wooee ~x O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

~ ¢ e

%

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Pagel of 78

Howard Chen (SBN 257393)
howard.chen@klgates.com

Harold H. Davis, Jr. (SBN 235552)
harold.davis@klgates.com

Rachel Davidson (SBN 215517)
rachel.davidson@klgates.com
K&L GATES LLp

Four Embarcadero Center, Suite 1200
San Francisco, Califorma 94111
Telephone: 415.882.8200
Facstmile: 415.882.8220

Attorneys for Plaintiffs

WISTRON CORPORATION,

AOPEN INCORPORATED AND
AOPEN AMERICA INCORPORATED

UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA
; TETY 7 9 g
SAN FRANCISCODIVISION, {

4

WISTRON CORPORATION, a Taiwan Case No.

corporation, AOPEN INCORPORATED, a

Taiwan corporation, AOPEN AMERICA COMPLAINT FOR DECLARATORY

INCORPORATED, a California corporation, JUDGMENT OF NON-INFRINGEMENT
AND INVALIDITY OF U.S. PATENT NOS.

Plaintiffs, 5,379,414; 5,983,002; 6,195,767; AND
6,401,222
Vs.

PHILLIP M. ADAMS & ASSOCIATES, LLC, a
Utah limited Liability corporation,

Defendant.

RECYCLED PAPER

COMPLAINT FOR DECLARATORY JUDGMENT OF NON-INFRINGEMENT AND INVALIDITY

i1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page2 of 78

Plaintiffs WISTRON CORPORATION (“Wistron™), AOPEN INCORPORATED (“AQOpen
Inc.”), and AOPEN AMERICA INCORPORATED (“AOpen America™) (collectively “Wistron and
AOpen”) by and through their attorneys allege as follows:

1. This is a civil action arising under the patent laws of the United States, 35 U.S.C.
§§ 101, et seq., seeking a declaratory judgment, under 28 U.S.C. §§ 2201 and 2202, that no valid and
enforceable claim of United States Patent No. 5,379,414, (the “‘414 patent”), Uniled States Patent
No. 5,983,002 (the “*002 patent”™), United States Patent No. 6,195,767 {the “*767 patent”), and
United States Patent No. 6,401,222 (the ““222 pateat”) (collectively the “patents-in-suit”) is inlringed
by Wistron and AOpen. This Complaint further secks a declaratory judgment that the patents-in-suit
arc invalid as anticipated under 35 U.S.C. § 102, invalid as obvious under 35 U.S.C. § 103, and
invalid for failure to meet the requirements of 35 US.C § 112,

THE PARTIES

2. Plaintiff Wistron is a Taiwan corporation with its principal place of business at 21F,
88, Sec. 1, Hsin Tai Wu. Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C. Wistron is one of the
world’s largest original design manufacturers (“ODM”) for information and communication
technology (“ICT”) products. Wistron 18 in the business of designing, developing and manufacturing
compuler products such as notebook computers, computer peripheral equipment and other electronic
products for customers to sell under their own brand name. Wistron products are sold throughout the
United States, including this District.

3. Plaintiff AOpen Ine. is a Taiwan corporation with its principal place of business at
No.68, Ruiguang Rd., Nethu District, Taipet, Tarwan, ROC. AOpen Inc. is in the business of
manufacturing and selling computer products such as notebook computers and computer peripheral
equipment. AQOpen products are sold throughout the United States, including this District.

4. Plaintiff AOpen America is a California corporation with its principal place of
business at 2890 Zanker Road, Suite 101 San Jose, CA 95134,

5. Defendant Phillip M. Adams & Associates, L.1.C. (“Adams”) is a Utah limited
liability company with an address at 325 Federal Heights Cirele, Sall Lake City, Utah 84103. Adams
has an alternative address at P.O. Box 1207, Bountiful, Utah 84011,

I RECYCLED PAPER

COMPLAINT FOR DECLARATORY JUDGMENT OF NON-INFRINGEMENT AND INVALIDITY

U FCT N

o0 =3 v L

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page3 of 78

JURISDICTION AND VENUE

6. Wistron and AQpen file this Complaint against Adams pursuant to the patent laws of
the United States, Title 35 of the United States Code, with a specific remedy sought based upon the
laws authorizing actions for declaratory judgment in the federal courts of the United States, 28 U.S.C.
§§ 2201 and 2202.

7. This Court has subject matter jurisdiction over this action, which arises under the
patent laws of the United States, pursuant to 28 U.S.C. §§ 1331, 1338(a), and undes the Federal
Declaratory Judgment Act, 28 U.S.C. §§ 2201 and 2202.

8. Personal jurisdiction and venue are proper in this District pursuant to 28 U.S.C.

§§ 1391 and 1400(b). Upon information and belief, Adams conducts business in this District,
Wistron and AOpen do business in this District, and a substantial part of the events that give rise to
the action occurred in this District. Upon information and belief, Adams has and continues to
transact business in this District by pro{fiding consulting services, negotiating licensing arrangements,
and participating in litigation in and directed at companies located in this District.

INTRADISTRICT ASSIGNMENT

9. This action is properly filed in the San Francisco Division of the Northern District of
California because Wistron, AOpen and Adams do business within the San Francisco Division.

EXISTENCE OF AN ACTUAL CONTROVERSY

10. There is an actual controversy within the jurisdiction of this Court under 28 U.S.C.
§§ 2201 and 2202.

11. On or around June 21, 2010, in a letter sent to Wistron and AQOpen, respectively,
Adams embarked upon an improper campaign of threats against Wistron and AOpen to file a baseless
patent infringement lawsuit against Wistron and AOpen for the purpose, and intended effect, of
disrupting the sale of Wistron and AOpen notebook computers in the United States.

12. Adams has repeatedly demanded that Wistron and AOpen enter into a royalty-bearing
license for the patents-in-suit. Adams is claiming that certain Wistron and AOpen products infringe
one or more claims of the patents-in-suit, and has told Wistron and AOpen that if they do not take a

license to the patents-in-suit, Wistron and AOpen may be subject to substantial labilities.

2 RECYCLED PAPER

COMPLAINT FOR DECLARATORY JUDGMENT OF NON-INFRINGEMENT AND INVALIDITY

Ve T = R B« Y

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page4 of 78

13. Aspart of its improper campaign, Adams referred Wistron and AOpen to the
previously-filed Lenovo case, Case No. 1:05-cv-64 TX-DN (D. Utah), in which infringement of the
patents-in-suit were alleged against other computer manufacturers and computer brand companies
such as Lenovo, Dell, Asus, Fujitsu and the like.

14, On or around August 20, 2010, Adams sent another letter to Wistron and AOpen,

‘respectively, alleging that Wistron and AOpen manufactured infringing products and that Wistron

and AOpen were independently liable for patent infringement for the patents-in-suit.
15. Based upon the above facts, there is an actual and justiciable controversy within the
jurisdiction of this Court under 28 U.S.C. §§ 2201 and 2202.
FIRST CLAIM

DECLARATORY JUDGMENT REGARDING THE ‘414 PATENT

16, Wistronand AOpen hereby restate and reallege the allegations set forth in paragraphs
1 through 15 and incorporate them by reference.

17. Phillip M. Adams is the inventor of the ‘414 patent, entitled “Systems and Methods
for FDC Error Detection and Prevention.” A true and correct copy of the ‘414 patent is attached
hereto as Exhibit A.

18. Wistron and AOpen seek a judicial determination and declaration that no valid and
enforceable claim of the ‘414 patent is infringed by Wistron and AOpen.

19. Wistron and AOpen seek ajudicial determination and declaration that the ‘414 patent
is invalid because it fails to satisfy the conditions and requirements for patentability as set forth, infer
alia, in Sections 101, 102, 103, and/or 112 of Title 35 of the United States Code.

SECOND CLAIM

DECLARATORY JUDGMENT REGARDING THE 002 PATENT

20. Wistron and AOpen hereby restate and reallege the allegations set forth in paragraphs
I through 19 and incorporate them by reference.

21. Phillip M. Adams is the inventor of the ‘002 patent, entitied “Defective Floppy
Diskette Controller Detection Apparatus and Method.” A true and correct copy of the ‘002 patent is

attached hereto as Exhibit B.

3 RECYCLED PAPER

COMPLAINT FOR DECLARATORY JUDGMENT OF NON-INFRINGEMENT AND INVALIDITY

o

e I e v

10
11
12
13
14
15
16
17
i8
19
20
21
22
23
24
25
26
27
28

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page5 of 78

22. Wistron and AOpen seck ajudici.al determination and declaration that no vahd and
enforceable claim of the ‘002 patent is infringed by Wistron and AOpen.

23. Wistron and AOpen seck a judicial determination and declaration that the ‘002 patent
is invalid because it fails to satisfy the conditions and requireinents for patentability as set forth, infer
alia, in Sections 101, 102, 103, and/or 112 of Title 35 of the United States Code.

THIRD CLAIM

DECLARATORY JUDGMENT REGARDING THE ‘767 PATENT

24, Wistron and AOpen hereby restate and reallege the allegations set forth in paragraphs
1 through 23 and incorporate them by reference.

25. Phillip M. Adams is the inventor of the “767 patent, entitled “Data Corruption
Detection Apparatus and Method.” A true and correct copy of the ‘767 patent is attached hereto as
Exhibit C.

26. Wistron and AOpen seek a judicial determination and declaration that no valid and
enforceable claim of the “767 patent is infringed by Wistron and AOpen.

27. Wistron and AOpen seek a judicial determination and declaration that the ‘767 patent
is invalid because it fails to satisfy the conditions and requirements for patentability as set forth, infer
alia, in Sections 101, 102, 103, and/or 112 of Title 35 of the United States Code.

FOURTH CLAIM

DECLARATORY JUDGMENT REGARDING THE ‘222 PATENT

28. Wistron and AOpen hereby i'estate and reallege the allegations set forth in paragraphs
1 through 27 and incorporate them by reference.

29. Phillip M. Adams is the inventor of the ‘222 patent, entitled “Defective Floppy
Diskette Controller Detection Apparatus and Method.” A true and correct copy of the ‘222 patent is
attached hereto as Exhibit D.

30. Wistron and AOpen seek a judicial determination and declaration that no valid and

enforceable claim of the 222 patent is infringed by Wistron and AOpen.

4 RECYCLED PAPER

COMPLAINT FOR DECLARATORY JUDGMENT OF NON-INFRINGEMENT AND INVALIDITY

A

o0 =1 Ov A

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page6 of 78

31. Wistron and AOpen seek a judicial determination and declaration that the ‘222 patent
is invalid because it fails to satisfy the conditions and requirements for patentability as set forth, infer
alia, in Sections 101, 102, 103, and/or 112 of Title 35 of the United States Code.

PRAYER FOR RELIEF

WHEREFORE, Wistron and AOpen pray for judgment as follows:

1. Declaring that no valid and enforceable claim of the patents-in-suit is infringed by
Wistron and AOpen;
2. Declaring that Adams and ifs officers, employees, agents, alter egos, attorneys, and

any persons in active concert or participation with them be restrained and enjoined from further
prosecuting or instituting any action against Wistron and AOpen claiming that the patents-in-suit are
valid, enforceable, or infringed, or from representing that the products or services of Wistron and
AOpen infringe the patents-in-suit;

3. A judgment declaring this case exceptional under 35 U.S.C. § 285 and awarding
Wistron and AOpen their attoreys’ fees and costs in connection with this case; and

4, Awarding Wistron and AOpen such other and further relief as the Court deems just

and proper.

Dated: October 1, 2010 K& GATES LLP

By:

Howard (ﬁen (SBN 757393)
Harold H. Davig, Jr A8BN 235552)
Rachel Davidson (SBN 215517)
Attorneys for Plaintiffs

WISTRON CORPORATION,

AOPEN INCORPORATED AND
AOPEN AMERICA INCORPORATED

5 RECYCLED PAPER

COMPLAINT FOR DECLARATORY JUDGMENT OF NON-INFRINGEMENT AND INVALIDITY

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page7 of 78

Exhibit A

Case3:10-cv-04458-EMC Docu

United States Patent [
Adams

mentl Filed

I|I||I|||I|I|IIIIIIlIIIIIIIIIllIIIIIIIIIIIllﬂllllll |l IIIIII (T
US005379414A

{111 Patent Number: 5,379,414

451 Date of Patent: Jan. 3, 1995

[54] SYSTEMS AND METHODS FOR FDC ERROR
DETECTION AND PREVENTION

Phillip M. Adams, 1466 Chandler
Dr., Salt Lake City, Utah 84103

[21] Appl No.: 911,409

[76] Inventor:

[22] Filed: Jul. 10, 1992
[51] Tt CLS oo, GOGF 11/34; HO4L 1/18
[52] US.CL 395/575; 371/62;

371/32; 371/33; 395/275

[58] Field of Search -371/62, 8.2, 9.1, 11.1,
371/11.3, 21.1, 28, 21.6, 37.1, 40.1, 68.1, 66, 32,

33, 34, 35, 48; 380/4, 24, 25; 395/425, 575, 400,

375, 550, 275

[56] References Cited
U.S. PATENT DOCUMENTS
3,908,099 9/1975 Borbas et al. ..coeeveeenae. 179/175.2 R
4,942,606 7/1990 Kaiser et al.cccoecrceeverercannnnnne 380/4
4,996,690 2/1991 George et al. 371/37.1
5,093,910 3/1992 Tulpule et al. 395/575
5,212,795 5/1993 Hendry 395/725
5,233,692 8/1993 Gajjard et al. ... e 395/325
5,237,567 8/1993 Nay et al. ..ccceceeeevnerenvenee 370/85.1

OTHER PUBLICATIONS

NEC Electronics Inc., “IBM-NEC Meeting for uPD7-
65A/uPD72065 Problem” (U.S.A., May 1987).

Intel Corporation, Letter to customers from Jim
Sleezer, Product Manager, regarding FDC error and
possible solutions (U.S.A., May 2, 1988).

Adams, Phillip M., Nova University, Department of

.................

MODIFICATION
TO

TIMER DEVICE
DRIVER INTERRUPT
ROUTINE

Computer Science, “Hardware-Induced Data Virus,”
Technical Report TR-881101-1 (U.S.A., Nov. 14,
1988).

Advanced Military Computing, “Hardware Virus
Threatens Databases,” vol. 4, No. 25, pp. 1 & 8 (U.S.A,,
Dec. 5, 1988).

Intel Corporation, “8237A/8237A-4/8237A-5 High
Performance Programmable DMA Controller”
(U.S.A,, date unknown).

Intel Corporation, “8272A Single/Double Density
Floppy Disk Controller” (U.S.A., Date unknown).

Primary Examiner—Robert W. Beausoliel, Jr.
Assistant Examiner—Dieu-Minh Le

Attorney, Agent, or Firm—Berne S. Broadbent; Gary D.
E. Pierce

[57] ABSTRACT

A system and method which provides a complete soft-
ware implementation of a device driver that is capable
of detecting an undetectable data corruption problem
without hardware redesign and/or internal modifica-
tion to an existing FDC. The approach taken consists of
software DMA shadowing and use of a software decod-
ing network which allows the implementation of the
invention to require a small amount of memory and only
degrade the performance of the computer system a
minimal amount when floppy diskette write operations
occur.

7 Claims, 5 Drawing Sheets

READ DMA CONTROLLER

TRANSFER COUNT

NEXT
10 LAST MM
BYTE
?

Yy

YES

ZERO INTER-BYTE TIMER |

I

READ DMA CONTROLLER

TRANSFER COUNT “!

SET FLOPPY ERROR |

I

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page9 of.78

U.S. Patent Jan, 3, 1995 Sheet 1 of 5 5,379,414
10 14
Ry - Q
CENTRAL h MAIN
PROCESSING | {cLock
CESS MEMORY
) \V - \/ .
. | MAIN COMPUTER SYSTEM BUS A
20 30
\V \/
AN DREQ | A
FLOPPY A’,’é’:',%cgy
DISKETTE / 3 Carea
CONTROLLER > CONTROLLER
DACK
/\
o |
1V
FLOPPY
DISKETTE
DRIVE

Fig. 1

Case3:10-cv-04458-EMC Documentl Filed10/01/10 PagelO of 78

U.S. Patent Jan, 3, 1995 Sheet 2 of 5 5,379,414
APPLICATIONS
PROGRAMS CODE DATA
—————————————— -——— - - - / \ o v ——— o —
FILE SYSTEM
COMMANDS I l DATA TRANSFER
\ /
OPERATING
SYSTEMS FILE KERNEL
SYSTEMS DATA
BUFFERS
DEVICE . / \
DRIVER
COMMANDS
READ/ INTERRUPT DATA TRANSFER
WRITE SERVICE
ROUTINES ROUTINES I P
SYNCHRONOUS|ASYNCHRONOUS| . . DMA
% . {/\| -conTroLLER
-------- e D e . Il ammm——n
DEVICE \Vi I
COMMANDS :] soeo]en
DEVICE /—
HARDWARE — > Q .

Fig. 2

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Pagell of 78

U.S. Patent Jan. 3, 1995 Sheet 3 of 5 5,379,414

“"HOOK" THE

TIMER INTERRUPT
DEVICE
DRIVER 76\
COMMANDS REPROGRAM TIMER
70 TO INTERRUPT FASTER
MODIFICATION *
FLOPPY
DEVICE
DRIVER
. MODIFICATION

. L] [] . L] e o . .

REPROGRAM TIMER
REG. INTERRUPT

8

"UNHOOK" THE
TIMER INTERRUPT

N

Fig. 3

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Pagel2 of 78

U.S. Patent Jan, 3, 1995 Sheet 4 of 5 5,379,414
READ DMA CONTROLLER
TRANSFER COUNT
NEXT
10 LAST \NO _»>
BYTE
?
YES
20 ZERO INTER-BYTE TIMER
|
1 READ DMA CONTROLLER
. " MODIFICATION . TRANSFER COUNT "]
. To .
TIMER DEVICE
DRIVER INTERRUPT
ROUTINE

SET FLOPPY ERROR

|-

Fig. 4

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Pagel3 of 78

'U.S. Patent Jan, 3, 1995 Sheet 5 of 5 5,379,414

READ DMA COUNT

WAIT FOR NEXT >
TIMER INTERRUPT

—
VECTOR THROUGH WAIT FOR NEXT
S/W VECTOR TABLE : l ™| TIMER INTERRUPT >

WAIT FOR NEXT

0 TIMER INTERRUPT
|

- ,

-
YES

1
2/"_/
“\

SECTOR SIZE - 2 YES
ERROR ROUTINE
SECTOR SIZE - 1 ADDRESS

YES

<

NO
CLEAR LOOP COUNT
+ 1 COUNT
YES

<

NO
CONVERT LOOP COUNT TO uSEC

/N

EXCEED YES

TIME ERROR
?
]

Fig. 5

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Pagel4 of 78

5,379,414

1

SYSTEMS AND METHODS FOR FDC ERROR
DETECTION AND PREVENTION

BACKGROUND

1. The Field of the Invention

This invention relates to the detection and recovery
procedure of an undetected Floppy Diskette Controller
(“FDC”) data error where data corruption occurs and,
more particularly, to novel systems and methods imple-
mented as a software-only device driver which elimi-
nates the need for hardware redesign and/or fabrication
of new FDCs.

2. The Background Art

Computers are now used to perform functions and
maintain data which is critical to many organizations.
Businesses use computers to maintain essential financial
and other business data. Computers are also used by
government to monitor, regulate, and even activate,
national defense systems. Maintaining the integrity of
the stored data is essential to the proper functioning of
these computer systems, and data corruption can have
serious (even life threatening) consequences.

Most of these computer systems include diskette
drives for storing and receiving data on floppy dis-
kettes. For example, an employee of a large financial
institution might have a personal computer that is at-
tached to the main system. In order to avoid processing
delays on the mainframe, the employee may routinely
transfer data files from the host system to his local per-
sonal computer and then back again, temporarily stor-
ing data on a local floppy diskette. Similarly, an em-
ployee with a personal computer at home may occa-
sionally decide to take work home, transporting data
away from and back to the office on a floppy diskette.

Data transfer to and from a floppy diskette is con-
trolled by a device called a Floppy Diskette Controller
(“FDC”). The FDC is responsible for interfacing the
computer’s Central Processing Unit (“CPU”) with the
physical diskette drive. Significantly, since the diskette
is spinning, it is necessary for the FDC to provide data
to the diskette drive at a specified data rate. Otherwise,
the data will be written to the wrong location on the
diskette.

The design of the FDC accounts for situations when
the data rate is not adequate to support the rotating
diskette. Whenever this situation occurs, the FDC
aborts the operation and signals the CPU that a data
underrun condition has occurred. Unfortunately, how-
ever, it has been found that a design flaw in many FDCs
makes it impossible to detect all data underrun condi-
tions. This flaw has, for example, been found in the
NEC 765, INTEL 8272 and compatible Floppy Dis-
kette Controllers. Specifically, data loss and/or data
corruption can occur during data transfers to diskettes
(or even tape drives and other media which employ the
FDC), whenever the last data byte of a sector being
transferred is delayed for more than a few microsec-
onds. Furthermore, if the last byte of a sector write
operation is delayed too long then the next (physically
adjacent) sector of the diskette will be destroyed as
well.

For example, it has been found that these FDCs can-
not detect a data underrun on the last byte of a write
operation to a sector of a diskette. Consequently, if the
FDC is preempted during a data transfer (thereby de-
laying the transfer), and an underrun occurs on the last
byte of a sector, the following occurs: (1) the underrun

20

35

40

45

50

55

60

65

2

flag does not get set, (2) the last byte written to the
diskette is made equal to the previous byte written, and
(3) CRC is generated on the altered data. The result is
that incorrect data is written to the diskette and vali-
dated by the FDC.

Conditions under which this problem may occur can
be identified by simply identifying those conditions that
can delay data transfer to the diskette drive. In general,
this requires that the computer system be engaged in
“multi-tasking” operation or in overlapped input/out-
put (“I/0”) operation. Multi-tasking is the ability of a
computer operating system to simulate the concurrent
execution of multiple tasks. Importantly, concurrent
execution is only “simulated” because there is only one
CPU, and it can only process one task at a time. There-
fore, a system interrupt is used to rapidly switch be-
tween the multiple tasks, giving the overall appearance
of concurrent execution.

MS-DOS and PC-DOS, for example, are single-task
operating systems. Therefore, one could argue that the
problem described above would not occur. However,
there are a number of standard MS-DOS and PC-DOS
operating environments that simulate multi-tasking and
are susceptible to the problem. The following environ-
ments, for example, have been found to be prime candi-
dates for data loss and/or data corruption due to the
FDC: local area networks, 327x host connections, high
density diskettes, control print screen operations, termi-
nate and stay resident (TSR) programs. The problem
has also been found to occur as a result of virtually any
interrupt service routine. Thus, unless the MS-DOS and
PC-DOS operating systems disable all interrupts during
diskette transfers, they are also susceptible to data loss
and/or corruption.

Perhaps the best way to demonstrate the FDC error
is to simulate a great deal of system activity. In other
words, make the computer system act as though it were
performing a large number of complex tasks all at one
time. The problem has accordingly been demonstrated
in systems using MS/PC-DOS operating systems by
means of a simple test program. First, a clock program
is executed and becomes a TSR task having the respon-
sibility of servicing the timer interrupt (Ox1C) and up-
dating the time on the screen. Second, a MS/PC-DOS
diskette program is executed which writes a sector to
the diskette using the BIOS interface interrupt (0x13)
and then reads the sector back. Once the sector has been
written and read back the data is compared to deter-
mine whether or not an undetected error has occurred.
A running total of both detected and undetected errors
can then be output to the display. The results of using
such a test program on various machines was quite
astonishing. For example, the IBM PS/2 series seemed
most susceptible to the problem, with roughly a 30%
undetected error rate.

The UNIX operating system is a multi-tasking operat-
ing system, and it is extremely simple to create an envi-
ronment that can cause the problem. One of the more
simple examples is to begin a large transfer to the dis-
kette and place that task in the background. After the
transfer has begun then begin to display (cat) the con-
tents of a very large file. The purpose of the video
access is to force the video buffer memory refresh logic
on DMA channel 1, along with the video memory ac-
cess, to preempt the FDC operations occurring on
DMA channel 2 (which is lower priority than channel
1). This example creates the classic overlapped 1/0

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Pagel5 of 78

5,379,414

3

environment and can force the FDC into an undetect-
able error condition. More rigorous examples could
include the concurrent transfer of data to or from a
network or tape drive using a high priority Direct
Memory Access (“DMA”) channel while the diskette
transfer is active. Clearly, the number of possible error
producing examples is infinite and very possible in this
environment.

For all practical purposes the OS/2 operating system
can be regarded as a UNIX derivative. In other words,
0S/2 suffers from the same problems that UNIX does.
There are, however, two significant differences be-
tween OS/2 and UNIX. First, OS/2 semaphores video
updates with diskette operations in an effort to avoid
forcing the FDC problem to occur. However, any di-

rect access to the video buffer, in either real or pro- -

tected mode, during a diskette transfer will bypass this
safe-guard and render OS/2 in the same condition as
UNIX. Second, OS/2 incorporates a unique command
that attempts to avoid the FDC problem by reading
back every sector that is written in order to verify that
the operation completed successfully. This command is
an addition to the MODE command (MODE DSKT
VER=ON). With these changes, data loss and/or data
corruption should occur less frequently than before, but
it is still possible for the FDC problem to destroy data
that is not related to the current sector operation.

There are a host of other operating systems that are
susceptible to the FDC problem just like DOS, 0OS/2,
and UNIX. However, these systems may not have an
install base as large as DOS, 0S/2 or UNIX, and there
may, therefore, be little emphasis on addressing the
problem. Significantly, as long as the operating system
utilizes the FDC and services system interrupts, the
problem can manifest itself. This can, of course, occur
in computer systems which use virtually any operating
system.

Some in the computer industry have suggested that
the FDC problem is extremely rare and difficult to
reproduce. Admittedly, the problem is often very diffi-
cult to detect during normal operation because of its
random characteristics. The only way to visibly detect
this problem is to have the FDC corrupt data that is
critical to the operation at hand. There may, however,
be many locations on the diskette that have been cor-
rupted, but not accessed. Studies have recently demon-
strated that the FDC problem is quite easy to produce
and may be more common than heretofore believed.

Computer users may, in fact, experience this problem
frequently and not even known about it. After format-
ting a diskette, for example, the system may inform the
user that the diskette is bad, although the user finds that
if the operation is performed again on the same diskette
everything is fine. Similarly, a copied file may be unus-
able, and the computer user concludes that he or she
just did something wrong. For many in this high-tech
world, it is very difficult to believe that the machine is
in error and not ourselves. It remains a fact, however,
that full diskette back-ups are seldom restored, that all
instructions in programs are seldom, if ever, executed,
that diskette files seldom utilize all of the allocated
space, and that less complex systems are less likely to
exhibit the problem.

Additionally, the first of these FDCs were shipped
over 10 years ago. The devices were primarily used at
that time in special-purpose operations in which the
FDC problem would not normally be manifest. Today,
on the other hand, the FDCs are incorporated into

20

25

30

35

40

45

50

55

60

65

4

general-purpose computer systems that are capable of
concurrent operation (multi-tasking or overlapped
1/0). Thus, it is within today’s environments that the
problem is most likely to occur by having one of the
operations delay the data transfer to the diskette. The
more complex the computer system, the more likely it is
to have one activity delay another, thereby creating the
FDC error condition.

In short, the potential for data loss and/or data cor-
ruption is present in all computer systems that utilize
this type of FDC, presently estimated at about 25 mil-
lion personal computers. The design flaw in the FDC
causes data corruption to occur and manifest itself in the
same manner as a destructive computer virus. Further-
more, because of its nature, this problem has the poten-
tial of rendering even secure databases absolutely use-
less.

