficient JAVA VM Just-In-Time Compi-
lation,” IEEE 1998.

Debaere and Campenhout, “Interpretation and Instruction
Path Copressing,” ©1990 The MIT Press.

C. John Glossner and Stamatis Vassiliadis, The Delft Java
Lingine: An Introduction, Furo—Part *97, Parallel Processing,
Third International Euro-Par Conference, pp. 766770
(Aug. 1997).

(Continued)

Primary kxaminer—Anthony Nguyen-Ba
(74) Attorney, Agent, or Firm—Hahn and Moodley LLP;
Vani Moodley

(57) ABSTRACT

A hardware Java™ accelerator is comprised of a decode
stage and a microcode stage. Separating into the decode and
microcode stage allows the decode stage to implement
instruction level parallelism while the microcode stage
allows the conversion of a single Java™ bytecode into
multiple native instructions. A reissue buffer is provided
which stores the converted instructions and reissues them
when the system returns from an interrupt. In this manner,
the hardware accelerator need not be flushed upon an
interrupt A native PC monitor is also used. While the native
PC is within a specific range, the hardware accelerator is
enabled to convert the Java™ bytecodes into native instruc-
tions. When the native PC is outside the range, the hardware
accelerator is disabled and the CPU operates on native
instructions obtained from the memory.

(Continued) 22 Claims, 19 Drawing Sheets
WARDWARE | CPU
100 ACCELERATOR | LOGIC

™ NATIVE_ INSTRUCTIONS |
102 !

~ I [coprocessor

DECODE INTERFACE
STAGE nz |
|
JA VA 101
BYTE CODES | | crv é
1 arme sos
| PC
DECODE |
TM ”‘P%"f L recrsen
. woniror | | FLE 113
| A T
Piovicgs STACK
POy STACK AND CoLLERATOR o
REGISTER | | JYARIABLL |
o MANAGERS h 114 ! VARS

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 32 of 43 Page ID #:32

US 7,225,436 B1
Page 2

4587612
4,587,632
4,631,663
4,763,255
4,783,738
4,860,191
4922414
4,961,141
4,969,001
5,077,657
5,113,522
5,136,696
5,142,681
5,163,139
5,193,180
5,201,056
5,218,711
5,241,636
5,265,206
5,307,492
5,313,614
5,333,296
5,335,344
5,355,460
5,430,862
5,481,684
5,490,256
5,535,329
5,542,059
5,574,927
5,577,233
5,619,665
5,619,666
5,634,118
5,638,525
5,650,948
5,659,703
5,668,999
5,692,170
5,740,441
5,740,461
5,748,964
5,752,035
5,761,477
5,764,908
5,768,593
5.774,868
5,778,178
5,781,750
5,784,584
5,794,068
5,805,895
5,809,336
5,838,165
5,838,948
5,875,336
5,889,996
5,898.850
5,898,885
5,903,761
5,905,895
5,920,720
5,923,892
5,925,123
5,926,832
5.937,193

5,940,858

5,946,487
5,946,718
5,953,741

U.S. PATENT DOCUMENTS

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

L i e i S A N

L

5/1986
5/1986
12/1986
8/1988
11/1988
8/1989
5/1990
10/1990
11/1990
12/1991
5/1992
8/1992
8/1992
11/1992
3/1993
4/1993
6/1993
8/1993
11/1993
4/1994
5/1994
7/1994
8/1994
10/1994
7/1995
1/1996
2/1996
7/1996
7/1996
11/1996
11/1996
4/1997
4/1997
5/1997
6/1997
7/1997
8/1997
9/1997
11/1997
4/1998
4/1998
5/1998
5/1998
6/1998
6/1998
6/1998
6/1998
7/1998
7/1998
7/1998
8/1998
9/1998
9/1998
11/1998
11/1998
2/1999
3/1999
4/1999
4/1999
5/1999
5/1999
771999
71999
7/1999
7/1999
8/1999
8/1999
8/1999
8/1999
9/1999

Fisk et al.

Ditzel

Chilinski et al.
Hopkins et al.

Li et al.

Nomura et al.
Holloway et al.
Hopkins et al.
Muller

Cooper et al.
Dinwiddie, Jr. et al.
Beckwith et al.
Driscoll et al.
Haigh et al.
Hastings

Daniel et al.
Yoshida

Kohn

Shackelford et al.
Benson
Goettelmann et al.
Bouchard et al.
Hastings
Eickemeyer et al.
Smith et al.

