ORIGINAL

O 00 3 N W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

o 5 3
LY i
it w

MORRISON & FOERSTER LLP
KARL J. KRAMER (Bar No. 136433)

KKramer@mofo.com
DIANA LUO (Bar No. 233712)

dluo@mofo.com \

755 Page Mill Road :%P L\’

Palo Alto, CA 94304-1018 FILED
Telephone: (650) 813-5600 @ &) '
Facsimile (650) 494-0792 BED 51 710
Attorneys for Plaintiff 1. b e
ALTERA CORPORATION Sh NORTHERN DISTAICT OF CALIFORNIA

UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

CV10-05866

ALTERA CORPORATION Case No. J C S
Plaintiff, COMPLAINT FOR PATENT
INFRINGEMENT
v DEMAND FOR JURY TRIAL
INTELLITECH CORPORATION
Defendant.

COMPLAINT FOR PATENT INFRINGEMENT AND DEMAND FOR JURY TRIAL
CASE NO
s£-2912349

“ /

1 Plaintiff Altera Corporation (“Altera”), by and through its attorneys, alleges as follows:
2 | PARTIES
3 1. Alterais a corporation organized under the laws of the State of Delaware with its
4 | principal place of business at 101 Innovation Drive, San Jose, California 95134. Altera regularly
5 || conducts business in the Northern District of California.
6 2. Upon information and belief, Defendant Intellitech Corporation (“Intellitech”) is a
7 | corporation organized under the laws of the State of New Hampshire with its principal place of
8 | business at 69 Venture Drive, Dover, New Hampshire 03820. Intellitech regularly conducts
9 | business in the Northern District of California.

10 JURISDICTION AND VENUE

11 3. This is an action for patent infringement arising under the patent laws of the United

12 | States, Title 35 of the United States Code. Jurisdiction as to these claims is conferred on this
13 | Court by 28 U.S.C. §§ 1331 and 1338(a).

14 4. Upon information and belief, this Court has personal jurisdiction over Intellitech
15 | because Intellitech has sufficient contacts with this judicial district and Intellitech regularly

16 | conducts business within this judicial district. Upon information and belief, Intellitech directly
17 || distributes, offers for sale or license, sells or licenses, and advertises its products and services
18 | within the State of California and this judicial district.

19 5. Venue is proper in this judicial district under 28 U.S.C. §§ 1391 and 1400(b).

20 || Intellitech is a corporation that is subject to personal jurisdiction in this district.

21 INTRADISTRICT ASSIGNMENT
22 6. This is an Intellectual Property Action to be assigned on a district-wide basis

23 | pursuant to Civil Local Rule 3-2(c).

24 BACKGROUND
25 7. Altera is a preeminent supplier of programmable logic solutions, offering Field

26 | Programmable Gate Arrays (“FPGAs”), Complex Programmable Logic Devices (“CPLDs”), and
27

COMPLAINT FOR PATENT INFRINGEMENT AND DEMAND FOR JURY TRIAL
28 || caseno. .

s£-2912349

S W

O 0 1 N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

“ -

Application-Specific Integrated Circuit (“ASICs™) in combination with software tools, intellectual
property, and support to customers world-wide.

8. The pioneering work of Altera’s scientists and engineers has been rewarded with
many United States Patents, including the following: 6,421,812 (“the 812 Patent™), 5,563,592
(“the *592 Patent”), and 7,036,046 (“the *046 Patent”).

9. Each of the inventors of the Altera patents assigned their patents to Altera, so that
Altera is and at all times has been the sole owner of all right and title to the patents, including the
right to recover damages for past and current infringement.

10. Intellitech develops and licenses integrated circuits (“ICs”), Intellectual Property
(“IP”), and software for configuration, debug and test of electronic products including System-on-
a-Chip, ICs, print circuit boards (“PCB”) and electronic systems. Intellitech’s products include
the SystemBIST product for configuring, programming, and testing memories, PLDs and other
programmable devices; the Eclipse software for developing and validating system configurations
and tests; the Fast Access Controller (“FAC”) product for use with 1149.1 test infrastructures to
enable in-system programming of FLASH memory devices; and the NEBULA Silicon Debugger
for debugging and validation of ICs. Primary end users of these products include electronic
product manufacturers and the semiconductor industry.