Those skilled in the art have suggested various ways
of addressing the FDC problem. Unfortunately, how-
ever, each of these prior solutions has significant associ-
ated costs, risks and/or disadvantages.

For example, perhaps the most desirable solution is to
have the manufacturer of the FDC provide a new FDC
that alleviates the problem. This approach is, however,
only a partial solution since many of the current systems
have the FDC soldered into a circuit board. It would, of
course, entail significant effort and/or cost to remove
the current FDC and replace it with a new one.

Add-on hardware devices have similarly been sug-
gested which could detect the FDC error condition and
force it to be acknowledged by the CPU. Like a new
FDC, however, such devices are at best inconvenient to
install and use and are thus unlikely to be used by many
computer users.

In an effort to avoid the disadvantages of a hardware
solution, some read back and verify programs, like the
IBM OS/2 MODE command, have been developed and
installed. Such programs typically require that the FDC
device driver perform single-sector writes, read the
previously written sector back into a sector buffer in the
FDC device driver, and then compare the data that was
supposed to be written to the floppy with the data con-
tained in the readback buffer. This process is performed
until all data compares properly.

There are a number of problems that occur when
employing this detection and a recovery procedure.
Three of the most important problems are: (1) the size of
the FDC device driver grows due to sector readback
buffers required; (2) unacceptable performance is en-
countered because each sector must be written, the
diskette must then make a full revolution for the sector
to be readback, and finally the readback buffer must be
compared with the original data to determine the suc-
cess or failure of the I/0 operation (thus causing all
diskette transfers to execute at roughly one-third their
normal speed); and (3) this approach is only partially
effective in eliminating the FDC problem since it does
not account for the data corruption that can occur to
the physically adjacent sector when data transfer is
significantly delayed. In short, the write/read/compare
approach does not adequately protect the data from
being corrupted, it causes more memory to be utilized
by the operating system, and it degrades performance of
the floppy diskette to an intolerable level. As a result,
this approach has likewise not generally been adopted.

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Pagel6 of 78

5,379,414

5

BRIEF SUMMARY AND OBJECTS OF THE
INVENTION

In view of the foregoing, it is a primary object of the
present invention to provide a system and method for
the detection and recovery procedure of an undetected
FDC data error where data corruption occurs.

It is also an object of the present invention to provide
a software-only device driver which eliminates the need
for hardware redesign and/or fabrication of new FDCs.

In addition, it is an object of the present invention to
provide a solution to an 1/0 controller’s (FDC) defect
using DMA shadowing.

It is a further object of the present invention to pro-
vide a system and method for the detection and recov-
ery procedure of an undetected FDC data error which
reduces system performance only a minimal amount
during floppy write operations.

It is a still further object of the present invention to
provide a solution to an I/0 controller’s (FDC) defect
using variable processor speed DMA shadowing via a
software decoding network.

Consistent with the foregoing objects, and in accor-
dance with the invention as embodied and broadly de-
scribed herein, a system and method are disclosed in one
embodiment of the present invention as including a
device driver that is capable of detecting an undetect-
able data corruption problem without hardware rede-
sign and/or internal modification to an existing FDC.
The approach taken consists of DMA shadowing and
use of a software decoding network which allows the
implementation of the invention to require a small
amount of memory and only degrade the performance
of the computer system a minimal amount when floppy
diskette write operations occur.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects and features of the
present invention will become more fully apparent from
the following description and appended claims, taken in
conjunction with the accompanying drawings. Under-
standing that these drawings depict only typical em-
bodiments of the invention and are, therefore, not to be
considered limiting of its scope, the invention will be
described with additional specificity and detail through
use of the accompanying drawings in which:

FIG. 1 is simplified block diagram which illustrates
the architecture of most computer systems employing
an floppy diskette controller (FDC);

FIG. 2is a block diagram which illustrates the typical
association between application programs, operating
systems, device drivers and computer system hardware
(in this example, a floppy diskette);

FIG. 3 is a flow chart depicting one presently pre-
ferred embodiment of the modifications that are applied
to the diskette device driver in order to allow the error
detection/prevention system and method of the present
invention to be activated;

FIG. 4 is a flow chart depicting one presently pre-
ferred embodiment of the modifications that are made
to the timer Interrupt Service Routine (ISR) so as to
allow timing of the last byte’s DREQ/DACK cycle in
accordance with the present invention; and

FIG. 5 is a flow chart depicting one presently pre-
ferred embodiment of a software decoding network
(software vector-table) for use in connection with the
error detection/prevention system and method of the

25

30

35

45

50

55

65

6

present invention, the network having one code point/-
entry for each possible transfer byte in the sector.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

It will be readily understood that the components of
the present invention, as generally described and illus-
trated in the Figures herein, could be arranged and
designed in a wide variety of different configurations.
Thus, the following more detailed description of the
embodiments of the system and method of the present
invention, as represented in FIGS. 1 through 5, is not
intended to limit the scope of the invention, as claimed,
but it is merely representative of the presently preferred
embodiments of the invention.

The presently preferred embodiments of the inven-
tion will be best understood by reference to the draw-
ings, wherein like parts are designated by like numerals
throughout.

The architecture of a typical computer system is
illustrated in FIG. 1. The computer system’s Central
Processing Unit (“CPU”") 10 and main memory 14 are
located inside the system unit. The instructions and data
used by the CPU 10 are kept in main memory 14 during
computer work sessions. Main memory 14 is, however,
not a permanent storage place for information; it is
active only when the computer system is on. Thus, to
avoid losing the data, it must be saved on some type of
storage device. For example, the computer system may
use a “hard disk” storage device which is permanently
installed in the computer system. Most computer sys-
tems have at least one floppy diskette drive 50 that
receives a removable floppy diskette. The floppy dis-
kette likewise is used for “permanent” storage of data or
software outside of the computer system and is espe-
cially useful for transferring data and information be-
tween separate computer systems.

In transferring data to a floppy diskette, the CPU 10
typically programs the Direct Memory Access
(“DMA”) controller 30 for an input/output (“I/0”)
transfer, issues a command to the Floppy Diskette Con-
troller (“FDC”) 20 to begin the 1/0 transfer, and then
waits for the FDC to interrupt with a completion inter-
rupt signal. It is also possible to perform Programmed
170 (“PIO”) directly between the CPU 10 and the FDC
20 without involving the DMA controller 30, as illus-
trated by the broken arrows 16. This latter approach is
seldom used; the majority of computer systems employ
DMA 1/0 transfers to and from the floppy diskette.
The invention will thus be described below with partic-
ular reference to the DMA controller 30. If PIO is
employed, however, then the I/0 transfer is totally
controlled by the CPU 10 because the CPU is required
to pass each and every data byte to the FDC 20. As a
result, the “DMA shadowing” system and method of
this invention can be directly applied to the PIO data
stream because the CPU 10 already is controlling the
1/0 transfer, as will become more readily apparent
from the discussion which follows.

Virtually all computer systems must have a system
clock 12. The system clock is necessary when initiating
an 1/0 transfer to the diskette drive 50 because one
must not only control the data transfer, but also the
drive motor. In this regard, it is important to know
when the diskette drive motor has brought the diskette
spin rate up to the nominal RPM required for the data
transfer to be successful.

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Pagel7 of 78

5,379,414

7

As an example, in IBM Personal Computers and com-
patibles, the system clock 12 interrupts the CPU 10 18.6
times per second (roughly once every 54 milliseconds).
This interrupt is used to determine such things as dis-
kette drive motor start and stop time. There are also a
host of other time-dependent operations in the com-
puter system that require this granularity of timing.

The typical association between application pro-
grams, operating systems, device drivers and hardware
is depicted in FIG. 2. The example presented is the
floppy diskette. ’

As illustrated in FIGS. 3 and 4, the system and
method of the present invention includes an interposer
routine 70 which is placed between the application’s
request for floppy service and the current floppy device
driver. The interposer routine 70 is actually a new or
modified device driver that implements the detection
and recovery for the undetected FDC data corruption.
As shown, the interposer 70 first determines if the oper-
ation is a floppy diskette write operation (72). If so, the
major function of interposer 70 is to insert itself between
the application request for floppy service and the floppy
device driver that will service the request. In the
PC/MS-DOS environment, this can be accomplished
by “hooking” the INT Ox13 interrupt vector (74) and
directing it to the interposer routine and then repro-
gramming the timer to interrupt faster than normal (76)
(e.g., every 4-7 milliseconds).

As will become more fully apparent from the discus-
sion which follows, once a floppy write operation is
detected, a software decoding network call vector is
preferably installed (see FIG. 5), the current byte count
is read, and DMA shadowing begins. If the time is too
long, an error condition is forced (86). The system clock
12 is then reprogrammed (82) to interrupt normally
(e.g., every 54 milliseconds), and timer interrupt is “un-
hooked” (84) until the next floppy write operation.
Clearly, one could allow the timer to always interrupt
at the accelerated rate and then check in the timer Inter-
rupt Service Routine (“ISR”) if a diskette write opera-
tion is active, but this approach is not as performance-
minded as the one presented herein.

As used herein, “DMA shadowing” means monitor-
ing byte transfers and then timing the last byte of a
sector’s DREQ to DACK signals. Importantly, there
are, of course, a number of ways of determining when
the DREQ is present and when the DACK is present.
The sample code set forth below is only one approach.
The present invention includes the use of any “DMA
shadowing” whether the DREQ and DACK signals are
detected at the DMA controller, CPU, system bus or
FDC. This includes both explicit means, as presented in
the sample code, and implicit means, such as inferring

5

10

15

20

25

30

35

45

50

8
the state of the DREQ/DACK cycle from various
components in the system that are triggered or reset
from such signal transitions. A typical example is that
the DACK can cause the Terminal Count (TC) signal
to be asserted. Therefore, one can imply from the detec-
tion of TC that DACK has occurred.

In other words, whenever an application requests a
floppy write operation, the system clock 12 is repro-
grammed to interrupt every 4 to 7 milliseconds. Each
time the system clock interrupts, the current byte count
in the DMA controller transfer register (countdown
register) is read. Once the byte counter has reached the
last byte, the signal transition from DREQ to DACK is
timed. If the time is greater than the time that will insure
data integrity, an error condition is forced which is
similar to the one the FDC hardware would produce if
not defective. Finally, to avoid corruption to the adja-
cent sector the system causes the FDC to abort an oper-
ation if the timing between the DREQ and the DACK
extends past the corruption point, but not to the adja-
cent sector destruction point, and return an error condi-
tion as previously described.

In order for the system to maintain proper operation,
it is necessary that the interposer 70 save the original
INT Ox13 contents (address of the original INT Ox13
Interrupt Service Routine) and invoke the original
when necessary. Additional aspects of the interposer
function are discussed below in connection with the
other features of the device driver.

The following code fragment from the actual device
driver demonstrates the interposer operation. This code
fragment, together with the other sample code set forth
herein, illustrates in more detail one preferred embodi-
ment of a software routine derived from the block dia-
gram of FIGS. 3 through 5. Those of ordirary skill in
the art will, of course, appreciate that various modifica-
tions to the specific sample code may easily be made
without departing from the essential characteristics of
the invention. Thus, the illustrative code, and the ac-
companying description, is intended only as an example,
and it simply illustrates one presently preferred embodi-
ment that is consistent with the invention as claimed
herein.

The examples set forth below relate to an implemen-
tation of the system and method of the present invention
for use on an IBM Personal Computer running the
PC/MS-DOS operating system. Similar versions have,
however, been developed to operate in the UNIX and
OS/2 environments. The invention is not limited to use
with any particular operating system, and adaptations
and changes which may be required for use with other
operating systems will be readily apparent to those of
ordinary skill in the art.

PROCEDURE: __INTI13_isr

REMARKS: ~INT13_isr is responsible for receiving the INT 13 diskette interrupts from
the O/S (BIOS). A check is made to see if the requested operation is a
WRITE and the drive is a diskette (0 or 1). If so, then the timer is enabled
and the system is set-up to delay the last (512th) byte of the transfer to
generate an undetected underrun/overrun condition.
—INT13__isr proc far
mov _TEXT : active, 0 ; Clear Diskette Write Active Flag
mov _TEXT : errors, 0 ; Clear Diskette Error Flag
cmp dl,2 ; Check Drive Number for Diskette 0 or 1
jb chk__write ; If Diskette, Then Check for Write
jmp _TEXT :int13_ptr ; Otherwise, enter Original INT 13
chk write:
cmp zh,3 ; Check For Diskette Write Operation
je set_active ; If Write, Then Diskette Write Active
jmp _TEXT : int13_ptr ; Otherwise, Enter Original INT 13

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Pagel8 of 78

5,379,414
9 10
-continued
set__active:
push ds ; Save DS Register
mov _TEXT : sectors,al ; Save Number of Sectors to Transfer
mov _TEXT : track,ch ; Save Track Number
mov _TEXT : sector,cl ; Save Sector Number
mov _TEXT : head, dh ; Save Head Number
mov _TEXT : drive,dl ; Save Drive Number
mov _TEXT : active, OFFH ; Set Diskette Write Active Flag
call NEAR PTR_Timer_enable ; Enable Timer for “Shadowing” DMA
pop ds : ; Restore DS Register
pushf ; Simulate An Interrupt
call _TEXT :int13_ptr ; Enter Original INT 13 ISR
pushf ; Save INT 13 Flags
cal NEAR PTR_Timer_disable ; Disable the Timer “Shadow” Routine
mov _TEXT : active,0 ; Clear Diskette Write Active Flag
popf ; Restore INT 13 Flags
cmp _TEXT : errors,0 ; Were Errors Detected by Timer ISR
jz ~INT13 _exit ; If Zero, Then no Errors-Exit
stc ; Otherwise, Set Error Indicator
mov _TEXT : errors,0 ; And Clear Error Flag
INT13__exit:
ret 2 ; Eliminate Entry Flags
~INT13_isr endp

The foregoing interposer routine checks to see if the
request is a write operation. If so, then it calls .Timer.
enable (reprogram the system clock), calls the original
INT Ox13 Interrupt Service Routine (perform the ac-
tual write operation while DMA Shadowing is en-
abled), and finally calls _Timer_disable (reprograms
the system clock to the original clock interrupt rate of
approximately 54 milliseconds).

As mentioned above, the interposer invokes system
clock management routines (_Timer_.enable and
—Timer._disable). These two functions provide the

25

30

system clock to interrupt at an accelerated rate that is 8
to 10 times faster than normal. The disable routine (see
FIG. 3) returns the system clock interrupt rate to the
normal interrupt rate. Thus, they are inverse identities
which make the system behave normally at all time
without significant performance degradation (<10%)
and only during floppy write operations. At any other
time the performance is virtually unchanged.

The following code fragment depicts the operation of
the __Timer_enable function (76):

PROCEDURE:
REMARKS:

_TIMER__enable

Timer enable is responsible for 1) moving INT 8 vector to INT 0 X 60, 2) Initializing

INT 8 vector to __Timer_irs, and 3) Reprogramming the 8253 to
interrupt 128 times faster. (Clock count * 0.840 Microseconds)

—Timer_enable proc near
pushf ; Save Current Flags Register
cli ; Disable Interrupts
push ax ; Save AX Register
push bx ; Save BX Register
push es ; Save ES Register
xor ax,ax ; Zero AX Register
mov es,ax ; Set ES to Absolute Zero Segment
mov ax,es:[8*4] ; Obtain Offset of INT 8
mov bx,es[(B*4)+2] ; Obtain Segment of INT 8
mov ~TEXT : int8__off,ax ; Move INT 8 Offset to INT 8§ Offset
mov _TEXT : int8_seg,bx ; Move INT 8 Segment to INT 8 Segment
mov ax,es:[1ICH*4] ; Obtain Offset of INT 1C
mov bx,es:[(1ICH*4)4-2] ; Obtain Segment of INT 1C
mov _TEXT : int1C_off,ax ; Move INT 1C Offset to INT IC Offset
mov —TEXT : int1C_seg,bx ; Move INT 1C Segment to INT 1C Segment
mov —_TEXT : ticks,0 ; Zero ticks for Use by New ISR
in al,020H ; Obtain 8259 Interrupt Mask Register
push ax ; Save 8259 IMR for Restoration
mov al,OFFH ; Mask All External Interrupts At 8
out 021H,al ; Set-up New 8259 IMR
mov al,36H ; Establish Operational Mode of 8253
out 43H,al ; Program Operation of 8253
jmp $+2 ; Allow Time for I/0 to Complete Op
mov al,0 ; Load LSB of Down Counter
out 40H,al ; Send to 8253
jmp $+2 ; Allow Time for I/0 to Complete Op
mov al,02H ; Load MSB of Down Counter
out 40H,al ; Send to 8253
jmp $42 ; Allow Time for I/0 to Complete Op
mov ax,OFFSET _TEXT : _Timer_isr ; Obtain the Offset of _Timer _isr
mov bx,cs ; Obtain the Segment of _Timer_isr
mov es:[8*4], ax ; Install new INT 8 Offset
mov es:[(8*4)+2],bx ; Install new INT 8 Segment
mov ax,OFFSET_TEXT : _INTIC_.isr ; Obtain the Offset of _INT_1C
mov bx,cs ; Obtain the Segment of _INT_1C
mov es: [ICH*4]ax ; Install new INT 1C Offset

5 mov es:[(1CH*4)+2],bx ; Install new INT 1C Segment

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Pagel9 of 78

5,379,414
12

-continued

11

H pop ax
; out 021H,al
Enable__exit:

pop €s

pop bx

pop ax

popf

ret
_Timer__enable endp

; Obtain old 8259 IMR from Stack
; Set-up old 8259 IMR

; Restore ES Register

; Restore BX Register

; Restore AX Register

; Restore Flags Register
; Return to Caller

The foregoing _Timer_enable routine performs two
major functions. First, this function “hooks™ the inter-
rupt vectors that are associated with system clock func-
tions (INT Ox08 and INT Ox1C). The original values of
these two interrupt vectors are saved for use in the
newly installed interrupt service routines for these in-
terrupts (_Timer__istr and _INT1C_isr). Next, the
system cloak is reprogrammed to interrupt at the accel-
erated rate. However, now the system clock interrupts
will be processed by the newly installed system clock

interrupt service routines.

The following code fragment depicts the operation of

the _Timer-disable function (82):

their original values and the system clock is repro-
grammed to interrupt at its original frequency.

As depicted graphically in FIG. 4 and described
further below, a _Timer-isr routine is used for servicing
the accelerated interrupt rate of the system clock. The
reason that the system clock interrupt rate is acceler-
ated is that during a normal 512 byte data transfer (the
typical sector size) 16 microseconds are required for
each data byte to be transferred to the FDC (High
Density Diskette Mode). Therefore, a typical Sector
transfer requires 512 times 16 microseconds, or 8,192
microseconds. If the diskette is a low density diskette
then the sector transfer time is doubled to 16,384 micro-

15

PROCEDURE: _Timer..disable

REMARKS: _Timer_ disable is responsible for 1) Reprogramming the 8253 to
interrupt 128 times slower and 2) Restoring the old INT 8
interrupt vector from INT 60.

—Timer_disable proc near

pushf
cli
push ax
push bx
push es
5 in al,020H
; push ax
3 mov al,OFFH
H out 021H,al
mov al,36H
out 43H,al
jmp $+2
mov al,0
out 40H,al
jmp $+2
out 40H,al
jmp 842
xor ax,ax

mov es,ax

mov ax,_TEXT : int8__off
mov bx,_TEXT : int8_seg
mov es:[8*4],ax

mov es:[(8*4) +2], bx

mov ax,_ TEXT : int1C_off
mov bx,_TEXT : intiC_seg

mov es:{ICH*4],ax
mov es:[(1ICH*4)+2],bx

H pop ax
H out 021H,al
pop es
pop bx
pop ax
popf
ret
—Timer__disable endp

; Save Current Flags Register

; Disable Interrupts

; Save AX Register

; Save BX Register

; Save ES Register

; Obtain 8259 Interrupt Mask Register
; Save 8259 IMR For Restoration

; Mask All External Interrupts At 8

; Set-up new 8259 IMR

; Establish Operational Mode of 8253
; Program Operation of 8253

; Allow Time for I/O to Complete Op
; Load LSB of Down Counter

; Send LSB to 8253

; Allow time for 1/0 to Complete Op
; Send MSB to 8253

; Allow time for I/0 to Complete Op
; Zero AX Register

; Set ES to Absolute Zero Segment

; Obtain Offset of Original INT 8

; Obtain Segment of Original INT 8§

; Install Old INT 8 Offset

; Install Old INT 8 Segment

; Obtain Offset of Original INT 1C

; Obtain Segment of Original INT 1C
; Install Old INT 1C Offset

; Install Old INT 1C Segment

; Obtain Old 8259 IMR From Stack

; Set-up Old 8259 IMR

; Restore ES Register

; Restore BX Register

; Restore AX Register

; Restore Flags Register

; Return to Caller

The _Timer-disable function above is responsible for gy seconds (512 times 32 microseconds) because the FDC

restoring the system to its original state. In other words,
the INT Ox08 and INT Ox1C interrupts are restored to

has half of the amount of data to store in the same rota-
tional time frame (typically 360 RPM).

The following code fragment illustrates the _Time-
r.-isr routine:

PROCEDURE: _ Timer_isr

REMARKS:

—Timer__isr is responsible for receiving the INT 8 timer interrupts from the 8253.
Since the 8253 has been programmed to interrupt approximately 128 times

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page20 of 78

5,379,414

13 14

-continued

faster _Timer_isr must call the old INT 8 ISR routine every 128th interrupt.
—Timer_.isr is also responsible for initiating a DMA
request on every timer interrupt.

—Timer_isr proc

inc _TEXT : ticks ; Increment the Interrupt Tick Counter

cmp —TEXT : active, OFFH ; Check to see if Diskette Write Op

jz begin_.isr ; If so, Then Begin Timer ISR

jmp chk__old ; Otherwise, Check if Old ISR Runs
begin_isr:

cld ; Clear the Direction Flag

mov —TEXT : AX_reg,ax ; Save AX Register

mov ~TEXT : BX_reg,bx ; Save BX Register

mov ~TEXT : CX__reg,cx ; Save CX Register

mov _TEXT : DX_reg,dx ; Save DX Register

mov —TEXT : SI_reg,si ; Save SI Register

out OCH,al ; Clear the Byte Pointer Flip/Flop

cmp ~TEXT : CHN1_flag,0 ; Should Channel 1 Be Masked (Diabl)

jz bypass_CHN1 ; If Zero, Then Don’t Mask Channel
mask CHNI:

mov al,005H ; DMA Mask Register Value

out 00AH,al ; Disable DMA Channels (1 for Now)

jmp 542 ; (Can’t Disable Refresh on XT - CH
bypass_CHNI1:
; in al,020H ; Obtain 8259 Interrupt Mask Register
; push ax ; Save 8259 IMR for Restoration
3 mov al,OBDH ; Disable all but KBD and Diskette
H out 021H,al ; Set-up New 8259 IMR

in al,08H ; Obtain 8237 DMA Status

test al,04H ; Check for Channel 2 DMA TC

je chk_change ; If no TC, Then Check for DMA Req

jmp exiting ; Otherwise, Exit Routine
chk__change:

in al,05H

mov di,al

in al,05H

mov dh,al

mov cx,TEXT : ratio
chk_change_ A:

in al,05H

mov bl,al

in 2l,05H

mov bh,al

cmp bx,dx

jne chk__count

in al,05H

mov blat

in al,05H

mov bh,al

cmp bx,dx

jne chk _count

loop chk_change A ; Loop if Processor is Fast

jmp exiting ; If not DRQ, Exit Routine
chk_count:

mov si,bx ; Save Current DMA Count

and s1,01FFH ; Isolate Lower Sector Count

shi si,1 ; Word Normalize SI Value

jmp —TEXT : DMA__Count_TBL[SI] ; Shadow the DMA Transfers Via S/W

The foregoing —Timer_isr routine performs some 50 DACK timing can be determined on the last byte of the

sanity checks on the system to determine if the system is
actually transferring data to the FDC. If a sector trans-
fer is not in progress then __Timer_isr exits immedi-
ately. However, if a sector transfer is in progress then
—Timer_isr obtains the remaining byte count of the
sector transfer and vectors (jumps) through the soft-
ware decoding network (DMA_Count_TBL) to the
appropriate processing routine.

Although the system and method depicted in FIG. 4,
could be implemented as is, it would require the timer to
interrupt every 8, 16, or 32 microseconds. This level of
interrupts would totally consume a PC’s processing
power, and on a PC/XT would/could not be sustained.
Thus, in order to perform DMA shadowing without
affecting the total system performance it is necessary to
allow normal operations to continue as usual, but have
an interrupt (the system clock) that will interrupt close
to the end of the sector transfer so that the DREQ to

55

60

65

sector transfer.

Clearly, it is possible to DMA shadow all 512 bytes
during a sector transfer, but that would cause the CPU
to be totally consumed during the entire sector transfer
time. In other words, the potential of losing processing
activities somewhere else in the system are greatly in-
creased, such as in the case of serial communications.
Therefore, the following clock interrupt strategy was
developed to reduce the CPU involvement to a bare
minimum during the floppy write operations with
DMA Shadowing. Significantly, the timing strategy
can be adjusted to any number of bytes of the sector
transfer, from a few bytes to the entire sector count.

As indicated above, the last operation performed in
the _Timer_isr routine is to vector through the soft-
ware decoding network to the appropriate processing
routine. This process is illustrated graphically in FIG. 5.
The software decoding network (software vector-table)

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page2l of 78

5,379,414

15
has one code point/entry for each possible transfer byte
in the sector. The timer interrupt rate can now be in

16

ment of the system and method of the present invention:

DMA_Count_TBL
. LABLE WORD

DW OFFSET DMA_0 ; Entry for DMA Count 0
DW OFFSET DMA__1 ; Entry for DMA Count 1
DW OFFSET DMA.2 ; Entry for DMA Count 2
DW OFFSET DMA_3 ; Entry for DMA Count 3
DW OFFSET DMA_4 ; Entry for DMA Count 4
DW OFFSET DMA_5 ; Entry for DMA Count 5
DW OFFSET DMA__6 ; Entry for DMA Count 6
DW OFFSET DMA_7 ; Entry for DMA Count 7
DW OFFSET DMA_8 ; Entry for DMA Count 8
DwW OFFSET DMA_9 ; Entry for DMA Count 9
DW OFFSET DMA_a ; Entry for DMA Count 2
DW OFFSET DMA_b ; Entry for DMA Count b
DW OFFSET DMA _c¢ ; Entry for DMA Count ¢
DW OFFSET DMA_d ; Entry for DMA Count d
DW OFFSET DMA_e ; Entry for DMA Count e
DW OFFSET DMA_f ; Entry for DMA Count f
Dw OFFSET DMA_10 ; Entry for DMA Count 10
DW OFFSET DMA__11 ; Entry for DMA Count 11
DW OFFSET DMA_12 ; Entry for DMA Count 12
DW OFFSET DMA_.13 ; Entry for DMA Count 13
DW OFFSET DMA__14 ; Entry for DMA Count 14
DW OFFSET DMA__15 ; Entry for DMA Count 15
DW OFFSET DMA_.16 ; Entry for DMA Count 16
DW OFFSET DMA_17 ; Entry for DMA Count 17
DwW OFFSET DMA__18 ; Entry for DMA Count 18
DwW OFFSET DMA__19 ; Entry for DMA Count 19
DW OFFSET DMA__la ; Entry for DMA Count 1a
DwW OFFSET DMA__1b ; Entry for DMA Count 1b
DW OFFSET DMA_ic ; Eatry for DMA Count ic
DwW OFFSET DMA__1d ; Entry for DMA Count 1d
DW OFFSET DMA__le ; Entry for DMA Count le
DW OFFSET DMA_If ; Entry for DMA Count 1f
DwW OFFSET exiting ; Address Of Exit Code
DW OFFSET exiting ; Address Of Exit Code
DwW OFFSET exiting ;s Address Of Exit Code
DW OFFSET exiting ; Address Of Exit Code
DW OFFSET exiting ; Address Of Exit Code
DwW OFFSET exiting ; Address Of Exit Code
DWwW OFFSET exiting ; Address Of Exit Code
DW OFFSET exiting ; Address Of Exit Code
DW OFFSET exiting ; Address Of Exit Code
DW OFFSET exiting ; Address Of Exit Code
DW OFFSET exiting ; Address Of Exit Code
DW OFFSET exiting ; Address Of Exit Code
DW OFFSET exiting ; Address Of Exit Code
DW OFFSET exiting ; Address Of Exit Code
DW OFFSET exiting ; Address Of Exit Code
DW OFFSET exiting ; Address Of Exit Code

terms of 10’s or 100’s of byte transfer times because the
vector table will cause the program execution to enter a
cascade of DREQ/DACK checks only when it knows
that the transfer (sector) will be complete prior to an-
other timer interrupt. In short, the first X entries in the
vector table will simply return (knowing that another
timer interrupt will occur before the sector transfer
completes). The latter Y entries will cascade from one
DREQ/DACK detection to another (shadowing the
DMA. transfers) until the last byte is transferred. On the
last byte being transferred, an instruction loop is
counted and finally converted into microseconds to
determine if the error has occurred.