Richter et al.
Mooney et al.
Hastings

Blomgren

Scantlin
Goettelmann et al.
Emma

Coon et al.
Blomgren
Hammond el al.
Gafter

Moore et al.
Gosling

Isaman

Yellin et al.

Jaggar

Gosling

‘Trimberger

Wahbe et al.

Shoji et al.

Walters et al.
Cragun et al.
Arunachalam
Blomgren et al.
Moore et al.
Asghar et al.
Breternitz, Jr. et al.
Moore et al.
Chatter

Bunza

Dickol et al.
Adams

Dickol et al. 712/229
Dickol et al. 712/36
Tyma

Halter

Toutonghi ct al.

Fevy

Tremblay et al.

Wing et al.

Evoy
Green
Dangelo
Green
Evoy et al.

. 717143

5,983,334 A 11/1999 Coon et al.

5,999,731 A * 121999 Yellinetal 717/126
6,003,038 A 121999 Chen

6,009499 A 12/1999 Koppala

6,014,723 A * 1/2000 Tremblay et al. 711/1
6,021,469 A 2/2000 Tremblay et al.

6,026,485 A 2/2000 O’Connor et al.

6,031,992 A 272000 Cmelik et al.

6,038,643 A 3/2000 Tremblay et al.

6,052,526 A 4/2000 Chatt

6,065,108 A 5/2000 Tremblay et al.

6.067.577 A 5/2000 Beard

6,071,317 A 6/2000 Nagel

6,075,940 A 6/2000 Gosling

6,076,141 A * 6/2000 Tremblay et al. 711/108
6,081,665 A 6/2000 Nilsen

6,108,768 A 8/2000 Koppala et al.

6.110.226 A 8/2000 Bothner

6,118,940 A 9/2000 Alexander, II et al.

6.125439 A ¥ 92000 Tremblay et al. 712/202
6,131,144 A 10/2000 Koppala

6,131,191 A 10/2000 Cierniak et al.

6,139,199 A 10/2000 Rodriguez

6,141,794 A 10/2000 Dice et al.

6,138,048 A 12/2000 TLueh et al,

6,167,488 A 12/2000 Koppala

6,209,077 Bl 3/2001 Robertson et al.

6,233,678 Bl * 52001 Balacccoovvvienvinnn.. 712/240
6,275,903 Bl 8/2001 Koppala et al.

6,292,883 Bl 9/2001 Augusteijn et al.

6,317,872 Bl 1172001 Gee et al.

6,321,323 Bl 112001 Nugroho et al.

6,330,659 Bl {1/2001 Poff et al.

6,349.377 Bl 2/2002 Lindwer

6,374,286 Bl 4/2002 Gee et al.

6,477,702 Bl * 11/2002 Yellin et al. 717/126
6,532,531 Bl 3/2003 O'Connor et al.

6,606,743 Bl * §2003 Razetal ... 717/148

OTHER PUBLICATIONS

M.W. El-Kharashi et al., Java Microprocessor:. Computer
Architecture Implications, IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, vol. 1,
pp- 277-280 (Aug. 20-22, 1997).

R. Tomasulo, An Efficient Algorithm for Exploring Multiple
Arithmetic Units, IBM Journal of Research and Develop-
ment, vol. 11, No. 1, pp. 25-33 (Jan. 1967).

Andrews, et al., “Migrating a CISC computer family onto
RISC via object code translation”, Proceedings of the Fifih
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 1992, (1992).
Berekovic, et al., “Hardware Realization of a Java Virtual
Machine for High Performance Multimedia Applications”,
IEEE Workshop on Signal Processing Systems 1997, (Jan. 1,
1997).

Deutsch, Peter , et al, “Efficient Implementation of the
Smalltalk-80 System”, 1/th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, 1984,
(1984).

Ertl, “A new approach to forth native code generation”,
EuroForth Conference Proceedings, 1992, (1992).

Ertl, “Stack caching for interpreters”, SIGPLAN, 1995,
(1995).

Ertl, “Stack caching for interpreters”, EuroForth Conference
Proceedings 1994, (1994).

Glossner. et al., “Delfi-Java Link Translation Buffer”, Pro-
ceedings of the 24th KUROMICRO conference, Aug. 1998,
(Aug. 1998).

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 33 of 43 Page ID #:33

US 7,225,436 Bl
Page 3

Hsieh, et al., “Java Byte Code to Native Code Translation:
The Caffeine Prototype and Preliminary Results”, IEEE,
(Jan. 1, 1996).