COUNT1
(Infringement of the 812 Patent)

11. Altera hereby restates and realleges the allegations set forth in paragraphs 1 through
10 above and incorporates them by reference.

12. OnJuly 16, 2002, the *812 Patent entitled “Programming mode selection with
JTAG circuits” was duly and legally issued to Altera by the United States Patent and Trademark
Office. Altera is the owner of the entire right, title, and interest in and to the 812 Patent. A true

and correct copy of the *812 Patent is attached as Exhibit A to this Complaint.

COMPLAINT FOR PATENT INFRINGEMENT AND DEMAND FOR JURY TRIAL
CASE NO.
2

s£-2912349

S WN

O 0 N N W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

v v

13. Altera has not licensed or otherwise authorized Intellitech to make, use, offer for
sale or sell any products that embody the inventions of the *812 Patent.

14. Intellitech has directly infringed and continues to directly infringe the 812 Patent
by its unlicensed use of methods that embody the invention claimed by the *812 Patent in the
United States during development, prototyping, testing, verification, and demonstration of its
SystemBIST and FAC products with the Eclipse Software.

15. Intellitech has had actual knowledge of the *812 Patent since at least November 4,
2010.

16. Intellitech has indirectly infringed and continues to indirectly infringe the *812
Patent by inducing end users to infringe the *812 Patent by using the SystemBIST and FAC
products with Eclipse Software. Intellitech intentionally took action that induced end users to
infringe the 812 Patent by marketing, selling, and supporting the SystemBIST and FAC products
and Eclipse Software. Intellitech had awareness of the 812 Patent in circumstances in which it
knew or should have known that its actions would cause direct infringement by end users.

17. Intellitech has indirectly infringed and continues to indirectly infringe the *812
Patent by contributing to direct infringement by end users who use the SystemBIST and FAC
products with Eclipse Software. Intellitech supplied an important component of the infringing
part of the method, the component is not a common component suitable for non-infringing use,
and Intellitech supplied the component with the knowledge of the 812 Patent and knowledge that
the component was especially made or adapted for use in an infringing manner.

18. Upon information and belief, Intellitech’s infringement of Altera’s *812 Patent has
been and will continue to be willful, wanton and deliberate.

19. Altera is damaged and irreparably injured by Intellitech’s infringing activities and
will continue to be so damaged and irreparably injured unless Intellitech’s infringing activities are

enjoined by this Court.

COMPLAINT FOR PATENT INFRINGEMENT AND DEMAND FOR JURY TRIAL
CASE NO.
3

sf-2912349

FEN

O 0 3 N W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

“ -

20. Intellitech is thus liable to Altera for infringement of the 812 Patent pursuant to 35
U.S.C. § 271.
COUNT 11
(Infringement of the 592 Patent)

21. Altera hereby restates and realleges the allegations set forth in paragraphs 1 through
20 above and incorporates them by reference.

22. On October 8, 1996, the *592 Patent entitled “Programmable logic device having a
compressed configuration file and associated decompression” was duly and legally issued to
Altera by the United States Patent and Trademark Office. Altera is the owner of the entire right,
title, and interest in and to the *592 Patent. A true and correct copy of the 592 Patent is attached
as Exhibit B to this Complaint.

23. Altera has not licensed or otherwise authorized Intellitech to make, use, offer for
sale or sell any products that embody the inventions of the *592 Patent.

24, Intellitech has directly infringed and continues to directly infringe the 592 Patent
by its unlicensed use of methods that embody the invention claimed by the *592 Patent in the
United States during development, prototyping, testing, verification, and demonstration of the
SystemBIST product with Eclipse Software to program FLASH devices.