This process is the fastest known technique for de-
coding and executing time-dependent situations. Mem-
ory space (the software decoding network vector table)
is traded for processing time (the amount of time it
would take for one routine to subsume all functionality
encoded in each of the routines vectored to through the
software decoding network vector table).

The following code fragment depicts a portion of the
software decoding network employed in the DMA
shadowing process of the presently preferred embodi-

50

55

60

65

As indicated above, the entire software decoding
network table is initially set to the address of the “exit-
ing routine.” Then depending upon how slow or fast the
system clock interrupts a certain number of the lower-
indexed entries of the table are set to the address of a
processing routine. These processing routines are iden-
tical and are sequentially located in the routine so that
the software decoding network vector table simply
vectors the timer interrupt routine to the first of n se-
quentially executed processing routines where n repre-
sents the number of bytes remaining in the sector trans-
fer. In this way the last few bytes of the sector transfer
can be accurately monitored (DMA Shadowing) with-
out significantly affecting overall system performance.

Each of the processing routines, except the last one,

performs exactly the same function as indicated below:

DMA_Lf:
mov
mov
DMA_1f_A:

dx,bx
cx,5

Case3:10-cv-04458-EMC

Documentl Filed10/01/10 Page22 of 78

5,379,414
17 18
-continued -continued
in al,05H
mov bl,al
in al,05H i .
mov bh,al 5 The above routines represent the code required to
c¢mp ‘S‘ﬁ‘ . completely monitor (shadow) the DMA process by
Jne Ale watching the DREQ and DACK signal through the
in al,05H .
mov blal DMA controller. In other words, by watching the
in al,05H DMA controller’s register that indicates when a DMA
mov bh.al 10 request is active (DREQ) then it is possible to com-
jc::ép g‘ﬁ;_le pletely monitor the sector transfer. It is not necessary to
loop DMA_If_A concern ourselves with the timing between the DREQ
DMA_le: and DACK signals until the very last data byte of the
mov dx,?‘ transfer. Therefore, the routines above simply
DMA_1 C_A'_nc’v %, 15 “shadow” the DMA process until the last byte at which
in al,0SH time it is necessary to invoke the error detection and
mov bl,al recovery procedure. When the DMA controller trans-
in al,05H fer register contains a value of 16 or less then the CPU
2‘;;’; ::’glx begins to execute inline code that watches each data
jne DMA_1d 20 byte transfer in terms of signal requests and acknowl-
in al,05H edgements.
mov :},815 Once the last byte to be transferred has been identi-
m O05H fied then the DMA__O routine begins the process of
mov bh,al . . .
cmp bxdx determining the actual time taken between the DMA
jne DMA__1d 25 Request (DREQ) and the FDC’s DMA Acknowledge-
loop DMA_le..A ment (DACK). This process is presented below:
DMA_0
mov cx,. TEXT : ratio ; Up to 32 usec Before DREQ
shl cx,1
shl cx,1
DMA_DRQ_LO:
in al,08H ; Read DMA Status Register
test al,40H ; Is DRQ Active?
jne DMA_DRQ_HI ; If Non-Zero, Then DRQ is Active
loop DMA_DRQ.1O ; Otherwise, Continue Checking
jmp exiting ; DRQ Not Active so Exit
DMA__DRQ_HI:
mov ¢x,OFFFFH ; Load Maximum Loop Count
DMA_DRQ_ACTIVE:
in al,08H ; Read DMA Status Register
test al,04H ; Is DRQ Active?
je DMA_DRQ_INACTIVE ; If Zero, Then DRQ is Inactive
loop DMA_DRQ_-ACTIVE ; Otherwise, Continues Active
jmp exiting ; DRQ Stuck High (Terrible Error)
DMA_DRQ_INACTIVE:
cmp cx,OFFFFH ; Check to See if DREQ Remained Active
Jne DMA_TIME_ACTIVE ; If so, Then Compute Time Active
jmp exiting ; Otherwise, Exit Normally
DMA__TIME_ACTIVE:
mov ax, TEXT : avg ; Load AX With Average 1 Loop Time
not cx ; Convert Count Down Value To
; Times Through The Active Loop
; (Value Used for “n” in Equation)
inc cx ; Account for First Time Through Loop
mul cl ; Compute (n * AVG)
mov —TEXT : time_active,ax ; Computed Time Active (ticks)
cmp ax,14 ; Compare with 12 usec Specification
ja DMA_error ; If TA > 12usec, Then Issue Error
jmp exiting ; Otherwise, Continue Normal Operation
DMA__error:
mov _TEXT : errors, OFFH ; Set Error Flag to Indicate the Error
jmp exiting ; DRQ Not Active so Exit
exiting:
; pop ax ; Obtain Old 8259 IMR From Stack
5 out 021H,al ; Set up Old 8259 IMR
cmp ~TEXT : CHNI1_{lag,0 ; Is Channel 1 Disabled?
jz not_CHN1 ; If O, Then not Disabled
- ; Otherwise, Must Be Enable
mov al,01 ; DMA Channel 1 Enable Pattern
out OAH,al ; Enable DMA Channel 1
not_.CHN1:
mov si, _TEXT : SL._reg ; Restore SI Register
mov dx,_TEXT : DX__reg ; Restore DX Register
mov cx,_TEXT : CX__reg ; Restore CX Register
mov bx,—TEXT : BX_reg ; Restore BX Register
mov ax, TEXT : AX_reg ; Restore AX Register

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page23 of 78

5,379,414
19 20
-continued
chk_old:
cmp —TEXT : ticks,128 ; Check to See if Old INT 8 is Needed
jb send_EOI ; If not Equal, Then Exit Timer ISR
mov _TEXT : ticks,0 ; Otherwise, Zero Total Tick Count
jmp —TEXT : int8_ptr ; And Calling Old INT 8 Routine
send_EOIL
push ax ; Save AX Register
mov al,020H ; 8259 End of Interrupt (EOD)
out 020H,al ; Send EOI to 8259
pPop ax ; Restore Ax Register
timer__exit:

iret
—Timer_isr endp

; Return from Interrupt

The actual process is similar to the previous routines,
however there is a counter that is initialized which
represents the time required to perform the code pres-
ented above. If this counter expires (counts down to
zero) and the tramsition has not occurred (DREQ to
DACK) then the DMA operation is aborted and an
error condition is returned which will cause the opera-
tion to be retried by the operating system. Furthermore,
since the DMA operation was terminated then the adja-
cent sector is not in danger of being corrupted by the
operation.

Thus, through software DMA shadowing, it is possi-
ble to determine when the last byte of the transfer is
about to be transferred. Therefore, it is possible to dis-
able any hardware and/or software resource that is
present in the system that can cause the last data byte’s
transfer to be delayed. The use of software DMA shad-
owing accordingly allows system software and device
drivers to be used to create a critical region about the
last data byte transfer that will ensure that the byte is
transferred correctly (and not delayed).

The invention described herein provides a complete
software implementation of a device driver that is capa-
ble of detecting an undetectable data corruption prob-
lem without hardware redesign and/or internal modifi-
cation to an existing FDC. Furthermore, the unique and
innovative approach taken which consists of DMA
shadowing and use of a software decoding network
allows the implementation of the invention to be small
(approximately 3.5 kilobytes in a PC/MS-DOS environ-
ment) and only marginally degrade performance
(<10%) and only during floppy write operations.

The number of FDCs installed in computer systems
today is well over 20 million. In order to solve this
problem the vendors of such devices have very few
alternatives, of which most are extremely costly. There-
fore, a software-only solution to this problem is a signifi-
cant advance in the computer industry. Moreover, the
robustness of the design allows the system and method
of the present invention to dynamically adjust to pro-
cessor speeds that encompass the original IBM Personal
Computers executing at 4.77 Mhz to the latest worksta-
tions that execute at well over 50 MHz.

The present invention may be embodied in other
specific forms without departing from its spirit or essen-
tial characteristics. The described embodiments are to
be considered in all respects only as illustrative, and not
restrictive. The scope of the invention is, therefore,
indicated by the appended claims, rather than by the
foregoing description. All changes which come within
the meaning and range of equivalency of the claims are
to be embraced within their scope.

What is claimed and desired to be secured by United
States Letters Patent is:

15

25

35

45

50

55

1. A method for detecting and preventing floppy
diskette controller data transfer errors in computer
systems having:

a central processing unit (CPU);

a system interrupt timer;

a floppy diskette, the floppy diskette having at least

one sector for receiving multiple data bytes;

a floppy diskette controller (FDC) for controlling the

transfer of data to the floppy diskette;

means associated with the FDC for providing a data

request (DREQ) signal and a data acknowledge
(DACK) signal, the DREQ signal being provided
when data transfer is requested and the DACK
signal being provided when data transfer is permit-
ted; and

means for counting data bytes transferred to the

floppy diskette, said counting means providing a
data transfer byte count,
the method comprising the steps of:

determining if a requested computer system operation

is a floppy diskette write operation;

reading the data transfer byte count provided by said

counting means;
monitoring data byte transfers to the floppy diskette
so as to determine when a last data byte is being
transferred to a sector of the floppy diskette;

measuring time between the data request (DREQ)
and data acknowledge (DACK) signals for said last
data byte transfer to a sector of the floppy diskette;
and

forcing an error condition if the measured time be-

tween said DREQ and DACK signals exceeds a
specified value.

2. A method for detecting and preventing floppy
diskette controller data transfer errors in computer
systems having:

a central processing unit (CPU);

a system interrupt timer;

a floppy diskette, the floppy diskette having at least

one sector for receiving multiple data bytes;

a floppy diskette controller (FDC) for controlling the

transfer of data to the floppy diskette;

means associated with the FDC for providing a data

request (DREQ) signal and a data acknowledge
(DACK) signal, the DREQ signal being provided
when data transfer is requested and the DACK
signal being provided when data transfer is permit-
ted; and

means for counting data bytes transferred to the

floppy diskette, said counting means providing a
data transfer byte count,
the method comprising the steps of:

determining if a requested computer system operation

is a floppy diskette write operation;

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page24 of 78

5,379,414

21

hooking an interrupt vector and directing it to an
interposer routine;

reprogramming the system interrupt timer to inter-
rupt faster than normal;

installing and calling a software decoding network 5
call vector;

reading the data transfer byte count provided by said
counting means;

monitoring data byte transfers to the floppy diskette
so0 as to determine when a last data byte is being 10
transferred to a sector of the floppy diskette;

measuring time between the data request (DREQ)
and data acknowledge (DA CK) signals for said last
data byte transfer to a sector of the floppy diskette;

forcing an error condition if the measured time be- 15
tween said DREQ and DACK signals exceeds a
specified value;

reprogramming the system interrupt timer to inter-
rupt normally; and

unhooking said interrupt vector.

3. A method for detecting and preventing floppy

20

diskette controller data transfer errors as defined in
claim 1 wherein said means for counting data bytes
comprises a data transfer count register of a direct mem-

25

30

35

45

50

55

65

22
ory access (DMA) controller and wherein the reading
step comprises reading the DMA controller’s data
transfer count register.

4. A method for detecting and preventing floppy
diskette controller data transfer errors as defined in
claim 1 further comprising the step of hooking an inter-
rupt vector and directing it to an interposer routine.

S. A method for detecting and preventing floppy
diskette controller data transfer errors as defined in
claim 1 further comprising the step of reprogramming
the system interrupt timer to interrupt faster than nor-
mal.

6. A method for detecting and preventing floppy
diskette controller data transfer errors as defined in
claim further comprising the step of installing and call-
ing a software decoding network call vector.

7. A method for detecting and preventing floppy
diskette controller data transfer errors as defined in
claim 2 wherein said means for counting data bytes
comprises a data transfer count register of a direct mem-
ory access (DMA) controller and wherein the reading
step comprises reading the DMA controller’s data

transfer count register.
* * X X *

Case3 10-cv-04458-EMC—Documentt—Filed16/01/10—Page250- - 8——

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,379,414
DATED : January 3, 1995
INVENTOR(S) : Phillip M. Adams

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
carrected as shown below:

In columnvib; line 34, after "Remarks:", please delete

"Timer enable", and insert therefor -- _Timer_enable --.

In column 11, 1line 18, please delete "cloak", and
insert therefor -- clock --.

In column 12, 1line 20, please delete “"Sector" and
insert therefor -- sector --.

In column 22, line 15, after "claim", please insert

_— 1 -,

Signed and Sealed this
Twenty-third Day of May, 1995

Attest: Zbﬂa Z&Aﬂ%\

BRUCE LEHMAN

Attesting Officer Commissioner of Patents and Trademarks

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page26 of 78

Exhibit B

e ey R R e AN R AN

US005983002A
United States Patent [(1] Patent Number: 5,983,002
Adams 451 Date of Patent: Nov. 9, 1999
[54] DEFECTIVE FLOPPY DISKETTE 5,416,782 5/1995 Wells et al. ...coviiriininiinnns 371/21.2
CONTROLLER DETECTION APPARATUS 5,422,802 6/1995 Hii et al. wovecververrereccrecenncs 371/21.2
AND METHOD 5,442,753 8/1995 Waldrop et al. ... 395/842
5,619,642 4/1997 Nielson et al. 395/183.18
. e . 5,649,212 7/1997 Kawamura et al. ...cccoecerveennene 395/570
[75] Inventor: Phillip M. Adams, Salt Lake City, Utah 5,666,540 9/1997 Hagiwara et al. oo, 395/750.05
[73] Assignee: Phillip M. Adams & Associates,
L.L.C., Salt Lake City, Utah Primary Examiner—Robert W. Beausoliel, Jr.
Assistant Examiner—Scott T. Baderman
[21] Appl. No.: 08/729,172 Attorney, Agent, or Firm—Madson & Metcalf
[22] Filed: Oct. 11, 1996 [57] ABSTRACT
[51] Int. CLS oo GOG6F 11/263 A system and method which provides a complete software
[52] US.CL oo 395/183.18; 395/183.17; implementation of a detection process that is capable of
395/842; 371/62 detecting defective Floppy Diskette Controllers (“FDCs”)
[58] Field of Search 305/183.18, 185.07 without visual hardware inspection or identification. The
305 /18321842843 183.1.7' 3’71 /2'1.2’ approach taken includes a multi-phase strategy incorporat-
’ ’ ’ 2’1 3. 61 62, ing programmatic FDC identification, software DMA
o shadowing, defect inducement, and use of a software decod-
[56] References Cited ing network which allows the implementation of the inven-
tion to adjust to a wide range of computer system perfor-
U.S. PATENT DOCUMENTS mance levels.
4,789,985 12/1988 Akahoshi et al.ccceevveninnn. 371/11
5,379,414 1/1995 Adamsc.cccoevevereenenn. 395/185.08 15 Claims, 7 Drawing Sheets

34 \
Modification

Timer Device
Driver
Interrupt
Service Routine

(ISR)

L

i 56
Read DMA J

Controller's
Transfer
Count

Delay | 60

Transfer |

Of Last Data
Byte
62

Transfer

Time > 32>ﬂ9—
Microseconds

Yes

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page28 of 78

U.S. Patent Nov. 9, 1999 Sheet 1 of 7 5,983,002
14
D
\
Central / Mai
Processing ~ |<— System Clock am
Unit Memory
MAIN COMPUTER SYSTEM BUS ‘
20 H
\\ DRQ
DMA Request Channel 2,
\ l;lsc;fe%’e (au) Direct Memory
Access
C"{',Z.g‘g)’e’ DAcK (DMA) Controller
{
(DMA Acknowledge Channel 2) \\ \
21b 18

Media Drive
(e.g. Floppy

Diskette Drive)

'e e
i 10

Fig. 1

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page29 of 78

U.S. Patent Nov. 9, 1999 Sheet 2 of 7 5,983,002
25a 25p
\ \'; ——————————— TN
S £ \ Program Application \ Program --24
'-;-‘u & Code Program Data (
-Q U’
) ! !
Q.Q ! 5 |
< EQ R |
w G 1 |~ |
SE — & <
o§ l X)
I~ [}
27a \ Lo 27b | Q l
‘ 1 |
- File ™~ Kernel Data
.g’ E System Buffers
= 26
o I
§_ :% 4 / \ : / \ |
o) .g "g g ! |
S oo | I
Qo] | |
oE 8§ I L |
29a Q& £a [o |
28 a g R 29h | 7] |
O ¢y g0 { c i
WAL AN IV N
< / ! = 1
- v -
g Timer Read/Write |interrupt Service I g I
2 | |Device |~| Routines Routines ! !
Q Driver | |(Synchronous){ (Asynchronous) I 18
f 1
A L SN Z \ |/
I NS .
L_——DMA Commands—»| DMA Controller
® o | | 21a
SO [System : !
B 2 | Clock [I
Q
s Q [10
T ! i Y I
;2 Interrupt— Floppy Diskette |o4p
- FDC Command————| _Controller

I

20
Fig. 2

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page30 of 78

U.S. Patent Nov. 9, 1999 Sheet 3 of 7 5,983,002

Request
Device Driver Commands "Hook" Timer —— 42
. OR Interrupt 7
Application Commands To
The Floppy Device
Y
36 Reprogram
TimerTo |—
32 Interrupt 4“4
\ Faster
34 Modification
Floppy ¥
29 ~_| pevice Unmodified Floppy Device }
Driver Driver Routine/Function
34 —{ Modification

/

46

Reprogram
Timer To Return —

To Normal |- 50

Interrupt Rate

Y

“"Unhook"

Timer | 52
Interrupt

)

\ 4

Fig. 3

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page31 of 78

U.S. Patent Nov. 9, 1999 Sheet 4 of 7 5,983,002

i 56
Read DMA ,./

Controller's
Transfer
Count

54
34 K Delay v 60
Modification Transfer |
Of Last Data
Timer Device Byte
Driver
Interrupt
Service Routine
. (ISR)
/ 62
Transfer
29¢ \(Time > 32>ﬂ9-—
Microseconds
Yes

Fig. 4

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page32 of 78

U.S. Patent Nov. 9, 1999 Sheet 5 of 7 5,983,002
58
, AN
N N Sy Sy
1 72 \
‘__& ________ : R [<4 Wait For|— 71 > E
N - 4 \ Next INT ;
Current DMA| ! | /Ex:iql%(’;:jutme Wait For j . !
Count _ |!| | L_Addr__ / [|NextINT ’ |
i Exit Routine Wort Forl / i
1! Addr ait For R I
: | Exit Routine _/___l_-’Next INT !
70— ¥ Addr !
1l veoe T :
—_—->:< End-OF-Sector :
|1 | [Range Shadow) DRQ? i
____________ i1 /| _[End-OSector 56 .
_) e =
80 fee No !
Next-To- I
_|_Last Byte Yes :
|
|
86 o i
82 ‘. !
) 1
I
|
|
i
1
|
|

Delay DMA
Channel 2

(Read Timer
Count)

=\ T,

Microseconds

No‘

Yes

y

Exit

Fig. 5

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page33 of 78

U.S. Patent

100

Nov. 9, 1999

Main Program

i

Issue FDC

102 —~__ Command
Ox10

104

Status =

No

Sheet 6 of 7

0x80

Yes

110 Hook
T \U|INT aNT_0x8) &
Increase Timer

Interru

Timer

pt Rate

‘ —
1) Format Last 10 Bytes Of

112 ™ %;ctor Write Buffer With:

Using BIOS
Interface

Diskette

6789
2) Write Sector Write Buffer|

114

Yes

No

Increment

Detectable Write

Error Count
And Increment
Number Of
Sectors Writlen

/‘116

Read Previously Written

118 —\ Sector Using BIOS Diskette
Interface And Increment

Number Of Sectors Written

120

Last Byte
of Reg%

. No

Increment Number Of
Undetected FDC Errors

122 —_| (Written Data Was

Corrupted)

le
<

of Sectors

ritten = # For>

No

117 Test

Yes

Display Results Of Test
106 \ Including Whether The FDC
Is Defective Or Not

5,983,002

24

//

Y

108 _(Exit)

Fig. 6

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page34 of 78

U.S. Patent Nov. 9, 1999 Sheet 7 of 7 5,983,002

125
_ . 124
Timer ISR
(Interrupt Service Routine)

h

Read DMA Count Ve 126
and

Read Timer Count

»
)

A\
DMA Count

128 Changed
R Time > Byte o
Transfer Time

130

132

MA Count
Within >
End-Of-Sector” No

Range?

134

DMA
Count=0

?

Set Channel 1

136 ;
DMA Actlive
\ OR Mask

[Channel 2 DMA
For More
Than 32 uSec

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page35 of 78

5,983,002

1

DEFECTIVE FLOPPY DISKETTE
CONTROLLER DETECTION APPARATUS
AND METHOD

BACKGROUND

1. The Field of the Invention

This invention relates to the detection of defective Floppy
Diskette Controllers (“FDCs”) where an undetected data
error causes data corruption and, more particularly, to novel
systems and methods implemented as a software-only detec-
tion mechanism which eliminates the need for visual inspec-
tion or identification of the FDCs.

2. The Background Art

Computers are now used to perform functions and main-
tain data that is critical to many organizations. Businesses
use computers to maintain essential financial and other
business data. Computers are also used by government to
monitor, regulate, and even activate, national defense sys-
tems. Maintaining the integrity of the stored data is essential
to the proper functioning of these computer systems, and
data corruption can have serious (even life threatening)
consequences.

Most computer systems include diskette drives for storing
and retrieving data on floppy diskettes. For example, an
employee of a large financial institution may have a personal
computer that is attached to the main system. In order to
avoid processing delays on the mainframe, the employee
may routinely transfer data files from a host system to a local
personal computer and then back again, temporarily storing
data on a local floppy diskette. Similarly, an employee with
a personal computer at home may occasionally decide to
take work home, transporting data away from and back to
the office on a floppy diskette.

Data transfer to and from a floppy diskette is controlled by
a device called a Floppy Diskette Controller (“FDC”). The
FDC is responsible for interfacing the computer’s Central
Processing Unit (“CPU”) with the physical diskette drive.
Significantly, since the diskette is spinning, it is necessary
for the FDC to provide data to the diskette drive at a
specified data rate. Otherwise, the data will be written to a
wrong location on the diskette.

The design of an FDC accounts for situations occurring
when a data rate is not adequate to support a rotating
diskette. Whenever this situation occurs, the FDC aborts the
write operation and signals to the CPU that a data underrun
condition has occurred.

Unfortunately, however, it has been found that a design
flaw in many FDCs makes impossible the detection of
certain data underrun conditions. This flaw has, for example,
been found in the NEC 765, INTEL 8272 and compatible
Floppy Diskette Controllers. Specifically, data loss and/or
data corruption may routinely occur during data transfers to
or from diskettes (or even tape drives and other media
attached via the FDC), whenever the last data byte of a
sector being transferred is delayed for more than a few
microseconds. Furthermore, if the last byte of a sector write
operation is delayed too long then the next (physically
adjacent:) sector of the diskette will be destroyed as well.

For example, it has been found that these faulty FDCs
cannot detect a data underrun on the last byte of a diskette
read or write operation. Consequently, if the FDC is pre-
empted or otherwise suspended during a data transfer to the
diskette (thereby delaying the transfer), and an underrun
occurs on the last byte of a sector, the following occur: (1)
the underrun flag does not get set, (2) the last byte written

10

15

20

25

30

35

40

45

50

55

60

65

2

to the diskette is made equal to the previous byte written, and
(3) a successful Cyclic Redundancy Check (“CRC”) is
generated on the improperly altered data. The result is that
incorrect data is written to the diskette and validated by the
FDC.

Conditions under which this problem may occur have
been identified in connection with the instant invention by
identifying conditions that can delay data transfer to or from
the diskette drive. In general, this requires that the computer
system be engaged in “multi-tasking” operation or in over-
lapped input/output (“I/O”) operation. Multi-tasking is the
ability of a computer operating system to simulate the
concurrent execution of multiple tasks.

Importantly, concurrent execution is only “simulated”
because only one CPU exists in a typical personal computer.
One CPU can only process one task at a time. Therefore, a
system interrupt is used to rapidly switch between the
multiple tasks, giving the overall appearance of concurrent
execution.

MS-DOS and PC-DOS, for example, are single-task oper-
ating systems. Therefore, one could argue that the problem
described above would not occur. However, a number of
standard MS-DOS and PC-DOS operating environments
simulate multi-tasking and are susceptible to the problem.

In connection with the instant invention, for example, the
following environments have been found to be prime can-
didates for data loss and/or data corruption due to defective
FDCs: local area networks, 327x host connections, high
density diskettes, control print screen operations, terminate
and stay resident (“TSR”) programs. The problem also
occurs as a result of virtually any interrupt service routine.
Thus, unless MS-DOS and PC-DOS operating systems
disable all interrupts during diskette transfers, they are also
highly susceptible to data loss and/or corruption.

The UNIX operating system is a multi-tasking operating
system. It has been found, in connection with the instant
invention, how to create a situation that can cause the
problem within UNIX. One example is to begin a large
transfer to the diskette and place that transfer task in the
background. After the transfer has begun then begin to
process the contents of a very large file in a way that requires
the use a Direct Memory Access (“DMA”) channel of a
higher-priority than that of the floppy diskette controller’s
DMA channel. These might include, for example, video
updates, multi-media activity, etc. Video access forces the
video buffer memory refresh logic on DMA channel 1, along
with the video memory access, which preempts the FDC
operations from occurring on DMA channel 2 (which is
lower priority than DMA channel 1).

This type of example creates an overlapped I/O environ-
ment and can force the FDC into an undetectable error
condition. More rigorous examples include a concurrent
transfer of data to or from a network or tape drive using a
high priority DMA channel while the diskette transfer is
active. Clearly, the number of possible error producing
examples is infinite, yet each is highly probable in this
environment.

For all practical purposes the OS/2 and newer Windows
operating systems can be regarded as UNIX derivatives.
They suffer from the same problems that UNIX does. Two
significant differences exist between these operating systems
and UNIX.

First, they both semaphore video updates with diskette
operations tending to avoid forcing the FDC problem to
occur. However, any direct access to the video buffer, i:n
either real or protected mode, during a diskette transfer will
bypass this feature and result in the same faulty condition as
UNIX.