Kieburtz, “A RISC architecture for symbolic computation”,
ACM 1987, (1987).

Mahlke, et al., “A Comparsion of Full and Partial Predicted
Execution Support for ILP Processors”, IEEE, (Jan. 1,
1995).

Maierhofer, et al., “Optimizing stack code”, Forth Tagung,
1997, (1997).

McGhan, et al., “picoJava: A Direct Execution Engine for
Java Bytecode”, IEEE, 1998, (1998).

Miyoshi, et al., “Implementation and Eveluation of Real
Time Java Threads”, /EEE, (Jan. 1, 1997).

[irtl, “Implementation of stack-based languages on register
machines”, dissertation, Apr. 1996, (Apr. 1996).
O’Connor, et al., “picoJava-1: The Java Virtual Machine in
Hardware”, IEEE, Mar. 1997, (Mar. 1997).

Rose, A C., “Hardware Java Accelerator for the ARM 7% »
4th Year Undergraduate Project in Group D, (1996/97),
1-49, Appendix.

Steensgarrd. et al., “Object and Native Code Thread Mobilty
Among Heterogeneous Computers”, ACM, (Jan. 1, 1995).

Sun Microsystems, “PicoJava 1 Microprocessor Core Archi-
tecture”, Oct. 1996, (Oct. 1996).

Sun Microsystems, “PicoJava 1, Java Processor Core Data
Sheet”, Dec. 1997, (Dec. 1997).

Unger, et al., “Architecture of SOAR: Smalltalk on a RISC”,
11th Symposium on Computer Architecture Jun. 1984, (Jun.
1, 1984).

Rose, A C., “Hardware Java Accelerator for the ARM 77, 4th
Year Undergraduate Project in Group D, (1996/97}, 1-49,
Appendix.

Steinbusch, Otto , “Designing Hardware to Interpret Virtual
Machine Instructions”, Depr. of Electrical Engineering,
Eindhoven University of Technology, Master Degree Thesis,
Feb. 1998, 59.

* cited by examiner

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 34 of 43 Page ID #:34

U.S. Patent May 29, 2007 Sheet 1 of 19 US 7,225,436 B1
20

\ DATA
24 28 BUS
\ ¥

INSTRUCTION|_| | HARDUARE U [T
CACHE ACCELERATOR
221 26
32
NO JVM
40

RESET NATIVE JVM
L\ MODE /,

SEQ. [& .
N__~ EXCEPTION

h 4

RESET

INSTRUCTION
EXCEPTION

38

FIG. 2

US 7,225,436 B1

Sheet 2 of 19

May 29, 2007

Case 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 35 of 43 Page ID #:35
U.S. Patent

- - - - - " " = A e =

-~

€ oOld
IHOVD A
viva
k 4
85— 3§ H0SSII0NJ-00)
y3LIAY |, NDVL ¢ 1 yam08INDD
AHOW3IW nio HOLYHITIDIV
N@L 'y * Y
mmmmm I T I S~
15193y
dason| TS 2d
gp
N
...... 9 SILSIo 5
"L
. \/ d
g R FIVMAIVH | v
292" AH
, [o907 { [300030 NOLLVISNYL .
. - NOLLDNYLSNI IHOVO
m E@g 31003x3 m zozokaEmz_ NOLLONM1SNI i e A Y
L pog ! 97 VAVT >,
— bz
NIWWL 44
HONYYS,

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 36 of 43 Page ID #:36

US 7,225,436 B1

Sheet 3 of 19

May 29, 2007

U.S. Patent

NOLLVISNVYL NOLLONY1SNI HOLVHI 13DV VAVT

S¥3LSI93Y
VAT
4
"
]
| b~
I —— -
| | | INIHOVA | 7
! VLS [
I
InaenR vt [4 | W
~—— vading eI anv001 |e - viva |
SNOLLONYISNT | || g NOLLOMMHLSNI 1 |owon
SMWN | T gg/ | 3AiwNOL .
i ! 30023148 gy
| VAVE |
| - J_
i o1~
2w

|
I

|
]
]
|
]
|
|
-

|||||||||||||||||||||||||||| _
i
|
-— "
! _
| .
_ ! JHOVD
3g003a |, | wuading !
TETIVEVE |~ | NoILoMmaLsn [T NOLTIRLLSNI
21— o