25. Intellitech has had actual knowledge of the *592 Patent since at least November 4,
2010.

26. Intellitech has indirectly infringed and continues to indirectly infringe the 592
Patent by inducing end users to directly infringe the *592 Patent by using the SystemBIST and
FAC products with Eclipse Software. Intellitech intentionally took action that induced end users
to infringe the *592 Patent by marketing, sélling, and supporting the SystemBIST and FAC
products. Intellitech had awareness of the *592 Patent in circumstances in which it knew or

should have known that its actions would cause direct infringement by end users.

COMPLAINT FOR PATENT INFRINGEMENT AND DEMAND FOR JURY TRIAL
CASE NO.
4

s£-2912349

=S

O 00 3 N W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

v 9

27. Intellitech has indirectly infringed and continues to indirectly infringe the *592
Patent by contributing to direct infringement by end users who use the SystemBIST and FAC
products. Intellitech supplied an important component of the infringing part of the method, the
component is not a common component suitable for non-infringing use, and Intellitech supplied
the component with the knowledge of the *592 Patent and knowledge that the component was
especially made or adapted for use in an infringing manner.

28. Upon information and belief, Intellitech’s infringement of Altera’s *592 Patent has
been and will continue to be willful, wanton and deliberate.

29. Altera is damaged and irreparably injured by Intellitech’s infringing activities and
will continue to be so damaged and irreparably injured unless Intellitech’s infringing activities are
enjoined by this Court.

30. Intellitech is thus liable to Altera for infringement of the *592 Patent pursuant to 35
U.S.C. § 271. |

COUNTIIT
(Infringement of the 046 Patent)

31. Altera hereby restates and realleges the allegations set forth in paragraphs 1 through
50 above and incorporates them by reference.

32. On April 25, 2006, the 046 Patent entitled “PLD debugging hub” was duly and
legally issued to Altera by the United States Patent and Trademark Office. Altera is the owner of
the entire right, title, and interest in and to the *046 Patent. A true and correct copy of the *046
Patent is attached as Exhibit C to this Complaint.

33. Altera has not licensed or otherwise authorized Intellitech to make, use, offer for
sale or sell any products that embody the inventions of the 046 Patent.

34. Intellitech has directly infringed and continues to directly infringe the 046 Patent

by its unlicensed use of systems that embody the invention claimed by the 046 Patent in the

COMPLAINT FOR PATENT INFRINGEMENT AND DEMAND FOR JURY TRIAL
CASE NO.
5

sf-2912349

N

O 0 3 O s W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

“ “J
United States during development, prototyping, testing, verification, and demonstration of the
NEBULA Silicon Debugger product.

35. Intellitech has had actual knowledge of the 046 Patent since at least November 4,
2010.

36. Intellitech has indirectly infringed and continues to indirectly infringe the *046
Patent by inducing end users to directly infringe the 046 Patent by using the NEBULA Silicon
Debugger. Intellitech intentionally took action to induce end users to infringe the 046 Patent by
marketing, selling, and supporting the NEBULA Silicon Debugger. Intellitech had awareness of
the "046 Patent in circumstances in which it knew or should have known that its actions would
cause direct infringement by end users.

37. Intellitech has indirectly infringed and continues to indirectly infringe the *046
Patent by contributing to direct infringement by end users who use the NEBULA Silicon
Debugger. Intellitech supplied an important component of the infringing system, the component
is not a common component suitable for non-infringing use, and Intellitech supplied the
component with the knowledge of the 046 Patent and knowledge that the component was
especially made or adapted for use in an infringing manner.

38. Upon information and belief, Intellitech’s infringement of Altera’s 046 Patent has
been and will continue to be willful, wanton and deliberate.

39. Altera is damaged and irreparably injured by Intellitech’s infringing activities and
will continue to be so damaged and irreparably injured unless Intellitéch’s infringing activities are
enjoined by this Court.