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page36 of 78

5,983,002

3

Second, OS/2 incorporates a unique command that tends
to avoid the FDC problem by reading back every sector that
is written to the floppy diskette in order to verify that the
operation completed successfully. This command is an
extension to the MODE command (MODE DSKT VER=
ON). With these changes, data loss and/or data corruption
should occur less frequently than otherwise. However, the
FDC problem may still destroy data that is not related to the
current sector operation.

A host of other operating systems are susceptible to the
FDC problem just as DOS, Windows, Windows 95, Win-
dows NT, 0S/2, and UNIX. However, these systems may
not have an installed base as large as DOS, Windows, OS/2
or UNIX, and may, therefore, receive less motivation to
address the problem. Significantly, as long as the operating
systems utilize the FDC and service system interrupts, the
problem can manifest itself. This can occur in computer
systems that use virtually any operating system.

Some in the computer industry have suggested that data
corruption by the FDC is extremely rare and difficult to
reproduce. This is similar to the argument presented during
the highly publicized 1994 defective INTEL Pentium sce-
nario. Error rate frequencies for the defective Pentium
ranged from microseconds to tens-of-thousands of years!
The FDC problem is often very difficult to detect during
normal operation because of its random characteristics. The
only way to visibly detect this problem is to have the FDC
corrupt data that is critical to the operation at hand.
However, many locations on the diskette may be corrupted,
yet not accessed. In connection with the instant invention,
the FDC problem has been routinely reproduced and may be
more common than heretofore believed.

Computer users may, in fact, experience this problem
frequently and not even know about it. After formatting a
diskette, for example, the system may inform the user that
the diskette is bad, although the user finds that if the
operation is performed again on the same diskette every-
thing is fine. Similarly, a copied file may be unusable, and
the computer user concludes that he or she just did some-
thing wrong. For many in this high-tech world, it is very
difficult to believe that the machine is in error and not
themselves. It remains typical, however, that full diskette
back-ups are seldom restored, that all instructions in pro-
grams are seldom, if ever, executed, that diskette files
seldom utilize all of the allocated space, and that less
complex systems are less likely to exhibit the problem.

Additionally, the first of these faulty FDCs was shipped in
the late 1970°s. The devices were primarily used at that time
in special-purpose operations in which the FDC problem
would not normally be manifest. Today, on the other hand,
the FDCs are incorporated into general-purpose computer
systems that are capable of concurrent operation (multi-
tasking or overlapped I/O). Thus, it is within today’s envi-
ronments that the problem is most likely to occur by having
another operation delay a data transfer to a diskette. The
more complex a computer system, the more likely it is that
one activity will delay another, thereby creating an FDC
error condition.

In short, the potential for data loss and/or data corruption
is present in all computer systems that utilize the defective
version of this type of FDC, presently estimated at about 50
million personal computers. The design flaw in the FDC
causes data corruption to occur and manifest itself in the
same manner as a destructive computer virus. Furthermore,
because of its nature, this problem has the potential of
rendering even secure databases absolutely useless.

10

15

25

30

40

50

55

60

65

4

Various conventional ways of addressing the FDC
problem, such as a hardware recall, have significant asso-
ciated costs, risks and/or disadvantages. In addition to a
solution to the FDC problem, an apparatus and method are
needed to accurately, rapidly, reliably, and correctly, identify
any defective FDC. The identification of defective FDCs is
the first step in attempting to solve the problem of defective
FDCs. A solution method and apparatus for repairing a
defective FDC are disclosed in U.S. Pat. No. 5,379,414
incorporated herein by reference.

BRIEF SUMMARY AND OBJECTS OF THE
INVENTION

In view of the foregoing, it is a primary object of the
present invention to provide a method and apparatus for
detecting defective Floppy Diskette Controllers (“FDCs”).

It is another object of the present invention to provide a
software (programmatic) solution that may be implemented
in a general purpose digital computer, which eliminates the
need for visual inspection and identification of the defective
FDCs as well as the need for any hardware recall and
replacement.

Consistent with the foregoing objects, and in accordance
with the invention as embodied and broadly described
herein, an apparatus and method are disclosed in one
embodiment of the present invention as including data
structures, executable modules, and hardware, implement-
ing a detection method capable of immediately, repeatably,
correctly, and accurately detecting defective FDCs. The
apparatus and method may rely on 1) determining whether
or not the FDC under test is a new model FDC (non-
defective), and 2) if the FDC under test is not a new model
FDC, installing an interposer routine to force the FDC to
delay a transfer of a last data byte of a sector either to or from
the floppy diskette whose controller is tested. A test condi-
tion is thus created in the hardware to cause defective FDCs
to corrupt the last data byte of the sector. A second portion
of an apparatus and method may confirm a diagnosis. Thus
the apparatus and method may ensure that old-model non-
defective FDCs are not wrongly identified as defective.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects and features of the
present invention will become more fully apparent from the
following description and appended claims, taken in con-
junction with the accompanying drawings. Understanding
that these drawings depict only typical embodiments of the
invention and are, therefore, not to be considered limiting of
its scope, the invention will be described with additional
specificity and detail through use of the accompanying
drawings in which:

FIG. 1 is a schematic block diagram of an apparatus
illustrating the architecture of a computer system for testing
a floppy diskette controller (“FDC”)in accordance with the
invention;

FIG. 2 is a schematic block diagram illustrating software
modules executing on the processor and stored in the
memory device of FIG. 1, including application programs,
operating systems, device drivers and computer system
hardware such as a floppy diskette;

FIG. 3 is a schematic block diagram of a flow chart
depicting one presently preferred embodiment of certain
modifications that may be applied to a diskette device driver
in order to force an otherwise undetected error condition to
occur in a defective FDC, thus enabling the defective FDC
detection apparatus and method of the present invention to
be activated;

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page37 of 78

5,983,002

5

FIG. 4 is a schematic block diagram of a flow chart
depicting one presently preferred embodiment of certain
modifications that may be made to a timer Interrupt Service
Routine (“ISR”) to allow timing of a transfer byte’s DMA
request and DMA acknowledge (DREQ/DACK) cycle in
order to ensure that proper conditions exist to create data
corruption associated with defective FDCs in accordance
with the present invention;

FIG. § is a schematic block diagram of a flow chart
depicting one presently preferred embodiment of a software
decoding network (software vector-table) for use in connec-
tion with a defective FDC detection apparatus and method in
accordance with the present invention, the software decod-
ing network having one code point/entry for each possible
transfer byte in a sector;

FIG. 6 is a schematic block diagram of a flow chart
depicting one presently preferred embodiment of an appli-
cation implementation of the apparatus and method of FIGS.
3 and 4, wherein a main “driver” portion of an application
forces an undetected error condition in a defective FDC
enabling activation of a the defective FDC detection system
in accordance with the invention; and

FIG. 7 is a schematic block diagram of a flow chart
depicting one presently preferred embodiment of certain
modifications that may be made to a timer Interrupt Service
Routine embedded within the application of FIG. 6 to allow
timing of a last byte’s DREQ/DACK cycle, ensuring that
proper conditions exist to create data corruption associated
with defective FDCs in accordance with the present inven-
tion.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

It will be readily understood that the components of the
present invention, as generally described and illustrated in
the Figures herein, could be arranged and designed in a wide
variety of different configurations. Thus, the following more
detailed description of the embodiments of the system
apparatus and method of the present invention, as repre-
sented in FIGS. 1 through 7, is not intended to limit the
scope of the invention, as claimed, but it is merely repre-
sentative of the presently preferred embodiments of the
invention.

The presently preferred embodiments of the invention
will be best understood by reference to the drawings,
wherein like parts are designated by like numerals through-
out.

The architecture of an apparatus 10, including computer
system implementing one embodiment of the invention is
illustrated in FIG. 1. A Central Processing Unit (“CPU”) 12
and main memory 14 may be connected by a bus 15 inside
a computer system unit. Instructions (executables) and data
structures used by the CPU 12 are kept in main memory 14
during computer work sessions. Main memory 14 is,
however, not a permanent storage place for information; it is
active only when the apparatus 10 (computer system) is
powered up (on). Thus, to avoid losing data, data must be
saved on some type of non-volatile storage device. For
example, the apparatus may use a “hard disk” storage device
permanently installed in the computer system. A computer
system 10 may have at least one floppy diskette drive 16 that
receives a removable floppy diskette (magnetic storage
medium). The floppy diskette likewise may be used for
“permanent” (non-volatile) storage of data or software
(executables) outside of the computer system 10 flexible
(floppy) diskettes are especially useful for transferring data
and information between separate computer systems 10.

10

15

20

25

30

35

40

45

50

55

60

65

6

In transferring data to a floppy diskette, the CPU 12 may
program a Direct Memory Access (“DMA”) controller 18
for an input/output (“I/O”) transfer. The CPU 12 issues a
command to a Floppy Diskette Controller (“FDC”) 20 to
begin the I/O transfer, and then waits for the FDC 20 to
interrupt the CPU 12 with a completion interrupt signal. It
is also possible to perform Programmed I/O (“PIO”) directly
between the CPU 10 and the FDC 20 without involving the
DMA controller 18. This latter approach is seldom used; the
majority of computer systems 10 employ DMA for 1/O
transfers to and from the floppy diskette drive 16. The
invention will thus be described below with particular
reference to the DMA controller 18. If PIO is employed,
however, then an I/O transfer is totally controlled by the
CPU 12 because the CPU 12 is required to pass each and
every data byte to the FDC 16. As a result, the “DMA
shadowing” system and method in accordance with the
invention may be directly applied to a PIO data stream. This
is readily tractable because the CPU 12 already is control-
ling the I/O transfer, as will become more readily apparent.

A computer system 10 may have a system clock 22. The
system clock 22 is beneficial when initiating an I/O transfer
to the diskette drive 16 because one must not only control
the data transfer, but also a drive motor. In this regard, it is
important to know when the diskette drive motor has
brought a diskette’s spin rate up to a nominal RPM required
for a data transfer to be successful.

For example, in IBM Personal Computers and
“compatibles,” the system clock 22 interrupts the CPU 12 at
a rate of 18.2 times per second (roughly once every 54.9
milliseconds). This interrupt is used to determine such things
as diskette drive motor start and stop time. There are also a
host of other time-dependent operations in the computer
system 10 that require this granularity of timing.

One presently preferred embodiment of an association
between application programs 24 (executables), operating
systems 26, device drivers and hardware is depicted in FIG.
2. The example presented corresponds to a floppy diskette
having a controller 16.

A system suitable for implementing the invention may
include an application program 24 including both executable
code 25a and associated data 25b. The application 24 may
interface with the hardware apparatus 10 through an oper-
ating system 26. The operating system may include a file
system 27a as well as selected buffers 27b. The file system
27a may include an executable for file system management
as well as operating system interfacing. The file system 27a
may issue commands to drivers 28.

The drivers 28 may include a timer device driver 29a,
including a timer ISR, interfacing to the system clock 22.
Likewise, a media drive driver 29b, alternatively referred to
as a media driver 295 may be included. The media driver
may interface with a floppy diskette drive or other media
drive 16 to maintain persistent storage on media 17.
Although a media drive 16 may typically relate to floppy
diskettes, tape drives and other magnetic media may also be
used in an apparatus and method in accordance with the
invention.

The media driver 295 may be responsible for sending
instructions and control signals to the media drive controller
20, which is typically embodied as a floppy diskette con-
troller 20. Similarly, the media driver 295 may instruct and
control the DMA controller 18. The DMA controller man-
ages data transfers between the floppy diskette controller
(FDC 20) and the main memory device 14. A DMA request
(DRQ;DREQ 214a) may pass from FDC controller 20 to the

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page38 of 78

5,983,002

7

direct memory access controller 18 (DMA controller 18).
Likewise, a DMA acknowledge 215 or acknowledgement
21b, alternatively referred to as a (DACK 21b) may be
returned from the DMA controller 18 to the FDC 20.

Referring now to FIGS. 3-5, and more FIGS. 3 and 4, a
method in accordance with the present invention include a
module 32, one of several interposer routines 34, which is
placed between an application’s 24 request 36 for floppy
service and a floppy device driver 29b. The interposer
routine 32 is actually a new or modified device driver that
forces certain undetected FDC data corruption conditions to
exist. As shown, the interposer 32 first tests 40 whether an
operation requested 36 is a floppy diskette write operation.
Read operations are equally susceptible to the problem and
may be used in the detection process, if desired. If so, the
major function of the interposer 32 is to insert itself between
the application request 36 for floppy service and the floppy
device driver 295 that will service the request. In a PC/MS-
DOS environment, this can be accomplished by “hooking”
the INT 0x13 interrupt vector and directing it to the FDD
prefix 32 or interposer routine 32. Reprogramming 44 the
timer 22 to interrupt faster (e.g., every 4—7 milliseconds)
than normal (e.g. 54.9 milliseconds).

As will become more fully apparent from the following
discussion, once a floppy write operation is detected, in a test
40 a software decoding network call vector of the timer
interrupt 54 (see FIGS. 4-5) is preferably installed. The
current byte count is read 56, and DMA shadowing 58
begins. When a test 58 shows that a current DMA transfer
count (countdown) has reached 0, then the interposer routine
54 delays 60 the DMA transfer of the last byte of the sector
transfer. The delay continues until a test 62 determines that
the elapsed time is greater than the maximum time required
for a data byte to be transferred to the medium 17 (e.g. a
low-density diskette; >32 uSec).

This delay 60 forces defective FDCs 20 into an undetec-
ted data corruption condition. This condition can be tested
120 by reading back 118 the written data to see whether the
last byte or the next-to-the-last byte was actually written to
the last byte location of the sector.

Referring again to FIG. 3, the system clock 22 may be
reprogrammed 50 in a suffix routine 46 appended to the
floppy device driver 29b. The system clock 22 may then
interrupt normally (e.g., every 54.9 milliseconds). The timer
interrupt 54 is “unhooked” 50 until the test 40 reports the
next floppy write operation.

One could allow the timer 22 (clock 22) to always
interrupt at the accelerated rate. Then, a check the timer
Interrupt Service Routine (“ISR”) 29¢ (see FIG. 4), within
the timer device driver 294, may then determine whether a
media (e.g. diskette) write operation is active. Likewise, it is
possible to randomly check to see if the last byte of a floppy
sector write operation is in progress. However, the foregoing
method has superior efficiency and accuracy in creating the
condition required for the detection of defective FDCs.

As used herein, “DMA shadowing” may be thought of as
programmatic CPU 12 monitoring of data (byte) transfers
and timing the last byte of a sector’s DREQ 21a to DACK
21b signals. Importantly, there are, of course, a number of
ways of determining when the DREQ 214 is present and
when the DACK 21b is present. The present invention may
include the use of any “DMA shadowing” whether the
DREQ 214 and DACK 21b signals are detected at the DMA
controller 18, CPU 12, system bus 15 or FDC 20. This
includes both explicit means, and implicit means.

For example, inferring the state of the DREQ/DACK
cycle is possible from various components in the system that

10

20

35

40

45

50

55

60

65

8

are triggered or reset from transitions of such signals 21a,
21b. In one embodiment the DACK 21 may cause a
Terminal Count (“TC”) signal to be asserted by the DMA
controller 18. Therefore, one may imply from the detection
of the TC that a DACK 21b has occurred.

Whenever an application 24 requests a write operation of
the media drive 16, the system clock 22 may be repro-
grammed to interrupt, for example, every 4 to 7 millisec-
onds. Referring again to FIGS. 4-5, each time the system
clock 22 interrupts, the current byte count in the transfer
register (countdown register) DMA controller 18 is read 56.
Once the test 58 indicates that the byte counter has reached
the last byte, the signal transition from DREQ 21a to DACK
21b may be timed and accordingly delayed 60. This transi-
tion may be forced to be greater than the maximum time
required to transfer one data byte as indicated in the test 62.

Therefore, defective FDCs 20 are forced into an undetec-
ted data corruption state. This state may be detected by
writing known data patterns to the next-to-the-last and the
last data bytes. Reading the data back will reveal which of
the two data bytes was stored in the last byte of the sector.
Finally, it is possible to also detect defective FDCs 20 by
significantly increasing the delay time during the transfer of
the last byte of a sector. This forces the next physically
adjacent sector to be zeroed out except for the first byte of
that sector.

For the system to maintain proper operation, an interposer
routine 34 should save the original INT 0x13 (Hex 13th
interrupt vector) contents (address of the original INT 0x13
Interrupt Service Routine) and invoke the original when
necessary. Additional aspects of the interposer function 34
are discussed below in connection with other features of the
device driver 29b.

This implementation of the apparatus and method of the
present invention is contemplated for use on an IBM Per-
sonal Computer running the PC/MS-DOS operating system.
Versions have, however, been developed to operate in the
Windows, OS/2 and UNIX environments and may be
embodied for other operating systems. The invention is not
limited to use with any particular operating system, and
adaptations and changes which may be required for use with
other operating systems will be readily apparent to those of
ordinary skill in the art.

As depicted graphically in FIG. 4 below, a timer ISR
routine 29¢ is used for servicing the accelerated interrupt
rate of the system clock 22. The reason that the system clock
interrupt rate is accelerated is that during a normal 512 byte
data transfer (the typical sector size) 16 microseconds are
required for each data byte to be transferred to the FDC
(High Deunsity Diskette Mode). Therefore, a typical sector
transfer requires 512 times 16 microseconds, or 8,192
microseconds. If the diskette is a low density diskette then
the sector transfer time is doubled to 16,384 microseconds
(512 times 32 microseconds) because the FDC has half of
the amount of data to store in the same rotational time frame
(typically 360 RPM).

Referring to FIG. §, the timer ISR routine 29¢ within the
timer device driver 294 with its prefix 54 performs checks on
the system 10 to determine if the system 10 is actually
transferring data to the FDC 20. If a sector transfer is not in
progress then the timer ISR prefix 54 exits immediately.
However, if a sector transfer is in progress then the timer
ISR prefix 54 obtains the remaining byte count of the sector
transfer 70 and vectors (jumps) through the software decod-
ing network 72 (DMA count table 72) to an appropriate
processing routine 84, 86, 88.

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page39 of 78

5,983,002

9

Although the steps 56, 58 of the module 54 may be
implemented with the timer 22 continually interrupting
every 8, 16, or 32 microseconds. This level of interrupts may
totally consume a PC’s processing power, and on most PCs
could not be sustained. Thus, in order to perform I)MA
shadowing without affecting the total system performance it
is important to allow normal operations to continue as usual.
It is desirable to have an interrupt (the system clock 22) that
will interrupt close to the end of the sector transfer so that
the DREQ 214 to DACK 215b timing may be determined on
the last byte of the sector transfer.

Thus, it is possible to DMA shadow 58 all 512 bytes
during a sector transfer, but that would cause the CPU to be
totally consumed during the entire sector transfer time. The
potential of losing processing activities elsewhere in the
system are greatly increased, as in serial communications.
Therefore, the clock interrupt routine 29¢ or method 29¢ of
FIG. § may reduce the CPU involvement to a bare minimum
during those floppy write operations with DMA Shadowing.
Significantly, the timing may be adjusted to any number of
bytes of a sector transfer, from a few bytes to the entire
sector count.

One operation performed in the timer ISR routine 29c¢ is
to vector through the software decoding network 72 to the
appropriate processing routine 84, 86, 88. This process is
illustrated graphically in FIG. 5. The software decoding
network 72 (software vector-table 72) has one code point/
entry 74, 80, 82 for each possible transfer byte in the sector.

The timer interrupt rate can now be in terms of 10°s or
100’s of byte transfer times. The vector table 72 may cause
the program execution of the CPU 12 to enter a cascade 86
of DREQ 21a/DACK 21b checks only when the transfer
(sector) will complete prior to the next timer interrupt. In
short, the first entries 74 in the vector table 72 will return 84,
since another timer interrupt will occur before the sector
transfer completes. The latter entries 80, within the desired
range, will cascade 86 from one DREQ 21a/DACK 21b
detection to another (shadowing 58 the DMA transfers) until
the last byte is transferred.

On the last byte being transferred, the data byte may be
delayed by either activating a higher priority DMA 18
channel or masking the DMA channel of the FDC 20.
Although these two techniques are the simplest to program,
numerous alternatives may be used to delay 60 data transfers
on the DMA 18 channel of the FDC 20, in accordance with
the invention

This software decoding network process 54 is the fastest
known software technique for decoding and executing time-
dependent situations. Space in the memory space 14 (e.g. the
software decoding network vector table 72) is traded for
processing time, the amount of time it would take for one
routine to subsume all functionality encoded in each of the
routines 84, 86, 88 vectored to through the software decod-
ing network vector table 72.

As indicated above, the entire software decoding network
table 72 may be initially set to the address of an “exiting
routine 84.” Then depending upon how slow or fast the
system clock 22 interrupts, a certain number of the lower-
indexed entries 80 of the table 72 may be set to the address
of a processing routine 86. These processing routines 86
may be identical and sequentially located in the routine 54.
Thus, the software decoding network vector table 72 may
simply vector the timer ISR routine 29¢ within the driver
294 to the first of n sequentially executed processing rou-
tines. Here, n represents the number of bytes remaining in
the sector transfer. In this way the last few bytes of the sector

10

15

20

30

40

45

50

55

60

65

10

transfer can be accurately monitored (DMA Shadowing 58)
without significantly affecting overall system performance.

Each of the processing routines 86, except the last one 88,
may perform exactly the same function. It is not necessary
to be concerned with the timing between the DREQ 214 and
DACK 215 signals until the very last data byte of a transfer.
Therefore, the routines 86, 88 above “shadow” 58 the
operation of the DMA until the last byte (e.g. corresponding
to entry 82 of the vector 72) at which time the DMA channel
of the FDC 20 is delayed as previously described.

Thus, through software DMA shadowing, it is possible to
reliably determine when the last byte of the transfer is about
to be transferred. Therefore, it is possible to force the last
data byte’s transfer to be delayed. An alternative approach
may include a specialized application program 24 to control
all aspects of the operation of the media drive 16, e.g. floppy
diskette drive 16. This may include a transfer delay of a last
byte, as indicated in FIGS. 6 (main application) and 7 (timer
interrupt service routine) All aspects of the previous
approach may be present. However, here they may be
collected into a single application program 24 performing
the required functions. The application program 24 may
reprogram the system clock to interrupt at an accelerated
rate and services the interrupt itself. The application pro-
gram may then begin a repeated set of diskette write
operations using the BIOS interface interrupt (0x13) and
then read the written sectors back. Once the sector has been
written and read back the data is compared to determine
whether or not an undetected error has occurred. A running
total of both detected and undetected errors may be output
to a display.

Referring now to FIG. 6, an application 24 may begin at
an entry point 100 leading to an initial command 102.
Command 102 is effective to request of a floppy diskette
controller (FDC) 20 an identification. Astatus return of 0x90
(hexadecimal 90) indicates that a FDC 20 is not defective.
Alternatively, the command 102 may give rise to a status
return of 0x80 hexadecimal 80. This return does not guar-
antee that an FDC 20 is not defective.

Thus, a test 104 determines whether or not the status of an
FDC 20 is hex 80. A negative response may advance the
application 24 to a display step 106. The display 106 may
output results of the application 24. Results may include an
indication of whether the FDC 20 being tested is defective
or not. Accordingly, a status not equal to a hex 80 results in
the test 104 signifying that an FDC 20 is not defective. The
step 108 thereafter exits the application 24.

A positive response to the test 104 advances the applica-
tion 24 to a hook 110. The hook 110 is effective to interpose
a timer prefix 124 (see FIG. 7) corresponding the prefix 34
of FIG. 3, to be installed to operate at the beginning of a
timer ISR 29¢ within the timer device driver 29a.

A test pattern 112 may format the last few (for example,
10) bytes of a sector write buffer 27b. Any known pattern
may suffice, for example, a sequential list of all digits from
zero to nine may be used. Importantly, the last two digits in
such a sequence should be distinct. Thus, a string
“0123456789” may provide a test pattern to be written in the
last ten bytes of a sector. The test pattern may then be written
from a buffer 27b to a medium 17 using the BIOS interface
for the medium 17 and medium drive 16.

Following the test pattern 112, a test 114 may determine
whether or not a write error has occurred in writing the
buffer 27b to the medium 17. A positive response to the test
114 results in an increment step 116. The increment 116
tracks the number of successful detections of errors. Thus,

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page40 of 78

5,983,002

11

the increment 116 indicates that another write error was
successfully detected by the FDC 20. Accordingly, the
application 24 may advance from the increment 116 to a test
117. A test 117 may determine the number of sectors to
which the FDC 20 has attempted to write. If the response to
the comparison of the test 117 is positive, then all tests are
completed and the display step 106 follows. On the contrary,
a negative response to this test 117 returns the application 24
to the test pattern 112, initiating another test cycle.

A negative response to the test 114 indicates that a write
error, known to exist, was undetected by the FDC 20.
Accordingly, a negative response to the test 114 advances
the application 24 to a read 118. The read 118 reads back the
last previously written sector, using the BIOS diskette
interface, such as the driver 29b. The step 118 may then
increment the number corresponding to sectors that the FDC
20 has attempted to write.

The application 24 may next advance to the test 120 to
determine whether the last byte that th ¢ read step 118 has
read back from the written sector to a buffer 27b is the last,
or the next-to-last element of the test pattern from the test
pattern step 112. That is, for example, in the Example above,
the test 120 determines whether or not the last byte read back
to the buffer 275 from this sector being tested is “8” a value
of “8” indicates that the FDC has failed to write the tenth
element of the test pattern into the last byte location of the
sector. This indicates that the FDC has not indicated a write
error in the test 114, and yet has produced the error detected
by the test 120. Thus, the last sector written is corrupted.

A negative response to the test 120 indicates that the last
byte was not incorrectly written. Accordingly, the applica-
tion 24 may advance to the test 117 to determine whether or
not the testing is completed. A positive response to the test
120 results in an increment step 122. The increment step 122
advances the count of undetected errors found during the
operation of the FDC 20 during the testing in question. Thus,
a step 122 results in a corruption count for sectors attempted
to be written by the FDC 20.

Referring now to FIG. 7, and also cross-referencing to
FIG. 6, the hook step 110 may install a prefix 54 to a timer
ISR 29¢ within the timer device driver 294 (see FIG. 4). The
hook 110 interposes the prefix 124 corresponding to the
prefix 54 of FIG. 4, after a call 125 or entry point 125 to the
timer ISR 29c¢ within the timer device driver 29a.
Accordingly, whenever the timer ISR 29¢ within the timer
device driver 294 is called, the prefix 124 will be run before
any executables in the timer ISR 29¢ within the timer device
driver 29a.

The prefix 124 may begin with a read 126 affective to
determine a count corresponding to the number of bytes, or
a countdown of the remaining bytes, being transferred by the
DMA controller 18 from the main memory 14, through the
buffer 27b to the FDC 20. The read 126 may also include a
reading of a count (a tick count) of a timer 22 or system
clock 22.

Following the read 126, a test 128 may determine whether
or not an operation is in process affecting the FDC 20. The
FDC 20 is in operation if a count kept by the DMA controller
18 has decremented (changed) within an elapsed time cor-
responding to the maximum time required for a byte to be
transferred. If no change has occurred during that elapsed
time, then one may deduce that no activity is occurring.
Accordingly, a negative response to the test 128 results in
reexecution of the test 128. Reexecution of the test 128 may
continue until a positive response is obtained. Inasmuch as
the application 24 is executing a write during the test pattern

10

15

20

25

30

35

40

45

50

55

60

65

12

112, an eventual positive response to the test 128 is assured.
In one embodiment of an apparatus and method in accor-
dance with the invention, the first byte transferred may
typically be detected.

A positive response to the test 128 advances the prefix
routine 124 to a test 130 to test the countdown or count of
the DMA controller 18. The test 128 corresponds to detec-
tion of activity, whereas the test 130 corresponds to iteration
of a shadowing process.

The test 130, whenever a negative response is received,
may advance the prefix routine 124 to the exit 138.