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 37 of 43 Page ID #:37

U.S. Patent May 29, 2007 Sheet 4 of 19 US 7,225,436 B1

L INSTRUCTION TRANSLATION

JAVA NATIVE
BYTECODE = INSTRUCTION

iadd ADDR1, R2

0. JAVAREGISTER

PC = VALUEA C:> PC=VALUEA+1

OPTOP = VALUE B OPTOP = VALUE B - 1
(R1) (R2)

VAR = VALUE C VAR = VALUE C

M. JAVACPU REGISTER FILE

RO 0001 NOT A VALID RO 0001
CONTALI)INII:STVALSIE: —»R1 0150 '#> STACK VALUE —»R1 0150
oP 1210 —R2 1360
OPERAND STACK o 1210 CETHETOPOF ma oo
R& 0005 OPERAND STACK p4 0005
R5 0006 R5 0006
CONTAINS FIRST —»=R6 1221 R6 1221
VARIABLE g7 1364 R7 1361
Iv. MEMORY

OPTOP = VALUE B —» - 0150 - 0150
(VALUEB - 1) - 1210 CD OPTOP =VALUEB -1 - 1360
- 0007 - 0007
- 0005 - 0005
- 0006 - 0008
- 0001 - 0001
- 4427 - 4427

e e N A~~~

R T 4 A~~~
VAR = VALUE C - 1221 VAR = VALUEC - 1221
- 1361 - 1361
- 1101 - 1104

“ ; J

FIG._5

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 38 of 43 Page ID #:38

U.S. Patent May 29, 2007 Sheet 5 of 19 US 7,225,436 B1

I INSTRUCTION TRANSLATION

JAVA NATIVE
BYTECODE INSTRUCTION
jload_n

iadd ® ADD R6, R1

IL JAVAREGISTER

PC = VALUE A c{} PC=VALUEA+2

OPTOP = VALUE B OPTOP = VALUE B
(R1) R1)

VAR = VALUE C VAR = VALUE C

III. JAVACPU REGISTER FILE

RO 0001 RO 0001
CONTAINS —R1 0150 d\> CONTAINS —-R1 1371
AYSSE T s YESE R a0
OPERAND STACK ~ R3 0007 STACK R3 0007
R4 0005 R4 0005
R5 0006 RS 0006
CONTAINS FIRST —»R6 1221 CONTAINS —>R6 1221
VARIABLE g7 1361 VAR%E; R7T 1361
Iv. MEMORY
OPTOP = VALUEB —» - 0150 OPTOP =VALUEB - 1371
- 1210 q> - 1210
- 0007 - 0007
- 0005 - 0005
- 0006 - 0006
- 0001 - 0001
- 4427 - 4427
/\,’-\/\/ N~ TN
T e e P~~~
VAR = VALUE C - 1221 VAR = VALUEC - 1221
- 1361 - 1381
- 1101 - 1104
4 J

FIG..6

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 39 of 43 Page ID #:39

U.S. Patent May 29, 2007 Sheet 6 of 19 US 7,225,436 B1

Opcodes Mnemonic | Opcode xHH | Excep Gen
nop 0x00
aconst null , x01
iconst_ m1 x02
[iconst_n{0-5) x03 - x08
konst n(0-1 x09-x03
fconst _n{0-2) 1 - x0c - xOd
deonst_n{0-1) x0a -xOf
bipush x10
sipush . x11
e x12 -y
e w . x13 y
loc2 w x14 y
fload x15
lioad X168
. {fload - xA7
dicad , x18
aload x19
load_n(0-3) - x1a-x1d
fload_n(0=3) xie 21
fload_n{0-3) xX22 - x25
dicad n(0-3) x26 - 29
aload_n(0-3 X2a - X2d
imload e
laload ' x2f
faload x30
daload . %31
aaload . x32
baload X33
caload x34
saload x35
istore) x36
istore - x37
fstore : x38
dstroe x39
astroa x3a
fstore_n(0-3 X3b - x3e
Istore_n(0-3 x3f - x42
fstore_n(0~3 X43 - X486
dstore_n{0-3) x47 - x4a
astore_n(0-3) %40 - x40
iastore x4f
lastora x50
fastroe “X51
dastore x52
bastore x53
aastore x54
casfroe x55 ‘
sastore ' x56 F I G. — 7A