On the other hand, a positive response to the test 130
advances the prefix routine 124 to a test 132 effective to
evaluate whether or not the countdown is within some
selected range at the end of a sector. A negative response to
the test 132 indicates that the countdown is not within some
desired end-of-sector range, so the prefix routine 124 should
exit 138 without waiting longer. That is, interrupts will
continue to occur with a frequency that will detect the
desired range at the end of the sector being tested.

A positive response to the test 132 advances the prefix
routine 124 to a test 134 for detecting the last byte to be
transferred in a sector. If the DMA controller 18 is not
counting the last byte to be transferred, then the test 134 may
simply continue to test. When the countdown of the DMA
controller 18 reaches a value of zero, a positive response to
the test 134 advances to a delay step 136.

The delay step 136 corresponds to the delay 60 illustrated
in FIGS. 4-5. The delay 136 may be implemented by
preempting a channel over which the DMA controller 18 is
communicating with the FDC 20. For example, a first
channel may be made active by some process, thus, over-
writing communication over some channel having lesser
priority, and corresponding to the FDC 20. Likewise, the
channel corresponding to the DMA communication with the
FDC 20 may be masked (suspended) until the time elapsed
for the transfer of the data to the sector has exceeded the
maximum time permitted for such transfer. Thus, any and all
opportunities for writing the last byte to the sector had
expired. Thus, an error condition has been assured. Once the
delay 136 has assured an error condition the exit 138 returns
control of the processor 12 to the non-interrupted processing
state.

The invention described heretofore provides detection
solution that may be completely implemented in software as
a device driver 29b that is capable of detecting defective
FDCs 20 without visual inspection and identification of the
FDCs. Furthermore, the unique and innovative approach
taken, relying on DMA shadowing and use of a software
decoding network, allows the implementation of the inven-
tion to accurately and correctly detect defective FDCs even
when non-defective old-model FDCs are involved. Simply
stated, it is not sufficient to determine whether the FDC
under test is an old or new model FDC. Various vendors
manufactured old-model FDCs that are not defective.
Therefore, a two-phase detection process may correctly
determine whether or not the FDC under test is defective.

The number of FDCs installed in computer systems today
is well over 100 million. In order to identify defective FDCs
vendors and consumers which have defective FDCs 20
installed have very few alternatives (e.g. recalls;
replacement), of which most are extremely costly, for deter-
mining whether or not their systems are susceptible to the
data corruption presented by defective FDCs 20. Therefore,
an apparatus and method that may be implemented as a
software-only solution to this problem is a significant

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page4l of 78

5,983,002

13

advance in the computer industry. Moreover, the robust
design allows the apparatus and method of the present
invention to dynamically adjust to processor speeds that
encompass the original IBM Personal Computers executing
at 4.77 MHz to the latest workstations that execute at well
over 200 MHZ.

The present invention may be embodied in other specific
forms without departing from its spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative, and not restrictive. The scope
of the invention is therefore, indicated by the appended
claims, rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed and desired to be secured by United
States Letters Patent is:

1. An apparatus for detecting a defective floppy diskette
controller, the apparatus comprising:

a processor executing detection executables effective to
determine an underrun error undetected by a floppy
diskette controller and effective to identify the floppy
diskette controller as defective;

a memory device operably connected to the processor to
store the detection executables and corresponding
detection data;

a system clock operably connected to the processor to
provide a time base;

a media drive comprising storage media for storing data;

the floppy diskette controller operably connected to the
media drive to control formatting and storage of data on
the storage media; and

a direct memory access controller operably connected to
the floppy diskette controller and the memory device to
control transfers of data between the memory device
and the floppy diskette controller.

2. The apparatus of claim 1 wherein the detection

executables are effective to cause an underrun error.

3. The apparatus of claim 2 wherein the detection
executables cause the underrun error by delaying a transfer
of data between the direct memory access controller and the
floppy diskette controller.

4. The apparatus of claim 3 wherein the underrun error
comprises a delay in transferring a last byte in the transfer.

5. The apparatus of claim 3 wherein the detection data
comprises a test pattern.

6. The apparatus of claim 5 wherein the underrun error
comprises the test pattern incorrectly copied onto the storage
media.

7. The apparatus of claim 1 wherein the detection
executables further comprise a prefix routine effective to
hook a floppy device driver operating on the processor to
control the floppy diskette controller.

8. The apparatus of claim 1 wherein the detection
executables are integrated into an application directly loaded
and executed on the processor.

9. The apparatus of claim 8 wherein the application is
effective to determine on demand whether the floppy dis-
kette controller is susceptible to undetected underrun errors.

14

10. The apparatus of claim 1 wherein the detection
executables include a shadowing executable effective to
determine when a last byte is to be transferred from the
direct memory access controller to the floppy diskette con-

5 troller.

11. A memory device operably connected to a processor,
a direct memory access controller, a floppy diskette control-
ler controlled by the direct memory access controller, and a
media drive controlled by the floppy diskette controller, the

10 memory device storing blocks of data comprising:

a test pattern;

detection executables effective to be run on the processor
to force and detect an underrun error not detected by the
floppy diskette controller; and

a readback buffer to store a copy of the test pattern read
back from the media drive.

12. A method for detecting an underrun error undetected

by a floppy diskette controller, the method comprising the

5 Steps of:

writing a source test pattern from a memory device to
storage media in a media drive controlled by the floppy
diskette controller;

interrupting the writing step;

25 delaying a transfer of a last byte of the source test pattern
to the floppy diskette controller to create the underrun
error;

completing the writing step;

verifying whether the floppy diskette controller detected
the underrun error.

13. The method of claim 12 further comprising reading
back to the memory device a written test pattern correspond-
ing to the source test pattern written during the writing step.

14. The method of claim 13 further comprising verifying
whether the underrun error occurred in the writing step by
checking the last byte of the written test pattern.

15. An apparatus for detecting a defective floppy diskette
controller, the apparatus comprising:

a processor executing detection executables effective to

precipitate and detect an underrun error undetected by
a floppy diskette controller and effective to identify the
floppy diskette controller as a defective floppy diskette
controller;

a memory device operably connected to the processor to
store the detection executables and corresponding
detection data;

a system clock operably connected to the processor to
provide a time base;

a media drive comprising storage media for storing data;

the floppy diskette controller operably connected to the
media drive to control formatting and storage of data on
the storage media; and

a direct memory access controller operably connected to
the floppy diskette controller and the memory device to
control transfers of data between the memory device
and the floppy diskette controller.

30

40

45

50

55

#* #* #* #* #*

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page42 of 78

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :5,983,002 Page 1 of 1
DATED : November 9, 1999
INVENTOR(S) : Philip M. Adams

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 9,
Line 5, please change “I)MA” to --DMA--.

Column 11,

Line 19, please change “th €” to --the--.
Line 50, please change “affective” to --effective--.

Signed and Sealed this

Twenty-sixth Day of June, 2001

Attest: W/&Md P M;u

NICHOLAS P. GODICI

Attesting Officer Acting Director of the United States Patent and Trademark Office

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page43 of 78

Exhibit C

cese:1o-ovosss i oscom AN NI

a2 United States Patent
Adams

US006195767B1
10y Patent No.: US 6,195,767 B1
5) Date of Patent: Feb. 27, 2001

(54) DATA CORRUPTION DETECTION
APPARATUS AND METHOD

(76) Inventor: Phillip M. Adams, 1466 Chandler Dr.,

Salt Lake City, UT (US) 84103
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/152,802

(22) Filed: Sep. 14, 1998

(51) Int. CL7 i HO2H 3/05; GO6K 5/04
(52) US. Cl . 714/47, 714/48; 714/42;
714/43; 714/718
(58) Field of Search ... 714/47, 48, 42,
714/43, 718

(56) References Cited

U.S. PATENT DOCUMENTS

3,908,099 9/1975 Borbas et al.ccvvveeenene 179/175.2
4,942,606 7/1990 Kaiser et al. ...ccoceeeeveeenereenenne 380/4
4,996,690 2/1991 George et al. . . 371/37.1
5,093,910 3/1992 Tulpule et al. ... 395/575
5,210,860 * 5/1993 Pfeffes et al. 395/575
5,212,795 5/1993 Hendry oo 395725
5,233,692 8/1993 Gajjar et al. ... 395/325
5,237,567 8/1993 Nay et al. 370/85.1
5,379,414 * 1/1995 Adams oo 395/575
5,416,782 5/1995 Wells et al. . 371212
5,422,892 6/1995 Hii et al. ccooeereniiecieerciee 371724
5,619,642 4/1997 Nielson et al. .. 395/182.04
5,805,788 * 9/1998 Johnson ... 395/182.04
5,844,911 * 12/1998 Schadess et al. ..o 371/10.2
5,983,002 * 11/1999 Adams 395/183.18
6,115,199 * 92000 BANE woovvoververveevee e 360/51

OTHER PUBLICATIONS

NEC Electronics, Inc., “IBM-NEC Meeting for uPD765A/
#PD72065 Problem” (U.S.A., May 1987). 6 pps.

Intel Corporation, Letter to customers from Jim Sleezer,
Product Manager, regarding FDC error and possible solu-
tions (U.S.A., May 2 1988).

Physical Media Scan

Adams, Phillip M., Nova University, Department of Com-
puter Science, “Hardware—Induced Data Virus,” Technical
Report TR-881101-1 (U.S.A., Nov. 14, 1988).

Advanced Military Computing, “Hardware Virus Threatens
Databases,” vol. 4, No. 25, pp. 1 & 8 (U.S.A., Dec. 5, 1988).

Intel Corporation, “8237A/8237A—4 /8237 A-5 High Perfor-
mance Programmable DMA Controller” (U.S.A., date
unknown.).

Intel Corporation, “8272A Single/Double Density Floppy
Disk Controller” (U.S.A., date unknown).

* cited by examiner

Primary Examiner—Norman M. Wright
(74) Attorney, Agent, or Firm—Pate Pieree & Baird

(7) ABSTRACT

A system and method for providing detection of the signa-
tures effected by a defective Floppy Diskette Controller
(“FDC”) operates on media independent of files thereon, or
on files, independent of the media on which they are stored.
Multiple testing strategies incorporate evaluations to detect
signatures of data corruption introduced by defective FDCs
from long transfer delays, short transfer delays, contiguous
storage of logical sectors, or fragmented storage of logical
sectors of a file. A false positive filter uses secondary testing
of data. Filters remove from consideration those common
patterns that properly and naturally occur. These filters rely
on indicia demonstrating that primary leading indicators of
the presence of an error do not really result from an actual
error. The signatures may be detected regardless of subse-
quent transfer of corrupted files to various media including
the media tested.

26 Claims, 7 Drawing Sheets

No 184

Short Delay
Corruption Possible

End of Media?

176
Program Complete’

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page45 of 78

US 6,195,767 Bl

Sheet 1 of 7

Feb. 27, 2001

U.S. Patent

144

oS

e o AR N TF
/ ((
4]]
30IA3a /
1nd1no =
3a
——(000 3 HOSS3004d 1HOd FOIA
— ﬁ u mﬂ_ LNdNI 8¢
—1 ooo 1
7 LT
=
2y & of
92
(
/
(3L1HM/aV3IH) asvo
wod wvy 39IA30 13N §J
FOVHOILS w
/ N oe
T4 0z~ / // 9l
pL
N |
HIAY3S| [in3no| (inarmo| |inamo| |in3ro| |anaro| | g3inow
[r [‘ e ‘ —~87
G/ 25— es— 2o/ 25—/ 25— ——os

cg

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page46 of 78

U.S. Patent Feb. 27, 2001 Sheet 2 of 7 US 6,195,767 B1
14
60—}L Signature Sector N
Detection Buffer —|L-T"62
Executable
72— Sector I Output Data —|-T"70
Detector
Sector ID —76
74— Sector IT File ID —~78
Detector
Pass/Fail Flags —80
SectorIType || | +4-~82
64 7—— O Sector I1 Type || | 184
68—+ __ Other
[
66

Fig. 2

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page47 of 78

U.S. Patent

Physical
Storage
Medium

Feb. 27, 2001 Sheet 3 of 7 US 6,195,767 B1
Sector Write
96a ;948
~T Byte o; - VALUE 0 j/O4b
- Byte 1 |« VALUE 1}/
ALL

CASES | g4

1006 1,2,3,4 P

102¢
100d
104c
102d
// of

AN

Sector I Byte Len-2 [--ZZVALUE J['|104d
Byte Len-1 1/ VALUE KT~
89) Byte 0 Je--—100e 104
Sector II) Byte1 |0 :-y-{VALUEL
P O E
- i100d
CASES
\ 2,4 93
... |[Byte Len-2 i
~.|Byte Len-1]0 |
98d

94

Fig. 3

U.S. Patent

Y
o

(03]
MAINTAINED

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page48 of 78

— CONTIGUITY

NOT MAINTAINED

Feb. 27, 2001 Sheet 4 of 7
1?2 1?0
116 118
V4 7
Contiguous = Non-Contiguous | Contiguous = Non-Contiguous
Logical Physical Logical Physical
Short Delay Long Delay
Contiguous = Contiguous Contiguous = Contiguous
Logical Physical Logical Physical
Short Delay Long Delay
112 Short 114 Long

no—>DELAY

106

Fig. 4

/\

US 6,195,767 Bl

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page49 of 78

U.S. Patent Feb. 27, 2001 Sheet 5 of 7 US 6,195,767 B1
146 140 146
132 &i Y SECTORED @i M
STORAGE DEVICE 132
SEGMENT - SEGMENT] ;[
— A — & A
— SECTOR =
134 154 ~_E V:ﬁ 138
. Ve
CASES ~—"
13 [SEGMENT 156 i [SEGMENT:
146b Th—E SECTOR:
AN B >2a:> X :<IY’ 144a B —146D
148 — 148
h 152 __ESECTOR™N{ =
CASE | SEGMENT —] 158 [SEGMENT]
> eI\ E=Y= CASE
CH— 144b ¢)
146¢C f? N -146¢
X A~ \ =
— SECTOR 1 /
X 156 4F__F Z —]
136 |SEGMENT 7’@—— ' SEGMENT]
D \?_/ D=, .464
146d\ =
~ 159 —
LOGICAL PHYSICAL LOGICAL
MAP MAP MAP

1

4

Fig. 5

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page50 of 78

U.S. Patent Feb. 27, 2001 Sheet 6 of 7 US 6,195,767 B1
Ghysical Media Scanl
v 162
Determine Size of
Media 164
7 160
Set L?S%Count 1166
v
Read Sector
(Loop Count) -1~ 168
170
Last Byte ==
Previous Byte Yes
- 1178
Read Next Sector
No No No 184

A 4
Long Delay 182
Corruption Possible

I‘

Short Delay \
Corruption Possible

<
<%

Y

<

Increment Loop Count |

L —172

End of Media?

!

174

176
Gogram Completejf

Fig. 6

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page51 of 78

U.S. Patent Feb. 27, 2001 Sheet 7 of 7 US 6,195,767 B1
Q_ogical (File) Scan)\
1 192
Determine File Size 194
=4 190
¥ /
Set Loop Count
t0 0 _1—196
_| Read Sector (Loop
| Count) From File {198
200
Bytes (1..End) No
== 07 A 4
Long Delay 202
Corruption Possible
I\llo
204
No Last Byte ==
Previous Byte Yes
vy
Short Delay 206
Corruption Posssible
No
Increment Loop Count | —208
210
Fig. 7
Yes
¥

112
Grogram Complet@f

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page52 of 78

US 6,195,767 B1

1

DATA CORRUPTION DETECTION
APPARATUS AND METHOD

BACKGROUND

1. The Field of the Invention

This invention relates to the detection of corruption
occurring in data written to storage media relying on a
defective Floppy Diskette Controller (“FDC”), where an
undetected data error causes data corruption and, more
particularly, to novel systems and methods for inspection
and warning to enable prompt restoration of data corrupted
by defective FDCs.

2. The Background Art

Computers are now used to perform functions and main-
tain data critical to many organizations. Businesses use
computers to maintain essential financial and other business
data. Computers are also used by government to monitor,
regulate, and even activate, national defense systems. Main-
taining the integrity of the stored data is essential to the
proper functioning of these computer systems, and data
corruption can have serious (even life threatening) conse-
quences.

Most of these computer systems include diskette drives
for storing and retrieving data on floppy diskettes. For
example, an employee of a large financial institution might
have a personal computer that is attached to the main
system. In order to avoid processing delays on the
mainframe, the employee may routinely transfer data files
from the host system to his local personal computer and then
back again, temporarily storing data on a local floppy
diskette. Similarly, an employee with a personal computer at
home may occasionally decide to take work home, trans-
porting data away from and back to the office on a floppy
diskette.

Data transfer to and from a floppy diskette is controlled by
a device called a Floppy Diskette Controller (“FDC”). The
FDC is responsible for interfacing the computer’s Central
Processing Unit (“CPU”) with the physical diskette drive.
Significantly, since the diskette is spinning, it is necessary
for the FDC to provide data to the diskette drive at a
specified data rate. Otherwise, the data will be written to the
wrong location on the diskette.

The design of the FDC accounts for situations when the
data rate is not adequate to support the rotating diskette.
Whenever this situation occurs, the FDC aborts the opera-
tion and signals the CPU that a data underrun condition has
occurred. Unfortunately, however, it has been found that a
design flaw in many FDCs makes it impossible to detect all
data underrun conditions. This flaw has, for example, been
found in the NEC 765, INTEL 8272 and compatible Floppy
Diskette Controllers. Specifically, data loss and/or data
corruption can occur during data transfers to or from dis-
kettes (or even tape drives and other media which employ
the FDC), whenever the last data byte of a sector being
transferred is delayed for more than a few microseconds.
Furthermore, if the last byte of a sector write operation is
delayed too long then the next (physically adjacent) sector of
the diskette will be destroyed as well.

For example, it has been found that these FDCs cannot
detect a data underrun on the last byte of a diskette read or
write operation. Consequently, if the FDC is preempted
during a data transfer to the diskette (thereby delaying the
transfer), and an underrun occurs on the last byte of a sector,
the following occurs: (1) the underrun flag does not get set,
(2) the last byte written to the diskette is made equal to the

10

15

20

25

30

35

40

45

50

55

60

65

2

previous byte written, and (3) Cyclic Redundancy Check
(“CRC”) is generated on the altered data. The result is that
incorrect data is written to the diskette and validated by the
FDC.

Conditions under which this problem may occur can be
identified by simply identifying those conditions that can
delay data transfer to or from the diskette drive. In general,
this requires that the computer system be engaged in “multi-
tasking” operation or in overlapped input/output (“I/0”)
operation. Multi-tasking is the ability of a computer oper-
ating system to simulate the concurrent execution of mul-
tiple tasks. Importantly, concurrent execution is only “simu-
lated” because there is usually only one CPU in today’s
personal computers, and it can only process one task at a
time. Therefore, a system interrupt is used to rapidly switch
between the multiple tasks, giving the overall appearance of
concurrent execution.

MS-DOS and PC-DOS, for example, are single-task oper-
ating systems. Therefore, one could argue that the problem
described above would not occur. However, there are a
number of standard MS-DOS and PC-DOS operating envi-
ronments that simulate multi-tasking and are susceptible to
the problem. The following environments, for example,
have been found to be prime candidates for data loss and/or
data corruption due to defective FDCs: local area networks,
327x host connections, high density diskettes, control print
screen operations, terminate and stay resident (“TSR”) pro-
grams. The problem has also been found to occur as a result
of virtually any interrupt service routine. Thus, unless the
MS-DOS and PC-DOS operating systems disable all inter-
rupts during diskette transfers, they are also susceptible to
data loss and/or corruption.

The UNIX operating system is a multi-tasking operating
system, and it is extremely simple to create a situation that
can cause the problem within UNIX. One of the more simple
examples is to begin a large transfer to the diskette and place
that task in the background. After the transfer has begun then
begin to process the contents of a very large file in a way that
requires the use of a higher-priority Direct Memory Access
(“DMA”) channel than the floppy diskette controller’s DMA
channel, i.e., video updates, multi-media activity, etc. Video
access forces the video buffer memory refresh logic on DMA
channel 1, along with the video memory access, which
preempts the FDC operations from occurring on DMA
channel 2 (which is lower priority than DMA channel 1).
This type of example creates the classic overlapped I/O
environment and can force the FDC into an undetectable
error condition. More rigorous examples could include the
concurrent transfer of data to or from a network or tape drive
using a high priority DMA channel while the diskette
transfer is active. Clearly, the number of possible error
producing examples is infinite and very possible in this
environment.

For all practical purposes the OS/2 and newer Windows
operating systems can be regarded as UNIX derivatives. In
other words, they suffer from the same problems that UNIX
does. There are, however, two significant differences
between these operating systems and UNIX. First, they both
semaphore video updates with diskette operations in an
effort to avoid forcing the FDC problem to occur. However,
any direct access to the video buffer, in either real or
protected mode, during a diskette transfer will bypass this
safe-guard and result in the same condition as UNIX.
Second, OS/2 incorporates a unique command that attempts
to avoid the FDC problem by reading back every sector that
is written to the floppy diskette in order to verify that the
operation completed successfully. This command is an

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page53 of 78

US 6,195,767 B1

3

extension to the MODE command (MODE DSKT VER=
ON). With these changes, data loss and/or data corruption
should occur less frequently than before, but it is still
possible for the FDC problem to destroy data that is not
related to the current sector operation.

There are a host of other operating systems that are
susceptible to the FDC problem just like DOS, Windows,
Windows 95, Windows NT, 0S/2, and UNIX. However,
these systems may not have an installed base as large as
DOS, Windows, OS/2 or UNIX, and there may, therefore, be
little emphasis on addressing the problem. Significantly, as
long as the operating systems utilize the FDC and service
system interrupts, the problem can manifest itself. This can,
of course, occur in computer systems which use virtually
any operating system.

Some in the computer industry have suggested that the
FDC problem is extremely rare and difficult to reproduce.
This is similar to the argument presented during the 1994
defective INTEL Pentium scenario. Error rates for the
defective Pentium ranged from microseconds to tens-of-
thousands of years! Admittedly, the FDC problem is often
very difficult to detect during normal operation because of its
random characteristics. The only way to visibly detect this
problem is to have the FDC corrupt data that is critical to the
operation at hand. There may, however, be many locations
on the diskette that have been corrupted, but not accessed.
Studies have recently demonstrated that the FDC problem is
quite easy to reproduce and may be more common than
heretofore believed.

Computer users may, in fact, experience this problem
frequently and not even know about it. After formatting a
diskette, for example, the system may inform the user that
the diskette is bad, although the user finds that if the
operation is performed again on the same diskette every-
thing is fine. Similarly, a copied file may be unusable, and
the computer user concludes that he or she just did some-
thing wrong. For many in this high-tech world, it is very
difficult to believe that the machine is in error and not
themselves. It remains a fact, however, that full diskette
back-ups are seldom restored, that all instructions in pro-
grams are seldom, if ever, executed, that diskette files
seldom utilize all of the allocated space, and that less
complex systems are less likely to exhibit the problem.

Additionally, the first of these FDCs were shipped in the
late 70’s. The devices were primarily used at that time in
special-purpose operations in which the FDC problem
would not normally be manifest. Today, on the other hand,
the FDCs are incorporated into general-purpose computer
systems that are capable of concurrent operation (multi-
tasking or overlapped I/O). Thus, it is within today’s envi-
ronments that the problem is most likely to occur by having
one of the operations delay the data transfer to the diskette.
The more complex the computer system, the more likely it
is to have one activity delay another, thereby creating the
FDC error condition.

In short, the potential for data loss and/or data corruption
is present in all computer systems that utilize the defective
version of this type of FDC, presently estimated at about 25
million personal computers. The identification and repair of
defective FDCs has been described in previously filed U. S.
patent applications.

In addition to a solution to the FDC problem it is
necessary to be able to accurately, and correctly, identify
defective, corrupted data before that data is relied upon at
great loss. The design flaw in the FDC causes data corrup-
tion to occur and manifest itself in the same manner as a

10

15

20

30

35

40

45

50

55

60

65

4

destructive computer virus. Furthermore, because of its
nature, this problem has the potential of rendering even
secure databases absolutely useless.

The defect in FDCs, however, results in various types of
corruption having different signatures, according to the
nature of the defective FDC and the nature of the conditions
at transfer. Moreover, files may be transferred, fragmented,
defragmented, and the like many times over years. Thus,
corruption may be spread and the corrupted files relied upon
at any time. Locating the possibility or probability of cor-
ruption in an individual file or a sector of storage media is
a first step toward restoring reliable information before
corruption can cause serious harm.

The aforementioned delay (long or short) in a transfer of
a last data byte of a sector either to or from a floppy diskette
at any time in the history of a file, may cause corruption. The
length of the transfer delay may alter the nature of the
corruption which corruption may then be copied or trans-
ferred any number of times before being relied upon.

Files may also be fragmented or defragmented.
Accordingly, a logical file may be written to contiguous or
non-contiguous sectors of any particular medium. Transfers,
fragmentation, de-fragmentation, and the like may occur
long after an initial occurrence of corruption, further obscur-
ing the more obvious signatures of corruption.

Thus, an apparatus and method are needed to detect the
possibility of corruption from either long or short delays in
transfers controlled by defective FDCs. File integrity must
be tested regardless of fragmentation (non-contiguity) of
sectors holding logically consecutive data. Integrity must be
testable whether subsequent transfers have occurred by any
means which may or may not have affected logical or
physical contiguity of sectors’ contents.

BRIEF SUMMARY AND OBJECTS OF THE
INVENTION

In view of the foregoing, it is a primary object of the
present invention to provide a system and method for the
detection of data corruption due to defective Floppy Diskette
Controllers (“FDCs”).

It is also an object of the present invention to provide an
automated software-only (programmatic) approach to
reduce the labor of searching files and media.

Consistent with the foregoing objects, and in accordance
with the invention as embodied and broadly described
herein, a system and method are disclosed in one embodi-
ment of the present invention as including a detection
program that is capable of correctly and accurately detecting
the signature of data corruption associated with defective
FDCs.

The approach taken includes testing according to physical
media configuration, and according to logical file configu-
ration. The tests report the presence of any of the signatures
known to be associated with defective FDCs. The system
manager or other responsible party can then restore the files
from an uncorrupted archival copy, if available. In any
event, Awarning may thus be available to identify individual
files as well as sectors of media that are not reliable.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects and features of the
present invention will become more fully apparent from the
following description and appended claims, taken in con-
junction with the accompanying drawings. Understanding
that these drawings depict only typical embodiments of the

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page54 of 78

US 6,195,767 B1

5

invention and are, therefore, not to be considered limiting of
its scope, the invention will be described with additional
specificity and detail through use of the accompanying
drawings in which:

FIG. 1 is a schematic block diagram of a system consis-
tent with a computer hosting executables and data to imple-
ment the invention;

FIG. 2 is a schematic block diagram of data structures
containing executables and operational data for implement-
ing an embodiment of the invention on the apparatus of FIG.
1

FIG. 3 is a schematic block diagram illustrating a physical
view of data storage on a sectored storage medium;

FIG. 4 is a schematic block diagram illustrating the
combinations of conditions that may create corruption
detectable by an apparatus and method in accordance with
the invention;

FIG. 5 is a schematic block diagram of a sectored storage
device and its relationship to logical maps of files that may
be stored thereon before or after corruption of sectors;

FIG. 6 is a schematic block diagram illustrating a method
for detecting corruption by scanning physical storage media;
and

FIG. 7 is a schematic block diagram of a method for
detecting corruption caused by defective floppy diskette
controllers by scanning files according to logical structure.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

It will be readily understood that the components of the
present invention, as generally described and illustrated in
the Figures herein, could be arranged and designed in a wide
variety of different configurations. Thus, the following more
detailed description of the embodiments of the system and
method of the present invention, as represented in FIGS. 1
through 7, is not intended to limit the scope of the invention,
as claimed, but it is merely representative of the presently
preferred embodiments of the invention.