Case 8:10-cv-01527-AG -RNB Document 1 Filed 10/08/10 Page 40 of 43 Page ID #:40

U.S. Patent May 29, 2007 Sheet 7 of 19 US 7,225,436 B1

pop x57
pop2 x58
dup x589
dup_x1 x58

X2 x5b
dup2 X5C

XA x5d
dup2_x@ x5€
swap x5f
tadd X80
ladd x61
fadd xB82 y
dadd 63 y
isub xB4
isub x65
fsub ~ x68 y
dsub x87 y
imut x58
Imul x68
fmul x53 y
dmul x6b Y
idv X6¢ _y
idiv xtd y
fdiv xte y
ddiv x6f y
irem x70 y
lrem x71 y
fram x72 y
drem x73 Y
in x4
lneg 75
fneg x78 Y
dneg xX77
ishl x78
ishi x79
ishr x7a
ishr x7h
ushr x7¢
Jushr ~ x7d
iand x7e
tand X7T
or x80
lor x81
beor x82
Ixor X8B3
line x84
i2! x85 y
| 2f xB6 y
2d x87 y
12 xB8 y
[2f x89 y '
o = | FIG._7B

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 41 of 43 Page ID #:41

U.S. Patent May 29, 2007 Sheet 8 of 19 US 7,225,436 B1
[71] x8b Y
£ i y
2d x8d Y
a2 x8e y_-
d2l x8f y
dt . x30 y
2k A1
¢ x92
i2s %33

p X34 y
x35 Y.
fempg xS96 Yy
dempl x97 Y
dompg X3 Y
feq x99
a - x3a
i xSb
r P xgc
L1 =
ffle x3e
' lcmpeq xof
_jcmpne xaQ
it_icmpit xal
f_scmpge xa2
et =
if_icmole xa4
i acmpeq xad
if_acmpne xa6
[goto xa?
isr xa8
ret xa9
tableswitch xaa i 4
lookupswitch xab y
iretumn Xxac
Ireturn xad
fretum xae
dratum xaf
aretumn "~ xb0
ratum - xbi .
getstatic xb2 Y
putstatic xb3 y
getﬁeld xb4 y
putfield . xbs b
invokavirtual xb8 y
invokespecial xb7 Y.
invokestatic xb8 y
invokeinterface . xbg y
xounsadoo xba ¥
new xbb y
newarray xbe y
anewarray xbd Y FIG._7C
arraylength xba y

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 42 of 43 Page ID #:42

U.S. Patent

May 29, 2007 Sheet 9 of 19
athrow xbt y
checkcast XCO y
nstanceof xc1 Y
monitorenter [3] -y
maonitorexit xc3 -y
wide __XcA y .

. |muitianewarray xc5 y
ifnull x5 y
ifnonnull xc7 y

W xc8-
s)
de_quick xch y
Idc_w_quick Xce y
ide2 w_quick xcd y
getfleld_quick xce ;
putfield quick xcf y

‘| gethield2 quick xdO y
putfield2 quick xd1 y
| getstatic_quick xd2 y
putstatic_quick xd3 Yy

. Juick xd4 y
putstatic2 quick Xxa5 y
invokevirtual_quick: - xd6 Y.
invokenonvirtual _quick xd? y
invokesuper quick xdB y
invokestatic_quick xd9 y
invoksintsrface _quick xda y
invokevirtualobject_guick xdb y
new quick xdc y
anewarray quick xde .Y
multinewarray _quick xdf y
checkeast_gquick xe0 y
instanceof quick xel y
invokevirtual quick w xe2 y
| getfield quick w x83 y
putfield quick w xe4 y
breakpoint xZa y
impdep1 xfe y
impdep?2 xit y

US 7,225,436 B1

FIG._7D

Case 8:10-cv-01527-AG -RNB Document1 Filed 10/08/10 Page 43 of 43 Page ID #:43

US 7,225,436 B1

Sheet 10 of 19

May 29, 2007

U.S. Patent

£

SHYA

MOVIS

. J4
- EINYREL]

101

Jd
YN

nda

201"

!

JOVAYIINT

H0S53204402

21907
ndo

,
_
_
|
_
|
|
|
_
_
|
|
|
|
|
|
|

8 Oid
PHNL syzovnvm 1004
A TV e |, G193
oLl J78vN3 ONV SOVIS HOLVYITIIOV
. HOL YYFT1FO0Y VAV
N FAVMASVH i
VAYD
HOLINOW
Id TVIS
FAILYN FOVIS
- 300030
—y
3
, IE
ﬂ ¥ w
. |u3ana] [S]
1 |21SS13Y s $3000 A8
] S 18 VAYP
90! S
Zil 3 FoViS 39VLS
Q| || F0000801m 300030
L L
et »0! zol
SNOILONAISNI AILVN | N
HOLVHTTIIIOY 00!
FHVMAMYH