The presently preferred embodiments of the invention
will be best understood by reference to the drawings,
wherein like parts are designated by like numerals through-
out.

Referring to FIG. 1, an apparatus 10 may implement the
invention on one or more nodes 11, (client 11, computer 11)
containing a processor 12 (CPU 12). All components may
exist in a single node 11 or may exist in multiple nodes 11,
52 remote from one another. The CPU 12 may be operably
connected to a memory device 14. A memory device 14 may
include one or more devices such as a hard drive or other
non-volatile storage device 16, a read-only memory 18
(ROM) and a random access (and usually volatile) memory
20 (RAM/operational memory).

The apparatus 10 may include an input device 22 for
receiving inputs from a user or another device. Similarly, an
output device 24 may be provided within the node 11, or
accessible within the apparatus 10. A network card 26
(interface card) or port 28 may be provided for connecting
to outside devices, such as the network 30.

Internally, a bus 32 may operably interconnect the pro-
cessor 12, memory devices 14, input devices 22, output
devices 24, network card 26 and port 28. The bus 32 may be
thought of as a data carrier. As such, the bus 32 may be
embodied in numerous configurations. Wire, fiber optic line,
wireless electromagnetic communications by visible light,
infrared, and radio frequencies may likewise be imple-
mented as appropriate for the bus 32 and the network 30.

10

15

20

25

30

35

40

45

50

55

60

65

6

Input devices 22 may include one or more physical
embodiments. For example, a keyboard 34 may be used for
interaction with the user, as may a mouse 36 or stylus pad.
Atouch screen 38, a telephone 39, or simply a telephone line
39, may be used for communication with other devices, with
a user, or the like. Similarly, a scanner 40 may be used to
receive graphical inputs which may or may not be translated
to other character formats. The hard drive 41 or other
memory device 41 may be used as an input device whether
resident within the node 11 or some other node 52 (e.g., 524,
52b, etc.) on the network 30, or from another network 50.

Output devices 24 may likewise include one or more
physical hardware units. For example, in general, the port 28
maybe used to accept inputs and send outputs from the node
11. Nevertheless, a monitor 42 may provide outputs to a user
for feedback during a process, or for assisting two-way
communication between the processor 12 and a user. A
printer 44 or a hard drive 46 may be used for outputting
information as output devices 24.

In general, a network 30 to which a node 11 connects may,
in turn, be connected through a router 48 to another network
50. In general, two nodes 11, 52 may be on a network 30,
adjoining networks 30, 50, or may be separated by multiple
routers 48 and multiple networks 50 as individual nodes 11,
52 on an internetwork. The individual nodes 52 (e.g. 11, 52,
54) may have various communication capabilities.

In certain embodiments, a minimum of logical capability
may be available in any node 52. Note that any of the
individual nodes 11, 52, 54 may be referred to, as may all
together, as a node 11 or a node 52. Each may contain a
processor 12 with more or less of the other components
14-44.

A network 30 may include one or more servers 54.
Servers may be used to manage, store, communicate,
transfer, access, update, and the like, any practical number of
files, databases, or the like for other nodes 52 on a network
30. Typically, a server 54 may be accessed by all nodes 11,
52 on a network 30. Nevertheless, other special functions,
including communications, applications, directory services,
and the like, may be implemented by an individual server 54
or multiple servers 54.

In general, a node 11 may need to communicate over a
network 30 with a server 54, a router 48, or nodes 52.
Similarly, a node 11 may need to communicate over another
network (50) in an internetwork connection with some
remote node 52. Likewise, individual components 12—46
may need to communicate data with one another. A com-
munication link may exist, in general, between any pair of
devices.

Referring to FIG. 2, a storage device 14, may be loaded
with executables and data. For execution, of the storage
device 14 may be the RAM 20. For initial installation, the
memory device 14 selected may be another storage device
16 or ROM 18. In general, executables and operational data
ready to be executed by a processor 12 may implemented in
a memory device 14 corresponding to RAM 20.

A signature detection executable 60 may contain instruc-
tions in suitable code for implementing algorithms. The
signature detection executable 60 may operate with sector
buffer 62. The sector buffer 62 is sized to store data select for
evaluation. Evaluation, conducted by the signature detection
executable 60 includes analysis of the contents of data stored
on media to be tested. In one embodiment, the sector buffer
62 may include one or more buffers 62. Alternatively, the
sector buffer 62 may include sufficient space to hold at least
two complete sectors from a storage medium to be tested.

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page55 of 78

US 6,195,767 B1

7

A processor 12 requires some underlying operating sys-
tem 64 in order to run the executable 60. Similarly, appli-
cations 66 and other executables 68 may be hosted in the
memory device 14. In one presently preferred embodiment,
the memory device 14 is the random access memory (RAM)
20 of FIG. 1.

Output data 70 may be stored during operation of the
signature detection executable 60 on the processor 12. The
output data 70 indicates the nature of any corruption signa-
ture found by the signature detection executable 60.

The signature detection executable 60 may include detec-
tor 72 for distinguishing corruption peculiar to a primary,
leading, or first sector. A detector 74 may be programmed to
identify corruption normally associated with a following,
secondary, or second sector involved in corruption by defec-
tive floppy diskette controller (FDC). Each of the detectors
72,74 may be programmed to operate on a logical basis or
physical basis. That is, in one embodiment, an apparatus and
method in accordance with the invention may operate based
on files. Accordingly, the file system associated with a
computer 11 may be relied upon to define the location of an
initial sector, subsequent sectors, and a final sector associ-
ated with a single file at a time. Thus, regardless of the
random nature of storage on any storage device 14, a file
may be tested for integrity.

Similarly, a detector 72, 74 may be programmed to
operate on any particular storage medium 16, 18, 20. For
example, a storage device 16 may be a floppy diskette or a
hard drive. The ROM 18 may be configured in a chip, or on
a laser-readable compact disk. In certain embodiments, the
detectors 72, 74 may scan and evaluate the entire medium
within a particular memory device 14. Thus, any physical
sectors containing the signature identified with corruption by
a defective floppy diskette controller may be detected,
regardless of subsequent transfer to any other storage device
14. Since storage is typically done on a sector basis, cor-
rupted sectors may be detected over an entire storage
medium, or over a particular file on a storage medium.

The output data 70 may include any information deemed
suitable to enable ready identification of files, responsible
individuals, and the like. Perhaps most importantly, the
output data 70 may include information identifying files, and
personnel responsible for those files, in order to enable
prompt restoration of corrupted files.

In one embodiment, the output data 70 may include sector
identification 76. Sector identification 76 (sector ID 76) may
include not only a sector number, but a volume number, a
network address of a computer 11 on which the defective
sector is located, and the like. Thus, an entire path may
identify a sector by any path or context required.

A file identifier 78 (file ID 78) may identify a particular
file in which corruption is detected. A file system will
typically contain a file name as well as higher level path
identification associated with a user, computer 11, volume,
directory, and the like. A file identifier 78 may include any
information deemed suitable to rapidly and effectively single
out a file containing corruption. Likewise, sufficient context
may be provided in the file ID 78 to enable a user to locate
a source of such corrupted file. Accordingly, a user, system
manager, or other responsible party may be able to more
rapidly identify a source file from which a corrupted file may
be restored. Likewise, a source file may be corrupted.
Accordingly, identification of a file with sufficient detail to
identify its source may provide identification of other stor-
age media to be tested for corruption.

In one embodiment, pass fail flags 80 may be included as
output data 70. For example, in one embodiment, every

10

15

25

30

35

40

45

50

60

65

8

sector in a storage medium may be identified as passing or
failing a test in accordance with the invention. Similarly,
every file in a volume or a server may be tested and
identified as having passed or failed a test in accordance with
the invention. However, in one currently preferred embodi-
ment of an apparatus and method in accordance with the
invention, only sectors of a medium or a file displaying a
corruption signature need be identified. Thus, the nature of
such corruption signature may be identified. For example,
corruption occurs in a primary sector due to improper
writing and error checking by a defective floppy diskette
controller. Depending on the length of a delay, the corruption
may extend to a subsequent sector. Thus, a sector I type flag
82 may identify a sector as containing corruption on the type
identified by a sector I detector 72. Similarly, a sector II type
flag 84 may identify a sector as containing corruption having
the signature detected by the sector II detector 74.

Referring to FIG. 3, specifically, and to FIGS. 2-5,
generally, a storage device 16 may include a storage medium
86. The storage medium 86 may contain one or more disks
or diskettes. In general, data corruption may be initiated by
a defective floppy diskette controller on a particular diskette.
However, in general, a file or sector thus corrupted may be
copied to any other memory device 14. Thus, a storage
device 16 being tested for corruption may be a diskette, a
hard disk, or other storage device 14 to which data may have
been transferred subsequent to storage on a floppy diskette.

The storage medium 86 may contain sectors 88, subdivi-
sions 88 into which medium 86 may be subdivided for
purposes of addressing and segmenting data. The sectors 88
may be separated by sector boundaries 89 specified in a
formatting standard used to format the storage medium 86.
For convenience, a sector I 90 and sector 11 92 are identified.
Each of the sectors 90, 92 may be physically represented by
a map 94 of individual bytes. The number of bytes in a
particular sector 90, 92 is established by an appropriate
standard. Thus, a first byte 96a in sector I 90 has a number
of zero. The second byte 96b is identified as byte one. Thus,
a last byte 964 is a byte identified by the length of the sector
90, less one. Likewise, the next-to-last byte 96c¢ is counted
according to a length, less two, of the sector 90. In sector II
92, a first byte 984, second byte 98b, next-to-last byte 98¢,
and last byte 984, may be thought of as similarly numbered.

In FIG. 3, the paths 100 illustrate the effect of a defective
floppy diskette controller, under corrupting conditions. The
paths 102 illustrate the paths that particular bytes 96, 98
should take in a non-defective floppy diskette controller, or
in a defective floppy diskette controller under non-
corrupting conditions.

Various values 104 may be placed in the byte locations 96,
98 in the sectors 90, 92, respectively. For example, a value
zero 104aq is stored to the byte zero location 96a. A value one
1045 is stored to the byte one location 96b.

In normal operation, a value J 104c¢ is stored at the
next-to-last byte location 96¢, while a value K 1044 is stored
to a last byte location 96d. Sector II 92 should remain
unaffected by the transfer of values 104 to sector I 90.

In all cases of data corruption due to defective FDC’s, the
value J 104c¢ intended for the next-to-last byte location 96¢
is stored at the proper location 96¢. Thus, the intended path
102¢ for normal operation is duplicated by the path 100c
when corruption is incipient.

However, the value J 104c¢ in the presence of the corrupt-
ing conditions for a defective FDC, is transferred along the
path 1004 to the last byte location 96d. Normally, the value
K 1044 that would be transferred along the path 1024 to a
last byte location 964 is detoured.

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page56 of 78

US 6,195,767 B1

9

The value K 1044 passes along the path 100e to the first
byte location 984 in sector II 92. Thus, the last byte location
96d contains the same value J 104c¢ that is written to the
next-to-last byte location 96c. Meanwhile, a value L. 104e,
having an actual numerical value of zero, is written to all
other byte locations 98b, 98¢, 984 up to the last byte location
98¢ of sector I 92.

One fundamental cause of corruption is delay in writing
a value K 104d to a last byte location 96d. If the delay is
greater than a single byte write time (32 us or 16 us) and less
than 80 microseconds, the delay is considered to be a “short
delay.” If the delay is greater than 80 microseconds, then a
“long delay” has occurred. If a short delay occurs, then the
value K 1044 is not written to the last byte location 964, nor
anywhere else. However, if the delay is long, then sector 11
92 will be effected.

The mapping of values 104 to byte locations 94 in FIG.
3, in accordance with the normal paths 102 and the corrup-
tion paths 100 varies according to certain conditions or
cases. FIG. 4 illustrates the conditions and cases that various
scenarios may present with a defective floppy diskette
controller.

Referring to FIG. 4, a matrix 106 relates a contiguity 108
and delay 110 to create various cases 112, 114, 116, 118.
Contiguity 108 refers to whether or not a file has been
fragmented or defragmented. For example, a file has a
logical flow. Nevertheless, the data corresponding to a
particular file may be stored in randomly distributed sectors
88 within a storage medium 86. Contiguity of adjacent
sectors 90, 92 may maintained. Alternatively, contiguity 108
may also not be maintained. Similarly, a delay greater than
80 microseconds is considered a long delay 120. A delay of
less 80 microseconds is considered a short delay 122. As
discussed above, the corruption signature varies according
to whether or not the delay 110 in a transfer of the values 104
to a sector 88 is controlled according to the length of the
delay 110.

Case 1 corresponds to a short delay 122 in transferring
values 104 to byte locations 96. In case 1 112 also corre-
sponds to maintained contiguity 124. Contiguity 108 may be
maintained 124 or not maintained 126. FIG. 4 illustrates
maintenance 124 and non-maintenance 126 of contiguity
108. Contiguity 108 refers to the writing of logically con-
tiguous data onto physically contiguous sectors 90, 92.

Case 1 112 has conditions of a short delay 122 and
maintained contiguity 124. Since the delay 110 is short 122,
only a sector I 90 is affected.

Case 2 114 has conditions corresponding to a long delay
120 and maintained contiguity 124. Since case 2 114
includes a long delay 120, corruption may occur in both
sector [90, and sector II 92 of the same logical file unless
sector I 90 is the last sector of the file thus causing corruption
in logically unrelated locations.

Case 3 116 has conditions corresponding to a short delay
122 and non-maintained contiguity 126. Because the delay
110 is short 122, case 3 116 may result in corruption only in
sector I 90. Sector II 92 remains unaffected.

Case 4 118 includes corresponding conditions of a long
delay 120 and non-contiguity 126. The long delay 120 can
cause corruption to occur in both sector I 90 and sector IT 92.
Sector II 92 is not logically related to sector I 90 potentially
causing data corruption to another (unrelated) file. One may
note that the delay 110, whether long 120 or short 122,
appears to control the presence of corruption in sector II 92.
Contiguity 108 does not appear to be a factor in the nature
of the corruption.

10

15

20

25

30

35

40

45

50

55

60

65

10

Contiguity 108 or maintenance 124 and non-maintenance
126 of contiguity 108 does not control the presence of
corruption, but rather the signature thereof. Thus, FIGS. 3-5
should be viewed together.

Referring to FIG. §, a map 130 of the file 132 is illustrated
under various sets 134, 136, 138 of conditions, or simply
under scenarios 134, 136, 138 or conditions 134, 136, 138.
The set 134 corresponds to conditions of case 1 112 and case
3 116. The conditions 136 or set 136 of conditions, corre-
sponds to case 2 114 in FIG. 4. The set 138 of conditions, or
condition 138 corresponds to case 4 118 in FIG. 4. The
conditions 134 or set 134 corresponds to a short delay 122,
and thus a short delay corruption signature 91 or sector I
corruption 91. The case 136 or set 136 corresponds to sector
II corruption 93 or long delay corruption 93 with maintained
contiguity 124 between a logical map 132 and a physical
map 140. Meanwhile, the conditions 138 or set 138 corre-
sponds to long delay corruption 93 or sector II corruption 93
corresponding to a long delay 120 wherein contiguity 108 is
not maintained 126.

Astorage device 140 is sectored to receive data. Data may
be transferred 142 continually (maintaining contiguity 124).
Data may also be transferred from 144 with contiguity 108
not maintained 126. Note that trailing alphabetical charac-
ters after reference numerals merely identify instances of the
principle or generic feature identified by the reference
numeral.

For example, a file 132 may be divided into segments 146.
The segments 146a, 146b, 146¢, 146d are illustrated in a
sequential, logical, and contiguous arrangement. Segments
146 may correspond to sector-sized portions of a file 132 or
logical map 132 of data or code. The individual segments
146 may be thought of as being divided at segment bound-
aries 148.

Similarly, the storage device 140 may be sectored into
individual sectors 150, 152, 154, 156, separated by sector
boundaries 158. The sectors may also be referred to generi-
cally as sectors 159, or as a sector 159. Notice that sectors
150, 152 are illustrated schematically as being contiguous.
Sectors 154, 156 may be separated from the sectors 150, 152
by some other number of individual sectors 159.

Under the set 134 of conditions, a segment 146b may be
transferred 142a to a sector 150. Under the conditions 134,
corresponding to case 1 112 and case 3 116, said transfer
1424 does not affect the subsequent segment 146¢, nor the
subsequent sector 152. Rather the transfer 142b occurs
without an influence of the corruption that may be included
in a transfer 1424. This condition corresponds to a short
delay 122. Thus, a corruption signature in the sector 150 will
include a value J 104c¢ in a next-to-last byte location 96¢ in
the sector 150. Likewise, a value J 1004 will be stored in the
last byte location 964 of sector 150 (see FIG. 3). Because the
delay 110 is a short delay 122, the value K 1044 that should
have been transferred along the path 1024 to the last byte
location 96d is simply lost. The value K 1044 is not written
to the subsequent sector 152 along the path 100e. The
conditions 136 corresponding to case 2 114, include the
conditions 134 of case 1 112 and case 3 116. That is, sector
I corruption occurs in the transfer 142a of the contents of a
segment 146b to a sector 150. The distinction of sector 150
and segment 146b is used for convenience, to distinguish a
logical file 132 from a physical image or map in a storage
device 140. Nevertheless, each of the segments 146 may be
expected to be of the same size as an individual sector 159.

In addition to the sector I corruption of the last byte
location 96d in the sector 150, the conditions 136 cause

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page57 of 78

US 6,195,767 B1

11

sector II corruption. Thus, the contents of the segment 146¢,
when transferred 1425 to the sector 152 of the storage device
140, demonstrate sector II corruption as illustrated in FIG. 3.
The sector I corruption 91 affects the last byte location 96d
of the sector 150. The sector II corruption 93 caused by the
transfer 142a to the sector 150 damages all of the contents
of the sector 152. As illustrated in FIG. 3, the first byte
location 98a of the sector 152 receives, along the path 100e
the spurious value K 1044. The value K 1044 should have
been written to the last byte location 96d of the sector 150.
The additional characteristic of the sector II corruption 93
(long delay corruption 93, as opposed to the short delay
corruption 91) is the placement of a value of zero as the
value L. 104e¢ in all the remaining byte locations 98 between
the second byte 94b and the last byte 984 in the sector 152.
Thus, a signature for the conditions 134 of case 1 112 and
case 3 116 is the presence of the same exact value J 104¢ in
the next-to-last byte location 96¢ and the last byte location
964 in the sector 150. The additional signature available for
case 2 114 unto the conditions 136, is the presence of a value
K 1044 in the first byte location 98a of the sector 152. The
value K 1044 is the value from the last byte location 96d of
the segment 146b in the original logical file 132. Thus, two
signature features may be identified in the sectors 150, 152
indicating corruption in the transfers 142a, 142b.

In the conditions 138 or set 138, long delay corruption 93
is present in the transfers 144a, 144D of the segments 146D
146c to respective, non-contiguous sectors 150, 154.
Accordingly, the last byte location 964 of the sector 150 will
contain a value J 104c¢ identical to that stored in the
next-to-last byte location 96c¢ of the sector 150. However,
since the segment 146 is written to a non-contiguous sector
154, the long-delay corruption 93 is not present in the sector
152 subsequent to the sector 150. Rather, a sector 154
randomly separated from the sector 150 contains the long-
delay corruption 93. Thus, case 4 118 may exist virtually
anywhere in a storage device 140.

In general, a file format managed by an operating system
64 writing to a storage device 140 controls the fragmentation
of a file 132. Periodically, defragmentation may occur. In
defragmentation, the information corresponding to contigu-
ous segments 146D, 146c may be rewritten to contiguous
sectors 150, 152 in the storage device 140. Note that the
long-delay corruption 93 may occur in different ways.

For example, the contents of a segment 1460 may be
written to a sector 150 contiguously with a transfer of the
segment 146¢ to the sector 152. The long-delay corruption
93 may occur in the following sector 152. Subsequently, the
transfer 144b may copy the segment 146¢ to a sector 154.

Alternatively, the sector 150 may initially receive the
contents of the segment 146b subject to short-delay corrup-
tion 91 (in a long-delay case, short-delay corruption 91 also
exists), while a designated, subsequent sector 154 receives
the corrupted contents of sector II corruption 93. The
contents of the segment 146c may be stored as corruption in
the sector 154. Alternatively, the contents of the segment
146c may be stored properly in the sector 154, with an
intermediate sector 152 containing the corrupted sector 11
the sector 150 containing sector I corruption 91 and 93
contents.

Referring to FIG. 6, a method 160 or process 160 is
illustrated schematically for detecting corruption in a storage
device 140 (see FIG. 5). The process 160 may be thought of
as a physical media scan 162. Alternatively, one may think
of a call 162 executed to run the process 160 of scanning the
physical media 86 (see FIG. 3).

10

15

20

25

30

35

40

45

50

55

60

65

12

Upon a call 162, a size step 164 determines the total size
of the media 86 in a storage device 140 to be tested. An
initialize step 166 may set a counter to a value of zero for
looping in accordance therewith.

A read step 162 may read an individual sector 88 of the
media 86 in order, according to the counter 166. Thus, the
count 166 begins at zero and progresses through all sectors
88, 159, in order. A test 170 reads the last two byte locations
96c, 96d in cach sector 88, 159. The test 170 determines
whether the contents of the last byte location 96d are exactly
equal to the contents of the next-to-last byte location 96¢c. A
negative response to the test 170 indicates an inequality
between the byte locations 96¢, 96d. The sector I corruption
91, or sector I corruption signature 91 is not present.
Therefore, an increment step 172 increments the counter
166. Note that a step 166 of initializing a count or creating
a count loop may also be referred to as the loop or as the
count itself.

If the increment 172 added to the count 166 exceeds the
total number of sectors 88 in the media 86, the test 174 will
detect the end of the media 86. A negative response to the
test 174 returns the process 160 to read 168 the next,
incremented sector 88 identified. A positive response to the
test 174 indicates that the media 86 is completely tested, and
results in a termination 176 or return 176 of the process 160.
The process 160 may operate as a standalone routine.
Alternatively, the process 160 may be incorporated into
other applications, such as a standard virus or corruption
scanning program that searches for other types of signatures.

A positive response to the test 170 indicates that the
short-delay corruption 91 appears to be present.
Accordingly, a subsequent read step 178 reads the next
sector 88 (e.g. sector 92, with respect to initial sector 90). A
test 180 determines whether all of the byte locations 98,
from the second byte location 98b (byte 1) through the last
byte location 984 have a value of zero. A positive response
to the test 180 indicates that long delay corruption 93 is
possible. The output 182 indicates this possibility. It is also
possible that the value of zero is properly written to the
sector 92. Thus, the output 182 does not necessarily indicate
absolutely that long-delayed corruption 93 is present.

A negative response to the test 180 indicates that the byte
locations from the second byte 98b to the last byte 98d are
not all filled with a value of zero. Thus, long-delay corrup-
tion 93 does not appear to be present. Accordingly, an output
184 indicates the possibility of short-delaying corruption 91.
After the output 182, 184, the process 160 advances by
incrementing 172 the count 166 and continuing to the end of
the medial 86.

Referring to FIG. 7, a process 190 provides a valuation of
a logical file 132. That is, the process 160 operates on a
storage device 140, and particularly on the storage medium
86 or media 86, regardless of the nature or content of
individual files 132 stored thereon. By contrast, the process
190 scans the logical files 132 in the sequence of their
respective segments 146, regardless of the nature of con-
tiguous transfers 142 or non-contiguous transfers 144.

The logical scan 192, or the call 192 of a logical scan
process 190, initiates a size step 194. The size step 194
determines the size of a particular file 132 stored in a storage
device 140 (see FIG. 5). By determining 194 the size of the
file 132, the process 190 can determine the sector-size
segments 146, with their respective boundaries 148.

A loop 196, or an initialize 196 may set a loop count to
an initial value of zero. Such iterative processes may be
implemented in a variety of ways. An initialize step 196 is

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page58 of 78

US 6,195,767 B1

13

one currently preferred, and simple, method. Subsequently,
a read step 198 reads the segment 146 corresponding to the
current count 196. As discussed previously, the segments
146 cach correspond to a sector. Nevertheless, in order to
distinguish a logical sector 146 in a file 132, the sectors 146
are referred to as segments 146. Thus, a read 198 reads the
logical sector 146 (segment 146) corresponding to the
current count 196.

Thereafter, a test 200 determines whether the values
stored in the byte locations 98 from the second byte location
98b to the last byte location 98d are all zero. A positive
response to the test 200 indicates that long-delay corruption
93 is possible. Accordingly, an output 202 provides this
feedback from the test 200.

A negative response to the test 200 indicates that the
contents of the byte locations 98b through 98d do not all
have a value of zero. Accordingly, a test 204 follows the test
200. The test 204 determines whether the last byte location
96d in a sector 88 of interest, has a value identical to that of
a next-to-last byte location 96c. A positive response to the
test 204 indicates that short-delay corruption 91 is possible.
Thus, an output 206 is provided in response to the test 204.
The output 206 indicates the possibility of short-delay
corruption 91, whether or not the long-delay corruption 93
might also be present according to the output 202.

Regardless of the outputs 202, 206, a subsequent incre-
ment step 208 increments the count 196 or loop 196 to
advance the tests 200, 204 to the next sector number
available. If the number of the next count 196 is greater than
the total size 194 determined by the size step 194, then the
test 210 so detects. That is, the test 210 determines whether
the end of the file 132 has been read 198. A negative
response to the test 210 returns the process 190 to read 198
the next available sector 146 in the file 132. Note that in each
case, a segment 146 or sector 146 in the logical file 132 will
still correspond to some particular sector 159 on a storage
device 140. Thus, a sector 88 of some physical medium 86
must always be read for the contents of any individual
segment 146 (sector 146 logically). However, tapes, hard
drives, volatile or other random access memory 20 may also
be tested, and need not be arranged by the sector scheme or
other physical media 86.

A positive response to the test 210 results in a return 212
or a completion 212 of the process 190. Accordingly, the
outputs 202, 206 may be provided in written, numerical,
automated statistical, or other formats. Alternatively, the
return 212 may result in automatic correction of the corrup-
tion 91, 93 in certain instances.

Wherefore, I claim:

1. An apparatus for detecting data corruption resulting
from defective operation of a floppy diskette controller, the
method comprising:

a storage medium containing data disposed in a series of

bytes;

a processor operably connected to the storage medium
and programmed to execute a signature detection
module, the signature detection module being effective
to detect improper storage of the bytes, wherein the
improper storage results from an error of a type causing
erroneous replication of a byte in a sector of a storage
medium;

a memory device operably connected to the processor for
storing the signature detecting module.

2. The apparatus of claim 1, wherein the memory device
stores a filter module for filtering out false positive results,
and wherein a false positive result erroneously reflects a
replication of bytes properly stored.

10

15

20

25

30

35

40

45

50

55

60

65

14

3. The apparatus of claim 1, wherein the storage medium
contains data reflecting erroneous replication of bytes unde-
tected at a time corresponding to a first writing.

4. The apparatus of claim 3, wherein the erroneous
replication remains undetected during at least one subse-
quent writing after the time of the first writing.

5. The apparatus of claim 4, wherein the at least one
subsequent writing reflects a change in type of the storage
medium.

6. The apparatus of claim 5, wherein the time of first
writing is comparatively distant from a time corresponding
to the subsequent writing.

7. The apparatus of claim 6, wherein the comparative
distance between the first writing and the subsequent writing
reflects a loss of identifying data for detecting the error, the
loss occurring after the time of first writing.

8. The apparatus of claim 4, wherein the time of first
writing occurs during a write operation to a magnetic
medium.

9. The apparatus of claim 8, wherein the magnetic
medium is a floppy diskette.

10. The apparatus of claim 1, wherein the storage medium
is configured in a computer-readable data storage device.

11. The apparatus of claim 1, wherein the storage medium
is selected from the group consisting of magnetic media,
optical media, magneto-optical media, and electronic media.

12. A method for detecting data corruption resulting from
defective operation of a floppy diskette controller, the
method comprising:

writing data as data bytes to a storage medium;

identifying a demarcation rule effective to reflect a cor-

respondence of data bytes to the sector size of the
storage medium and effective to identify a first byte, a
last byte, and a next-to-last byte corresponding to the
sector size;

scanning the data bytes in accordance with the demarca-

tion rule; and

detecting erroneous replication of bytes within a segment

of data corresponding to the sector size.

13. The method of claim 12, wherein detecting further
comprises comparing a value of the last byte, with a value
of the next-to-last byte.

14. The method of claim 12, further comprising applying
a false positive filter to reduce spurious results.

15. The method of claim 14, further comprising compar-
ing previous identical values in the segment with the value
of the last and next-to-last bytes.

16. The method of claim 14, wherein the value of the last
and next-to-last bytes is zero.

17. The method of claim 12, wherein the demarcation rule
reflects a number of bytes corresponding to a sector of an
initial storage medium controlled by the floppy diskette
controller.

18. The method of claim 17, wherein the initial storage
medium is a magnetic storage medium.

19. The method of claim 18, wherein the magnetic storage
medium is a floppy diskette.

20. The method of claim 12, wherein the data in the
storage medium is formatted in accordance with a format
scheme distinct from a sectoring scheme applied at the time
first writing.

21. The method of claim 20, further comprising compar-
ing values corresponding to a last byte and a next-to-last
byte in a segment corresponding to the sector size in the
sectoring scheme.

22. The method of claim 12, wherein scanning further
comprises executing a physical scan of the storage medium,

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page59 of 78

US 6,195,767 B1

15 16
and wherein the storage medium is an original storage 25. The method of claim 22 further comprising filtering
medium corresponding to a first writing of the data. out false positive results.
23. The method of claim 22, wherein the storage medium 26. The method of claim 23, wherein the storage medium
is attached to the floppy diskette controller. iS a magnetic storage medium.

24. The method of claim 23, wherein the magnetic storage 5
medium is a floppy diskette. I T S

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page60 of 78

Exhibit D

Case3:10-cv-04458-EMC. - Documsnghy iER IR AR AL IU N OO

US006401222B1
a2z United States Patent (10) Patent No.: US 6,401,222 B1
Adams 45) Date of Patent: *Jun. 4, 2002
(54) DEFECTIVE FLOPPY DISKETTE 5649212 A 7/1997 Kawamura et al. ... 395/570
CONTROLLER DETECTION APPARATUS 5,666,540 A 9/1997 Hagiwara et al. 395/750.05

(76)

*)

@D
(22

(63)

D
(52)
(58)

(56)

AND METHOD
Inventor: Phillip M. Adams, 313 Pleasant
Summit Dr., Henderson, NV (US)
89012
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is subject to a terminal dis-
claimer.
Appl. No.: 09/211,574
Filed: Dec. 14, 1998
Related U.S. Application Data
Continuation-in-part of application No. 08/729,172, filed on
Oct. 11, 1996, now Pat. No. 5,983,002.
Int. CL7 .o HO2H 3/05
US. Cl 714/42; 713/200; 713/2
Field of Search 714/42, 40, 25,
714/11, 8; 713/2, 200
References Cited
U.S. PATENT DOCUMENTS
3,908,099 A 9/1975 Borbas et al. 179/175.2
4,789,985 A 12/1988 Akahoshi et al. 371/11
4,942,606 A 7/1990 Kaiser et al.cccceeeeeee. 380/4
4,996,690 A 2/1991 George et al. ... 371/37.1
5,093,910 A 3/1992 Tulpule et al. . 395/575
5212,795 A 5/1993 Hardry 395/725
5,233,692 A 8/1993 Gajjar et al. 395/325
5237567 A 8/1993 Nay et al. ..occoovvennn 370/85.1
5379414 A 1/1995 Adams 395/575
5,416,782 A 5/1995 Wells et al. .. 371/21.2
5422802 A 6/1995 Hiietal. wovvereveeereneee. 371/24
5,442,753 A 8/1995 Waldrop et al. 395/842
5,544,334 A * 8/1996 Nollcccccoevviniiinnnns 395/309
5,619,642 A 4/1997 Nielson et al. 395/182.04

Request
Device Driver Commands
Application Commands To

The Floppy Device

OTHER PUBLICATIONS

NEC Electronics, Inc.,, “IBM-NEC Meeting for uPD765A/
#PD72065 Problem” (U.S.A., May 1987).

Intel Corporation, Letter to customer from Jim Sleezer,
Product Manager, regarding FDC error and possible solu-
tions (U.S.A., May 2, 1988).

Adams, Phillip M., Nova University, Department of com-
puter Science, “Hardware—Induced Data Virus,” Technical
Report TR-881101-1 (U.S.A. Nov, 14, 1988).

Advanced Military Computing, “Hardware Virus Threatens
Database,” vol. 4, No. 25, pp. 1&8 (U.S.A. Dec. 5, 1988).
Intel Corporation, “8237A/8237A-4/8237A-5 High Perfor-
mance Programmable DMA Controller” (U.S.A., date
unknown).

Intel Corporation, “8272A Single/Double Density Floppy
Disk Controller” (U.S.A., date unknown).

* cited by examiner

Primary Examiner—Dieu-Minh Le
Assistant Examiner—Rita A Ziemer
(74) Attorney, Agent, or Firm—Pate Pierce & Baird

(7) ABSTRACT

A system and method which provides a complete software
implementation of a detection process that is capable of
detecting defective Floppy Diskette Controllers (“FDCs”)
without visual hardware inspection or identification. The
approach taken includes a multi-phase strategy incorporat-
ing programmatic FDC identification, software DMA
shadowing, defect inducement, and use of a software decod-
ing network which allows the implementation of the inven-
tion to adjust to a wide range of computer system perfor-
mance levels. A method and apparatus for detecting and
preventing floppy diskette controller data transfer errors in
computer systems is also provided. The approach taken may
involve software DMA shadowing and the use of a software
decoding network.

20 Claims, 7 Drawing Sheets

- 42

Reprogram
Timer To
interrupt

Faster

Unmodified Floppy Device }
Driver Routine/Function

Interrupt Rate

“Unhook"
Timer
Interrupt

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page62 of 78

U.S. Patent Jun. 4, 2002 Sheet 1 of 7 US 6,401,222 B1
b
14
Vs 22 K
.) \
Central . ’c 1ok Main
Pro::ﬁ,sifmg g—p System Cloc Memory
15 H
< MAIN COMPUTER SYSTEM BUS ' >
21a
R) H
\\ DRQ
\ 1;’3‘;2%,3 (DMA Request Channel 2) Direct Memory
Access
Controller (DMA) Controller
(FDC) < DACK |
" (DMA Acknowledge Channel 2) \ \
18
21b
Media Drive
(e.g. Floppy
Diskette Drive)
10

Fig. 1

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page63 of 78

U.S. Patent

Application
Program

Operating
System

Drivers

Hardware
Device

Jun. 4, 2002 Sheet 2 of 7 US 6,401,222 B1
25a 25b
\ \\'; ——————————— RN
‘ Program Application \ Program 24
Code Program Data J
IPANE
1
)
E8 R !
S I < (
gg | & 1/
] ~ N
e § I E)
= ©
272 \ LS 27b | Q l
l | i
- File ™~ Kernel Data
System Buffers
26
.g 3 = l l
q § 3 i I
1 .
29a SE £s : 3 |
>0 C®n | 2] |
) g0 29b | c
a® LS . g l
< / I =~ (
+ | E :
Timer Read/Write |Interrupt Service : q 1
Device || Routines Routines | '
Driver Synchronous)| (Asynchronous) I 18 :
{
A LS _Z \ | /
DMA Clommands—> DMA Cantroller
System i :213
Clock ! i
] : 1
) Interrupt— Floppy Diskette |o1p
22 \—FDC Command——— Controller

Fig. 2

.____________'g\

20

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page64 of 78

US 6,401,222 B1

"Hook" Timer A 42

TimerTo |~ _ 44

U.S. Patent Jun. 4, 2002 Sheet 3 of 7
Request
Device Driveg RCommands
Application Commands To Interrupt
The Floppy Device
36 Reprogram
32 Interrupt
\ Faster
34 Modification J
Flo,)4 y
29b ~_| Def,-ﬁe Unmodified Floppy Device }
Driver Driver Routine/Function
34 —{ Modification

|

Fig. 3

Reprogram

Timer To Return }+—50

To Normal

Interrupt Rate

Y

"Unhook"
Timer
Interrupt

_/’—‘52

»

v

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page65 of 78

U.S. Patent

54

\

Jun. 4, 2002

Modification

Timer Device
Driver
Interrupt

Service Routine

(ISR)

v

4

Sheet 4 of 7

{

US 6,401,222 B1

Read DMA
Controller's
Transfer
Count

f56

-

Delay
Transfer
Of Last Data
Byte

62
Transfer
\\<Time > gayNe |

Microseconds

Yes

Fig. 4

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page66 of 78

U.S. Patent Jun. 4, 2002 Sheet 5 of 7 US 6,401,222 B1

1
172
r & PN [% WaitFor=—7 %
__________ i \ Next INT J
i Curéent ?MA :: /] EXlt::’;:lz;tme __—Wa:t For_ J ;
l e ‘1 | [Exit Routine Z | l':;e”ﬁ_vr W
: '\ | [Bdt Routine| [|NextINT
170~ X Addr
{ :1
:
| ¥
! i

| »¢
- No
Next-To-
\ ;st Byte ‘\ *—

Delay DMA

Channel 2
60" —— (Read Timer

Count)

]

|

1

1

1

I

I

|

|

|

H

]

" ee l

[

en e 1
End-Of-Sector y E

' |/ |Range Shadow) DRQ? D> .
____________ /s End-Of-Sector |
—/'/ Range (Shadow) :
|

{ |
1 |
1 1
| |
{ |
I]
| |
I 1
| |
t I
[} 1
1 {
1 |
] 1
| |
]]
] H
1]

62 Transfer
’X‘<T:me >32
Microseconds

Yes

54 90 —_{ Exit)

Fig. 5

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page67 of 78

U.S. Patent Jun.4,2002 Sheet 6 of 7 US 6,401,222 Bl
100
Issue FDC 24
102 —~_/| Command 105
0x10 /
Save to
104 = Recheck for
Stg;gg - No False Negative
Programming
Yes; I

110 Hook Timer
~ __|INT (INT_0x8) &

Increase Timer

Interrupt Rate

A
1) Format Last 10 Bytes Of
112—_ | ‘Sector Write Buffer With:
"0123456789"
2) Write Sector Write Buffer}
Using BIOS Diskette
Interface

116
Increment /

114 Detectable Write
Yes Error Count
And Increment
Number Of
No Sectors Written

Read Previously Written

118 —\ Sector Using BIOS Diskette
Interface And Increment

Number Of Sectors Written

‘grtens
7 ead
120 Buffer=_ > No
Proper test
Pattern byte?

Yes

Increment Number Of
Undetected FDC Errors
122 —~__| (Written Data Was
Corrupted)

le

of Sectors No
Written = # For>

117

Display Results Of Test
Including Whether FDC

106 __ Defective, and if
False Report

108 i
Fig. 6

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page68 of 78

U.S. Patent Jun. 4, 2002 Sheet 7 of 7 US 6,401,222 B1
125
— __ 124
Timer ISR
anterrupt Service Routinej

Read DMA Count Va 126
and
Read Timer Count

.
«

DMA/‘ Cko nt
ui
128 Changed :
R Time > Bytg’ N
Transfer Time

130

DMA Count
Changed?

132 MA Count

Within \’

End-Of-Sector” No
Range?

134

DMA
Count=0

?

136 Set Channel 1
_| DMA Active
OR Mask
hannel 2 DMA
For More
Than 32 uSec

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page69 of 78

US 6,401,222 B1

1

DEFECTIVE FLOPPY DISKETTE
CONTROLLER DETECTION APPARATUS
AND METHOD

RELATED INVENTIONS

This application is a Continuation in Part of my
co-pending application Ser. No. 08/729,172 filed on Oct. 11,
1996 now U.S. Pat. No. 5,983,002 for Defective Floppy
Diskette Controller Detection Apparatus and Method.

BACKGROUND

1. The Field of the Invention

This invention relates to the detection of defective Floppy
Diskette Controllers (“FDCs”) where an undetected data
error causes data corruption and, more particularly, to novel
systems and methods implemented as a software-only detec-
tion mechanism which eliminates the need for visual inspec-
tion or identification of the FDCs.

2. The Background Art

Computers are now used to perform functions and main-
tain data critical to many organizations. Businesses use
computers to maintain essential financial and other business
data. Computers are also used by government to monitor,
regulate, and even activate, national defense systems. Main-
taining the integrity of the stored data is essential to the
proper functioning of these computer systems, and data
corruption can have serious (even life threatening) conse-
quences.

Most computer systems include media drives, such as
floppy diskette drives for storing and retrieving data. For
example, an employee of a large financial institution may
have a personal computer that is attached to the main
system. In order to avoid processing delays on the
mainframe, the employee may routinely transfer data files
from a host system to a local personal computer and then
back again, temporarily storing or backing up data on a local
floppy diskette or other media. Similarly, an employee with
a personal computer at home may occasionally decide to
take work home, transporting data away from and back to
the office on a floppy diskette.

Data transfer to and from media, such as a floppy diskette,
is controlled by a device called a Floppy Diskette Controller
(“FDC”). The FDC is responsible for interfacing the com-
puter’s Central Processing Unit (“CPU”) with a physical
media drive. Significantly, since the drive is spinning, it is
necessary for the FDC to provide data to the drive at a
specified data rate. Otherwise, the data will be written to a
wrong location on the media.

The design of an FDC accounts for situations occurring
when a data rate is not adequate to support rotating media.
Whenever this situation occurs, the FDC aborts the write
operation and signals to the CPU that a data under run
condition has occurred.

Unfortunately, however, it has been found that a design
flaw in many FDCs makes impossible the detection of
certain data under run conditions. This flaw has, for
example, been found in the NECK 765, INTEL 8272 and
compatible Floppy Diskette Controllers. Specifically, data
loss and/or data corruption may routinely occur during data
transfers to or from diskettes (or tape drives and other media
attached via the FDC), whenever the last data byte of a
sector being transferred is delayed for more than a few
microseconds. Furthermore, if the last byte of a sector write
operation is delayed too long then the next (physically
adjacent) sector of the media will be destroyed as well.

10

15

20

25

30

35

40

45

50

55

60

65

2

For example, it has been found that these faulty FDCs
cannot detect a data under run on the last byte of a diskette
read or write operation. Consequently, if the FDC is pre-
empted or otherwise suspended during a data transfer to the
diskette (thereby delaying the transfer), and an under run
occurs on the last byte of a sector, the following occur: (1)
the under run flag does not get set, (2) the last byte written
to the diskette is made equal to either the previous byte
written or zero, and (3) a successful Cyclic Redundancy
Check (“CRC”) is generated on the improperly altered data.
The result is that incorrect data is written to the diskette and
validated by the FDC. Herein, references to a floppy diskette
may be read as “any media” and a floppy diskette drive is but
a specific example of a media drive controllable by an FDC.

Conditions under which this problem may occur have
been identified in connection with the instant invention by
identifying conditions that can delay data transfer to or from
the diskette drive. In general, this requires that the computer
system be engaged in “multi-tasking” operation or in over-
lapped input/output (“I/O”) operation. Multi-tasking is the
ability of a computer operating system to simulate the
concurrent execution of multiple tasks.

Importantly, concurrent execution is only “simulated”
because only one CPU exists in a typical personal computer.
One CPU can only process one task at a time. Therefore, a
system interrupt is used to rapidly switch between the
multiple tasks, giving the overall appearance of concurrent
execution.

MS-DOS and PC-DOS, for example, are single-task oper-
ating systems. Therefore, one could argue that the problem
described above would not occur. However, a number of
standard MS-DOS and PC-DOS operating environments
simulate multi-tasking and are susceptible to the problem.

In connection with the instant invention, for example, the
following environments have been found to be prime can-
didates for data loss and/or data corruption due to defective
FDCs: local area networks, 327x host connections, high
density diskettes, control print screen operations, terminate
and stay resident (“TSR”) programs. The problem also
occurs as a result of virtually any interrupt service routine.
Thus, unless MS-DOS and PC-DOS operating systems
disable all interrupts during diskette transfers, they are also
highly susceptible to data loss and/or corruption.

The UNIX operating system is a multi-tasking operating
system. It has been found, in connection with the instant
invention, how to create a situation that can cause the
problem within UNIX. One example is to begin a large
transfer to the diskette and place that transfer in the back-
ground by beginning to process the contents of a very large
file in a way that requires the use of a Direct Memory Access
(“DMA”) channel of a higher priority than that of the floppy
controller’s DMA channel. These higher priority processes
might include, for example, video updates, multi-media
activity, etc. Video access forces the video buffer memory
refresh logic on DMA channel 1, along with the video
memory access, which preempts the FDC operations from
occurring on DMA channel 2 (which is lower priority than
DMA channel 1).

This type of example creates an overlapped I/O environ-
ment and can force the FDC into an undetectable error
condition. More rigorous examples include a concurrent
transfer of data to or from a network or tape drive using a
high priority DMA channel while the diskette transfer is
active. Clearly, the number of possible error producing
examples is infinite, yet each is highly probable in this
environment.

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page70 of 78

US 6,401,222 B1

3

For all practical purposes the OS/2 and newer Windows
operating systems can be regarded as UNIX derivatives.
They suffer from the same problems that UNIX does. Two
significant differences exist between these operating systems
and UNIX.

First, they both semaphore video updates with diskette
operations tending to avoid forcing the FDC problem to
occur. However, any direct access to the video buffer, in
either real or protected mode, during a diskette transfer will
bypass this feature and result in the same faulty condition as
UNIX.

Second, OS/2 incorporates a unique command that tends
to avoid the FDC problem by reading back every sector that
is written to the floppy diskette in order to verify that the
operation completed successfully. This command is an
extension to the MODE command (MODE DSKT VER=
ON). With these changes, data loss and/or data corruption
should occur less frequently than otherwise. However, the
FDC problem may still destroy data that is not related to the
current sector operation.

A host of other operating systems are susceptible to the
FDC problem just as DOS, Windows, Windows 95, Win-
dows 98, Windows NT, 0S/2, and UNIX. However, these
systems may not have an installed base as large as DOS,
Windows, OS/2 or UNIX, and may, therefore, receive less
motivation to address the problem. Significantly, as long as
the operating systems utilize the FDC and service system
interrupts, the problem can manifest itself This can occur in
computer systems that use virtually any operating system.

Some in the computer industry have suggested that data
corruption by the FDC is extremely rare and difficult to
reproduce. This is similar to the argument presented during
the highly publicized 1994 defective INTEL Pentium sce-
nario. Error rate frequencies for the defective Pentium
ranged from microseconds to tens-of-thousands of years!
The FDC problem is often very difficult to detect during
normal operation because of its random characteristics. The
only way to visibly detect this problem is to have the FDC
corrupt data that is critical to the operation at hand.
However, many locations on the diskette may be corrupted,
yet not accessed. In connection with the instant invention,
the FDC problem has been routinely reproduced and may be
more common than heretofore believed.

Computer users may, in fact, experience this problem
frequently and not even know about it. After formatting a
diskette, for example, the system may inform the user that
the diskette is bad, although the user finds that if the
operation is performed again on the same diskette every-
thing is fine. Similarly, a copied file may be unusable, and
the computer user concludes that he or she just did some-
thing wrong. For many in this high-tech world, it is very
difficult to believe that the machine is in error and not
themselves. It remains typical, however, that full diskette
back-ups are seldom restored, that all instructions in pro-
grams are seldom, if ever, executed, that diskette files
seldom utilize all of the allocated space, and that less
complex systems are less likely to exhibit the problem.

Additionally, the first of these faulty FDCs was shipped in
the late 1970°s. The devices were primarily used at that time
in special-purpose operations in which the FDC problem
would not normally be manifest. Today, on the other hand,
the FDCs are incorporated into general-purpose computer
systems that are capable of concurrent operation (multi-
tasking or overlapped I/O). Thus, it is within today’s envi-
ronments that the problem is most likely to occur by having
another operation delay a data transfer to a diskette. The

10

15

20

25

30

35

40

45

55

60

65

4

more complex a computer system, the more likely it is that
one activity will delay another, thereby creating an FDC
error condition.

In short, the potential for data loss and/or data corruption
is present in all computer systems that utilize the defective
version of this type of FDC, presently estimated at about 50
million personal computers. The design flaw in the FDC
causes data corruption to occur and manifest itself in the
same manner as a destructive computer virus. Furthermore,
because of its nature, this problem has the potential of
rendering even secure databases absolutely useless.

Various conventional ways of addressing the FDC
problem, such as a hardware recall, have significant asso-
ciated costs, risks and/or disadvantages. In addition to a
solution to the FDC problem, an apparatus and method are
needed to accurately, rapidly, reliably, and correctly, identify
any defective FDC. The identification of defective FDCs is
the first step in attempting to solve the problem of defective
FDCs. A solution method and apparatus for repairing a
defective FDC are disclosed in U.S. Pat. No. 5,379,414
incorporated herein by reference.

BRIEF SUMMARY AND OBJECTS OF THE
INVENTION

In view of the foregoing, it is a primary object of the
present invention to provide a method and apparatus for
detecting defective Floppy Diskette Controllers (“FDCs”).

It is another object of the present invention to provide a
software (programmatic) solution that may be implemented
in a general purpose digital computer, which eliminates the
need for visual inspection and identification of the defective
FDCs as well as the need for any hardware recall and
replacement.

Consistent with the foregoing objects, and in accordance
with the invention as embodied and broadly described
herein, an apparatus and method are disclosed in one
embodiment of the present invention as including data
structures, executable modules, and hardware, implement-
ing a detection method capable of immediately, repeatedly,
correctly, and accurately detecting defective FDCs.

The apparatus and method may rely on 1) determining
whether or not the FDC under test is a new model FDC
(potentially non-defective), and 2) if the FDC under test is
not a new model FDC, installing an interposer routine to
force the FDC to delay a transfer of a last data byte of a
sector either to or from the floppy diskette whose controller
is tested. A test condition is thus created in the hardware to
cause defective FDCs to corrupt the last data byte of the
sector. A second portion of an apparatus and method may
confirm a diagnosis. Thus the apparatus and method may
ensure that old-model non-defective FDCs are not wrongly
identified as defective.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects and features of the
present invention will become more fully apparent from the
following description and appended claims, taken in con-
junction with the accompanying drawings. Understanding
that these drawings depict only typical embodiments of the
invention and are, therefore, not to be considered limiting of
its scope, the invention will be described with additional
specificity and detail through use of the accompanying
drawings in which:

FIG. 1 is a schematic block diagram of an apparatus
illustrating the architecture of a computer system for testing
a floppy diskette controller (“FDC”)in accordance with the
invention;

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page71 of 78

US 6,401,222 B1

5

FIG. 2 is a schematic block diagram illustrating software
modules executing on the processor and stored in the
memory device of FIG. 1, including application programs,
operating systems, device drivers and computer system
hardware such as a floppy diskette;

FIG. 3 is a schematic block diagram of a flow chart
depicting one presently preferred embodiment of certain
modifications that may be applied to a diskette device driver
in order to force an otherwise undetected error condition to
occur in a defective FDC, thus enabling the defective FDC
detection apparatus and method of the present invention to
be activated,

FIG. 4 is a schematic block diagram of a flow chart
depicting one presently preferred embodiment of certain
modifications that may be made to a timer Interrupt Service
Routine (“ISR”) to allow timing of a transfer byte’s DMA
request and DMA acknowledge (DREQ/DACK) cycle in
order to ensure that proper conditions exist to create data
corruption associated with defective FDCs in accordance
with the present invention;

FIG. § is a schematic block diagram of a flow chart
depicting one presently preferred embodiment of a software
decoding network (software vector-table) for use in connec-
tion with a defective FDC detection apparatus and method in
accordance with the present invention, the software decod-
ing network having one code point/entry for each possible
transfer byte in a sector;

FIG. 6 is a schematic block diagram of a flow chart
depicting one presently preferred embodiment of an appli-
cation implementation of the apparatus and method of FIGS.
3 and 4, wherein a main “driver” portion of an application
forces an undetected error condition in a defective FDC
enabling activation of a the defective FDC detection system
in accordance with the invention; and

FIG. 7 is a schematic block diagram of a flow chart
depicting one presently preferred embodiment of certain
modifications that may be made to a timer Interrupt Service
Routine embedded within the application of FIG. 6 to allow
timing of a last byte’s DREQ/DACK cycle, ensuring that
proper conditions exist to create data corruption associated
with defective FDCs in accordance with the present inven-
tion.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

It will be readily understood that the components of the
present invention, as generally described and illustrated in
the Figures herein, could be arranged and designed in a wide
variety of different configurations. Thus, the following more
detailed description of the embodiments of the system
apparatus and method of the present invention, as repre-
sented in FIGS. 1 through 7, is not intended to limit the
scope of the invention, as claimed, but it is merely repre-
sentative of the presently preferred embodiments of the
invention.

The presently preferred embodiments of the invention
will be best understood by reference to the drawings,
wherein like parts are designated by like numerals through-
out.

The architecture of an apparatus 10, including a computer
system implementing one embodiment of the invention is
illustrated in FIG. 1. A Central Processing Unit (“CPU”) 12
and main memory 14 may be connected by a bus 15 inside
a computer system unit. Instructions (executables) and data
structures used by the CPU 12 are kept in main memory 14
during computer work sessions. Main memory 14 is,

10

15

20

25

35

40

45

50

55

60

65

6

however, not a permanent storage place for information; it is
active only when the apparatus 10 (computer system) is
powered up (on). Thus, to avoid losing data, data must be
saved on some type of non-volatile storage device. For
example, the apparatus may use a “hard disk” storage device
permanently installed in the computer system. A computer
system 10 may have at least one floppy diskette drive 16 that
receives a removable floppy diskette (magnetic storage
medium). The floppy diskette likewise may be used for
“permanent” (non-volatile) storage of data or software
(executables) outside of the computer system 10. Flexible
(floppy) diskettes are especially useful for transferring data
and information between separate computer systems 10.

In transferring data to a floppy diskette, the CPU 12 may
program a Direct Memory Access (“DMA”) controller 18
for an input/output (“I/O”) transfer. The CPU 12 issues a
command to a Floppy Diskette Controller (“FDC”) 20 to
begin the I/O transfer, and then waits for the FDC 20 to
interrupt the CPU 12 with a completion interrupt signal. It
is also possible to perform Programmed I/O (“PIO”) directly
between the CPU 10 and the FDC 20 without involving the
DMA controller 18. This latter approach is seldom used; the
majority of computer systems 10 employ DMA for 1/O
transfers to and from the floppy diskette drive 16. The
invention will thus be described below with particular
reference to the DMA controller 18. If PIO is employed,
however, then an I/O transfer is totally controlled by the
CPU 12 because the CPU 12 is required to pass each and
every data byte to the FDC 16. As a result, the “DMA
shadowing” system and method in accordance with the
invention may be directly applied to a PIO data stream. This
is readily tractable because the CPU 12 already is control-
ling the I/O transfer, as will become more readily apparent.

A computer system 10 may have a system clock 22. The
system clock 22 is beneficial when initiating an I/O transfer
to the diskette drive 16 because one must not only control
the data transfer, but also a drive motor. In this regard, it is
important to know when the diskette drive motor has
brought a diskette’s spin rate up to a nominal RPM required
for a data transfer to be successful.

For example, in IBM Personal Computers and
“compatibles,” the system clock 22 interrupts the CPU 12 at
a rate of 18.2 times per second (roughly once every 54.9
milliseconds). This interrupt is used to determine such things
as diskette drive motor start and stop time. There are also a
host of other time-dependent operations in the computer
system 10 that require this granularity of timing.

One presently preferred embodiment of an association
between application programs 24 (executables), operating
systems 26, device drivers and hardware is depicted in FIG.
2. The example presented corresponds to a floppy diskette
having a controller 16.

A system suitable for implementing the invention may
include an application program 24 including both executable
code 25a and associated data 25b. The application 24 may
interface with the hardware apparatus 10 through an oper-
ating system 26. The operating system may include a file
system 27a as well as selected buffers 27b. The file system
27a may include an executable for file system management
as well as operating system interfacing.

The file system 274 may issue commands to drivers 28.

The drivers 28 may include a timer device driver 29a,
including a timer ISR, interfacing to the system clock 22.
Likewise, a media drive driver 29b, alternatively referred to
as a media driver 295 may be included. The media driver
may interface with a floppy diskette drive or other media

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page72 of 78

US 6,401,222 B1

7

drive 16 to maintain persistent storage on media 17.
Although a media drive 16 may typically relate to floppy
diskettes, tape drives and other magnetic media may also be
used in an apparatus and method in accordance with the
invention.

The media driver 295 may be responsible for sending
instructions and control signals to the media drive controller
20, which is typically embodied as a floppy diskette con-
troller 20. Similarly, the media driver 295 may instruct and
control the DMA controller 18. The DMA controller man-
ages data transfers between the floppy diskette controller
(FDC 20) and the main memory device 14. A DMA request
(DRQ;DREQ 214) may pass from FDC controller 20 to the
direct memory access controller 18 (DMA controller 18).
Likewise, a DMA acknowledge 21b or acknowledgment
21b, alternatively referred to as a (DACK 21b) may be
returned from the DMA controller 18 to the FDC 20.

Referring now to FIGS. 3-5, and more FIGS. 3 and 4, a
method in accordance with the present invention include a
module 32, one of several interposer routines 34, which is
placed between an application’s 24 request 36 for floppy
service and a floppy device driver 29b. The interposer
routine 32 is actually a new or modified device driver that
forces certain undetected FDC data corruption conditions to
exist. As shown, the interposer 32 first tests 40 whether an
operation requested 36 is a floppy diskette write operation.
Read operations are equally susceptible to the problem and
may be used in the detection process, if desired. If so, the
major function of the interposer 32 is to insert itself between
the application request 36 for floppy service and the floppy
device driver 295 that will service the request. In a PC/MS-
DOS environment, this can be accomplished by “hooking”
the INT 0x13 interrupt vector and directing it to the FDD
prefix 32 or interposer routine 32. Reprogramming 44 the
timer 22 to interrupt faster (e.g., every 4—7 milliseconds)
than normal (e.g. 54.9 milliseconds).

As will become more fully apparent from the following
discussion, once a floppy write operation is detected, in a test
40 a software decoding network call vector of the timer
interrupt 54 (see FIGS. 4-5) is preferably installed. The
current byte count is read 56, and DMA shadowing 58
begins. When a test 58 shows that a current DMA transfer
count (countdown) has reached 0, then the interposer routine
54 delays 60 the DMA transfer of the last byte of the sector
transfer. The delay continues until a test 62 determines that
the elapsed time is greater than the maximum time required
for a data byte to be transferred to the medium 17 (e.g. a
low-density diskette; >32 uSec).

This delay 60 forces defective FDCs 20 into an undetec-
ted data corruption condition. This condition can be tested
120 by reading back 118 the written data to see whether the
last byte or the next-to-the-last byte was actually written to
the last byte location of the sector.

Referring again to FIG. 3, the system clock 22 may be
reprogrammed 50 in a suffix routine 46 appended to the
floppy device driver 29b. The system clock 22 may then
interrupt normally (e.g., every 54.9 milliseconds). The timer
interrupt 54 is “unhooked” 50 until the test 40 reports the
next floppy write operation.

One could allow the timer 22 (clock 22) to always
interrupt at the accelerated rate. Then, a check the timer
Interrupt Service Routine (“ISR”)29¢(see FIG. 4), within the
timer device driver 294, may then determine whether a
media (e.g. diskette) write operation is active. Likewise, it is
possible to randomly check to see if the last byte of a floppy
sector write operation is in progress. However, the foregoing

10

15

20

25

30

35

40

45

50

55

60

65

8

method has superior efficiency and accuracy in creating the
condition required for the detection of defective FDCs.

As used herein, “DMA shadowing” may be thought of as
programmatic CPU 12 monitoring of data (byte) transfers
and timing the last byte of a sector’s DREQ 21a to DACK
21b signals. Importantly, there are, of course, a number of
ways of determining when the DREQ 21 a is present and
when the DACK 21b is present. The present invention may
include the use of any “DMA shadowing” whether the
DREQ 21a and DACK 21b signals are detected at the DMA
controller 18, CPU 12, system bus 15 or FDC 20. This
includes both explicit means, and implicit means.

For example, inferring the state of the DREQ/DACK
cycle is possible from various components in the system that
are triggered or reset from transitions of such signals 21a,
21b. In one embodiment the DACK 21 may cause a
Terminal Count (“TC”) signal to be asserted by the DMA
controller 18. Therefore, one may imply from the detection
of the TC that a DACK 21b has occurred.

Whenever an application 24 requests a write operation of
the media drive 16, the system clock 22 may be repro-
grammed to interrupt, for example, every 4 to 7 millisec-
onds. Referring again to FIGS. 4-5, each time the system
clock 22 interrupts, the current byte count in the transfer
register (countdown register) DMA controller 18 is read 56.
Once the test 58 indicates that the byte counter has reached
the last byte, the signal transition from DREQ 21a to DACK
21b may be timed and accordingly delayed 60. This transi-
tion may be forced to be greater than the maximum time
required to transfer one data byte as indicated in the test 62.

Therefore, defective FDCs 20 are forced into an undetec-
ted data corruption state. This state may be detected by
writing known data patterns to the next-to-the-last and the
last data bytes. Reading the data back will reveal which of
the two data bytes was stored in the last byte of the sector.
Finally, it is possible to also detect defective FDCs 20 by
significantly increasing the delay time during the transfer of
the last byte of a sector. This forces the next physically
adjacent sector to be zeroed out except for the first byte of
that sector.

For the system to maintain proper operation, an interposer
routine 34 should save the original INT 0x13 (Hex 13th
interrupt vector) contents (address of the original INT 0x13
Interrupt Service Routine) and invoke the original when
necessary. Additional aspects of the interposer function 34
are discussed below in connection with other features of the
device driver 29b.

This implementation of the apparatus and method of the
present invention is contemplated for use on an IBM Per-
sonal Computer running the PC/MS-DOS operating system.
Versions have, however, been developed to operate in the
Windows, OS/2 and UNIX environments and may be
embodied for other operating systems. The invention is not
limited to use with any particular operating system, and
adaptations and changes which may be required for use with
other operating systems will be readily apparent to those of
ordinary skill in the art.

As depicted graphically in FIG. 4 below, a timer ISR
routine 29¢ is used for servicing the accelerated interrupt
rate of the system clock 22. The reason that the system clock
interrupt rate is accelerated is that during a normal 512 byte
data transfer (the typical sector size) 16 microseconds are
required for each data byte to be transferred to the FDC
(High Deunsity Diskette Mode). Therefore, a typical sector
transfer requires 512 times 16 microseconds, or 8,192
microseconds. If the diskette is a low density diskette then

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page73 of 78

US 6,401,222 B1

9

the sector transfer time is doubled to 16,384 microseconds
(512 times 32 microseconds) because the FDC has half of
the amount of data to store in the same rotational time frame
(typically 360 RPM).

Referring to FIG. §, the timer ISR routine 29¢ within the
timer device driver 294 with its prefix 54 performs checks on
the system 10 to determine if the system 10 is actually
transferring data to the FDC 20. If a sector transfer is not in
progress then the timer ISR prefix 54 exits immediately.
However, if a sector transfer is in progress then the timer
ISR prefix 54 obtains the remaining byte count of the sector
transfer 70 and vectors (jumps) through the software decod-
ing network 72 (DMA count table 72) to an appropriate
processing routine 84, 86, 88.

Although the steps 56, 58 of the module 54 may be
implemented with the timer 22 continually interrupting
every 8, 16, or 32 microseconds. This level of interrupts may
totally consume a PC’s processing power, and on most PCs
could not be sustained. Thus, in order to perform DMA
shadowing without affecting the total system performance it
is important to allow normal operations to continue as usual.
It is desirable to have an interrupt (the system clock 22) that
will interrupt close to the end of the sector transfer so that
the DREQ 214 to DACK 215b timing may be determined on
the last byte of the sector transfer.

Thus, it is possible to DMA shadow 58 all 512 bytes
during a sector transfer, but that would cause the CPU to be
totally consumed during the entire sector transfer time. The
potential of losing processing activities elsewhere in the
system are greatly increased, as in serial communications.
Therefore, the clock interrupt routine 29¢ or method 29¢ of
FIG. § may reduce the CPU involvement to a bare minimum
during those floppy write operations with DMA Shadowing.
Significantly, the timing may be adjusted to any number of
bytes of a sector transfer, from a few bytes to the entire
sector count.

One operation performed in the timer ISR routine 29c¢ is
to vector through the software decoding network 72 to the
appropriate processing routine 84, 86, 88. This process is
illustrated graphically in FIG. 5. The software decoding
network 72 (software vector-table 72) has one code point/
entry 74, 80, 82 for each possible transfer byte in the sector.

The timer interrupt rate can now be in terms of 10°s or
100’s of byte transfer times. The vector table 72 may cause
the program execution of the CPU 12 to enter a cascade 86
of DREQ 21a/DACK 21b checks only when the transfer
(sector) will complete prior to the next timer interrupt. In
short, the first entries 74 in the vector table 72 will return 84,
since another timer interrupt will occur before the sector
transfer completes. The latter entries 80, within the desired
range, will cascade 86 from one DREQ 21a/DACK 21b
detection to another (shadowing 58 the DMA transfers) until
the last byte is transferred.

On the last byte being transferred, the data byte may be
delayed by either activating a higher priority DMA 18
channel or masking the DMA channel of the FDC 20.
Although these two techniques are the simplest to program,
numerous alternatives may be used to delay 60 data transfers
on the DMA 18 channel of the FDC 20, in accordance with
the invention.

This software decoding network process 54 is the fastest
known software technique for decoding and executing time-
dependent situations. Space in the memory space 14 (e.g. the
software decoding network vector table 72) is traded for
processing time, the amount of time it would take for one
routine to subsume all functionality encoded in each of the

10

15

20

25

30

35

40

45

50

55

60

65

10

routines 84, 86, 88 vectored to through the software decod-
ing network vector table 72.

As indicated above, the entire software decoding network
table 72 may be initially set to the address of an “exiting
routine 84.” Then depending upon how slow or fast the
system clock 22 interrupts, a certain number of the lower-
indexed entries 80 of the table 72 may be set to the address
of a processing routine 86. These processing routines 86
may be identical and sequentially located in the routine 54.
Thus, the software decoding network vector table 72 may
simply vector the timer ISR routine 29¢ within the driver
29a to the first of n sequentially executed processing rou-
tines. Here, n represents the number of bytes remaining in
the sector transfer. In this way the last few bytes of the sector
transfer can be accurately monitored (DMA Shadowing 58)
without significantly affecting overall system performance.

Each of the processing routines 86, except the last one 88,
may perform exactly the same function. It is not necessary
to be concerned with the timing between the DREQ 214 and
DACK 215 signals until the very last data byte of a transfer.
Therefore, the routines 86, 88 above “shadow” 58 the
operation of the DMA until the last byte (e.g. corresponding
to entry 82 of the vector 72) at which time the DMA channel
of the FDC 20 is delayed as previously described.

Thus, through software DMA shadowing, it is possible to
reliably determine when the last byte of the transfer is about
to be transferred. Therefore, it is possible to force the last
data byte’s transfer to be delayed. An alternative approach
may include a specialized application program 24 to control
all aspects of the operation of the media drive 16, e.g. floppy
diskette drive 16. This may include a transfer delay of a last
byte, as indicated in FIGS. 6 (main application) and 7 (timer
interrupt service routine). All aspects of the previous
approach may be present. However, here they may be
collected into a single application program 24 performing
the required functions. The application program 24 may
reprogram the system clock to interrupt at an accelerated
rate and services the interrupt itself. The application pro-
gram may then begin a repeated set of diskette write
operations using the BIOS interface interrupt (Ox13) and
then read the written sectors back. Once the sector has been
written and read back the data is compared to determine
whether or not an undetected error has occurred. A running
total of both detected and undetected errors may be output
to a display.

Referring now to FIG. 6, an application 24 may include
steps 110-117. Alternatively, preprocessing may begin at an
entry point 100 leading to an initial command 102. Com-
mand 102 is effective to request of a floppy diskette con-
troller (FDC) 20 an identification. A status return of 0x90
(hexadecimal 90) should indicate that a FDC 20 is not of the
type that is per se defective. However, faulty programming
has now falsified the response fed to the test 104 in certain
chips. Therefore, the command 102 may give rise to a false
status return of 0x90 hexadecimal 90. This return does not
guarantee that an FDC 20 is not defective.

Thus, a test 104 does not actually determine whether or
not the status of an FDC 20 is defective. A negative response
instead may be saved 105 to establish false negative
responses programmed in by manufacturers. The display
step 106 may include selected post processing to output
results of the application 24. Results may include, for
example, an indication of whether the FDC 20 being tested
is defective or not and whether a false negative response was
given to test 104, in view of the results of the test 112.
Accordingly, a status not equal to a hex 80 would ordinarily

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page74 of 78

US 6,401,222 B1

11

result in the test 104 signifying that an FDC 20 is not
defective. The steps 105, 106 thereafter verify defectiveness
and improper circumvention of the test 104.

After to the test 104, the application 24 advances to a hook
110. The hook 110 is effective to interpose a timer prefix 124
(see FIG. 7) corresponding the prefix 34 of FIG. 3, to be
installed to operate at the beginning of a timer ISR 29c¢
within the timer device driver 29a.

A test pattern 112 may format the last few (for example,
10) bytes of a sector write buffer 27b. Any known pattern
may suffice, for example, a sequential list of all digits from
zero to nine may be used. Importantly, the last two digits in
such a sequence should be distinct. Thus, a string
“0123456789” may provide a test pattern to be written in the
last ten bytes of a sector. The test pattern may then be written
from a buffer 27b to a medium 17 using the BIOS interface
for the medium 17 and medium drive 16.

Following the test pattern 112, a test 114 may determine
whether or not a write error has occurred in writing the
buffer 27b to the medium 17. A positive response to the test
114 results in an increment step 116. The increment 116
tracks the number of successful detections of errors. Thus,
the increment 116 indicates that another write error was
successfully detected by the FDC 20. Accordingly, the
application 24 may advance from the increment 116 to a test
117. A test 117 may determine the number of sectors to
which the FDC 20 has attempted to write. If the response to
the comparison of the test 117 is positive, then all tests are
completed and the display step 106 follows. On the contrary,
a negative response to this test 117 returns the application 24
to the test pattern 112, initiating another test cycle.

A negative response to the test 114 indicates that a write
error, known to exist, was undetected by the FDC 20.
Accordingly, a negative response to the test 114 advances
the application 24 to a read 118. The read 118 reads back the
last previously written sector, using the BIOS diskette
interface, such as the driver 29b. The step 118 may then
increment the number corresponding to sectors that the FDC
20 has attempted to write.

The application 24 may next advance to the test 120 to
determine whether the last byte that the read step 118 has
read back from the written sector to a buffer 27b is the last,
or the next-to-last element of the test pattern from the test
pattern step 112. That is, for example, in the example above,
the test 120 determines whether or not the last byte read back
to the buffer 27b from this sector being tested is correct (e.g.
9, a value other than 9 indicates that the FDC has failed to
write the tenth element of the test pattern into the last byte
location of the sector). This indicates that the FDC has not
indicated a write error in the test 114, and yet has produced
the error detected by the test 120. Thus, the last sector
written is corrupted.

A negative response to the test 120 indicates that the last
byte was not incorrectly written. Accordingly, the applica-
tion 24 may advance to the test 117 to determine whether or
not the testing is completed. A positive response to the test
120 results in an increment step 122. The increment step 122
advances the count of undetected errors found during the
operation of the FDC 20 during the testing in question. Thus,
a step 122 results in a corruption count for sectors attempted
to be written by the FDC 20.

Referring now to FIG. 7, and also cross-referencing to
FIG. 6, the hook step 110 may install a prefix 54 to a timer
ISR 29¢ within the timer device driver 294 (see FIG. 4). The
hook 110 interposes the prefix 124 corresponding to the
prefix 54 of FIG. 4, after a call 125 or entry point 125 to the

5

10

15

20

25

30

35

40

45

50

55

60

65

12

timer ISR 29c¢ within the timer device driver 29a.
Accordingly, whenever the timer ISR 29¢ within the timer
device driver 294 is called, the prefix 124 will be run before
any executables in the timer ISR 29¢ within the timer device
driver 29a.

The prefix 124 may begin with a read 126 effective to
determine a count corresponding to the number of bytes, or
a countdown of the remaining bytes, being transferred by the
DMA controller 18 from the main memory 14, through the
buffer 27b to the FDC 20. The read 126 may also include a
reading of a count (a tick count) of a timer 22 or system
clock 22.

Following the read 126, a test 128 may determine whether
or not an operation is in process affecting the FDC 20. The
FDC 20 is in operation if a count kept by the DMA controller
18 has decremented (changed) within an elapsed time cor-
responding to the maximum time required for a byte to be
transferred. If no change has occurred during that elapsed
time, then one may deduce that no activity is occurring.
Accordingly, a negative response to the test 128 results in
reexecution of the test 128. Reexecution of the test 128 may
continue until a positive response is obtained. Inasmuch as
the application 24 is executing a write during the test pattern
112, an eventual positive response to the test 128 is assured.
In one embodiment of an apparatus and method in accor-
dance with the invention, the first byte transferred may
typically be detected.

A positive response to the test 128 advances the prefix
routine 124 to a test 130 to test the countdown or count of
the DMA controller 18. The test 128 corresponds to detec-
tion of activity, whereas the test 130 corresponds to iteration
of a shadowing process.

The test 130, whenever a negative response is received,
may advance the prefix routine 124 to the exit 138.

On the other hand, a positive response to the test 130
advances the prefix routine 124 to a test 132 effective to
evaluate whether or not the countdown is within some
selected range at the end of a sector. A negative response to
the test 132 indicates that the countdown is not within some
desired end-of-sector range, so the prefix routine 124 should
exit 138 without waiting longer. That is, interrupts will
continue to occur with a frequency that will detect the
desired range at the end of the sector being tested.

A positive response to the test 132 advances the prefix
routine 124 to a test 134 for detecting the last byte to be
transferred in a sector. If the DMA controller 18 is not
counting the last byte to be transferred, then the test 134 may
simply continue to test. When the countdown of the DMA
controller 18 reaches a value of zero, a positive response to
the test 134 advances to a delay step 136.

The delay step 136 corresponds to the delay 60 illustrated
in FIGS. 4-5. The delay 136 may be implemented by
preempting a channel over which the DMA controller 18 is
communicating with the FDC 20. For example, a first
channel may be made active by some process, thus, over-
writing communication over some channel having lesser
priority, and corresponding to the FDC 20. Likewise, the
channel corresponding to the DMA communication with the
FDC 20 may be masked (suspended) until the time elapsed
for the transfer of the data to the sector has exceeded the
maximum time permitted for such transfer. Thus, any and all
opportunities for writing the last byte to the sector had
expired. Thus, an error condition has been assured. Once the
delay 136 has assured an error condition the exit 138 returns
control of the processor 12 to the non-interrupted processing
state.

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page75 of 78

US 6,401,222 B1

13

The invention described heretofore provides detection
solution that may be completely implemented in software as
a device driver 29) that is capable of detecting defective
FDCs 20 without visual inspection and identification of the
FDCs. Furthermore, the unique and innovative approach
taken, relying on DMA shadowing and use of a software
decoding network, allows the implementation of the inven-
tion to accurately and correctly detect defective FDCs even
when non-defective old-model FDCs are involved. Simply
stated, it is not sufficient to determine whether the FDC
under test is an old or new model FDC. Various vendors
manufactured old-model FDCs that are not defective.
Therefore, a two-phase detection process may correctly
determine whether or not the FDC under test is defective.

The number of FDCs installed in computer systems today
is well over 100 million. In order to identify defective FDCs
vendors and consumers which have defective FDCs 20
installed have very few alternatives (e.g. recalls;
replacement), of which most are extremely costly, for deter-
mining whether or not their systems are susceptible to the
data corruption presented by defective FDCs 20. Therefore,
an apparatus and method that may be implemented as a
software-only solution to this problem is a significant
advance in the computer industry. Moreover, the robust
design allows the apparatus and method of the present
invention to dynamically adjust to processor speeds that
encompass the original IBM Personal Computers executing
at 4.77 MHZ to the latest workstations that execute at well
over 200 MHZ.

The function of transfer of data to devices controlled by
the FDC is described above in one embodiment as occurring
through direct memory access (DMA). Nevertheless, this
function may be accomplished with any suitable memory
controller or other manner of data transfer. For example, one
manner disclosed above involving a memory controller
other than a DMA includes programmed input and output
(1/0) accomplished directly by the microprocessor. Thus, in
this instance, one skilled in the art will understand that in the
discussion above, where a DMA is used, programmed I/O or
other types of memory controllers may be readily substi-
tuted.

A further aspect of the present invention involves specific
implementations of a method for detecting and preventing
floppy diskette controller data transfer errors in computer
systems. One embodiment of the method has been included
by incorporating by reference U.S. Pat. No. 5,379,414 issued
to Phillip M. Adams on Jan. 3, 1995.

One such specific implementation involves substituting a
magnetic tape back-up device or an optical device, or other
such peripheral, non-volatile memory device for the floppy
drive previously described in the specific embodiment of the
method. In so doing, the method substantially as disclosed is
employed, substituting the use of the alternate peripheral,
non-volatile memory device for the floppy drive. Appropri-
ate commands are also substituted, as would be readily
apparent to one skilled in the pertinent art.

The present invention may be embodied in other specific
forms without departing from its spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative, and not restrictive. The scope
of the invention is, therefore, indicated by the appended
claims, rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

5

10

15

20

25

30

35

40

45

50

60

65

14

What is claimed and desired to be secured by United
States Letters Patent is:

1. An apparatus for detecting a defective floppy diskette
controller, the apparatus comprising:

a processor executing detection executables effective to
determine an under run error undetected by a floppy
diskette controller;

a memory device operably connected to the processor to
store the detection executables and corresponding
detection data;

a system clock operably connected to the processor to
provide a time base;

a media drive comprising storage media for storing data
formatted in sectors;

the floppy diskette controller operably connected to the
media drive to control formatting and storage of data on
the storage media; and

a memory controller operably connected with the floppy
diskette controller for providing data to the floppy
diskette controller.

2. The apparatus of claim 1 wherein the detection
executables are effective to identify the floppy diskette
controller.

3. The apparatus of claim 1 wherein the detection
executables are effective to force an under run error.

4. The apparatus of claim 3 wherein the detection
executables force the under run error by delaying a transfer
of data to the floppy diskette controller.

5. The apparatus of claim 4 wherein the under run error
comprises a delay in transferring a last byte corresponding
to a sector involved in the transfer.

6. The apparatus of claim 4 wherein the detection data
comprises a test pattern.

7. The apparatus of claim 6 wherein the under run error
comprises the test pattern incorrectly copied onto the storage
media.

8. The apparatus of claim 1 wherein the detection
executables further comprise a prefix routine effective to
hook a floppy device driver operating on the processor to
control the floppy diskette controller.

9. The apparatus of claim 1 wherein the detection
executables are integrated into an application directly loaded
and executed on the processor.

10. The apparatus of claim 9 wherein the application is
effective to determine on demand whether the floppy dis-
kette controller is susceptible to undetected under run errors.

11. The apparatus of claim 1 wherein the detection
executables include a shadowing executable effective to
determine when a byte corresponding to a last byte of a
sector is to be transferred.

12. A memory device operably connected to a processor,
a memory controller, a floppy diskette controller controlled
by the memory controller, and a media drive in communi-
cation with the memory controller, comprising:

a test pattern;

detection executables effective to be run on the processor
to force and detect an under run error not detected by
the floppy diskette controller, and

a readback buffer to store a copy of the test pattern read
back from the media drive.

13. A method for testing controllers for controlling I/O to

non-volatile memory devices, the method comprising:

providing a detection executable configured to interrupt a
writing step of a controller;

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page76 of 78

US 6,401,222 B1

15

delaying a transfer of a byte, corresponding to the writing
step, for a time selected to cause an under run error in
the transfer; and

verifying whether the controller detects an error in com-

pleting the writing step.

14. The method of claim 13, further comprising selecting
a non-volatile memory device from the group consisting of
tape drives, magnetic drives, and optical drives.

15. The method of claim 13, wherein the detection execut-
able is configured to read a data count corresponding to the
writing step.

16. The method of claim 15, further comprising reading a
data count, corresponding to the writing step, from a direct
memory access controller’s data transfer count register.

10

16

17. The method of claim 185, further comprising reading a
data count, corresponding to the writing step, from a CPU
employing programmed input output.

18. The method of claim 13, further comprising storing
the detection executable and a corresponding detection data
test pattern.

19. The method of claim 13, further comprising increas-
ing an interrupt rate corresponding to interrupting the writ-
ing step.

20. The method of claim 13, further comprising causing
and detecting a transfer corresponding to a last byte of a
sector.

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page77 of 78

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,401,222 B1 Pagelof 1

DATED

: June 4, 2002

INVENTOR(S) : Phillip M. Adams

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page,
The title is incorrect. Please delete “DETECTION”, and insert therefor

-- TESTING --.

Column 1
Line 59, please delete “NECK?”, and insert therefore -- NEC --.

Column 3
Line 28, after “manifest itself”, please insert -- . --.

Column 8
Line 7, please delete “21 a”, and insert therefore -- 21a --.

Signed and Sealed this

Twenty-fourth Day of December, 2002

JAMES E. ROGAN
Director of the United States Patent and Trademark Office

Case3:10-cv-04458-EMC Documentl Filed10/01/10 Page78 of 78

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,401,222 Bl Page1lof 1
DATED : June 4, 2002
INVENTOR(S) : Phillip M. Adams

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

In the terminal disclaimer, please delete the first sentence “Petitioner, Phillip M. Adams,
an individual residing at 325 North Federal Heights Circle, Salt Lake City, Utah, hereby
represents that he is the owner of one hundred (100%) interest in the instant
application”, and insert therefore -- Petitioner, Phillip M. Adams, hereby represents that
he is Managing Member of Phillip M. Adams & Associates, L.L.C., a limited liability
company of the state of Utah having a principal place of business at 1460 Seville Way,
Bountiful, Utah 84010 and a mailing address of P.O. Box 1207, Bountiful, Utah 84011-
1207, and that Phillip M. Adams & Associates, L.L.C. is the owner of one hundred
percent (100%) interest in the instant application --.

Signed and Sealed this

Fourteenth Day of October, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office