40. Intellitech is thus liable to Altera for infringement of the *046 Patent pursuant to 35
US.C. § 271.

PRAYER FOR RELIEF
WHEREFORE, Altera prays for judgment as follows:

A. Entry of judgment holding Intellitech liable for infringement of the patents at issue

COMPLAINT FOR PATENT INFRINGEMENT AND DEMAND FOR JURY TRIAL
CASE NO.
6

sf-2912349

[\

O 00 0 N W s W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

“ v

in this litigation;

B. An order permanently enjoining Intellitech, its officers, agents, servants,
employees, attorneys and affiliated companies, its assigns and successors in interest, and those
persons in active concert or participation with it, from continued acts of infringement of the
patents at issue in this litigation;

D. An order awarding Altera statutory damages and damages according to proof
resulting from Intellitech’s infringement of the patents at issue in this litigation, together with
prejudgment and post-judgment interest;

E. Trebling of damages under 35 U.S.C. § 284 in view of the willful and deliberate
nature of Intellitech’s infringement of the patents at issue in this litigation; |

F. An order awarding Altera its costs and attorney’s fees under 35 U.S.C. § 285; and

G. Any and all other legal and equitable relief as may be available under law and

which the court may deem proper.

Dated: December 23, 2010 KARL J. KRAME
DIANA LUO
MORRISON 7 LLP,

KARL J. Klt\MER

Attomeys for Plaintiff
ALTERA CORPORATION

COMPLAINT FOR PATENT INFRINGEMENT AND DEMAND FOR JURY TRIAL
CASE NO.
7

s£-2912349

L S I

O R N N W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

“ v

DEMAND FOR A JURY TRIAL
Plaintiff hereby demands a jury trial on all issues so triable under the laws as

provide by Rule 38(b) of the Federal Rules of Civil Procedure.

Dated: December 23,2010 KARL J. KRAMER

DIANA LUO
MORRISON R/TZi
By: | I/

RLyJ {KRAMER

Attorneys for Pl:{ntiff
ALTERA CORPORATION

COMPLAINT FOR PATENT INFRINGEMENT AND DEMAND FOR JURY TRIAL
CASE NO. g

sf-2912349

Exhibit A

US006421812B1
*
az United States Patent (10) Patent No.: US 6,421,812 B1
Wang et al. 45y Date of Patent: Jul. 16, 2002
(54) PROGRAMMING MODE SELECTION WITH 4,667325 A 5/1987 Kitano et al. 37125
JTAG CIRCUITS 4,701,920 A 10/1987 Resnick et al. .. . 371/25
5,175,859 A 12/1992 Miller et al. 395/800
(75) TInventors: Xiaobao Wang, Santa Clara; Chiakang 5,336,951 A 8/1994 Josephson et al. 307/465
Sung, Milpitas; Joseph Huang, San 5,355,369 A 10/1994 Greenbergerl et al. 371/22.3
Jose; Bonnle Wang, Cupertino; Khai (List continued on next page.)
Nguyen, San Jose; Richard G. CIiff,
Milpitas, all of CA (US) FOREIGN PATENT DOCUMENTS
) L . EP 0639006 Al 2/1995
(73) /\SS]gl']CCI Altera Corporallon, San Jose, CA EP 0 828 163 Al 3/1998
(US) wo WO 97/06599 211997 e, HO3K/19/177
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Altera Corporation, Data Sheet, “Flex 10K Embedded Pro-
U’S'C' 154(b) by 0 days. grammable Logic Family,” Jul., 1995, ver. 1, pp. 1-39.
(21) Appl. No.: 09/094,186 (List continued on next page.)
. Primary Examiner—Matthew Smith
2 1: . 9,1998 . . : .
(22) Filec Jun. 9, Assistant Examiner—L_eigh Garbowski
Related U.S. Application Data (74) Attorney, Agent, or Firm—Townsend and Townsend
(60) Provisional application No. 60/049,478, filed on Jun. 13, and Crew LLP
1997, provisional application No. 60/050,953, filed on Jun.
13, 1997, provisional application No. 60/049,275, filed on G7 ABSTRACT
i‘;“il}ﬁ’ }(93971’98;(’,";’:‘/";}:]%‘;]f;;l‘i’gaggﬁ 613{)9?0’/23562’,2]9%{ A technique to provide higher system performance by
filed on Jun. 10, 1997, provisional application No. 60/049, increasing amount of data that may be transferred in parallel
247, filed on Jun. 10, 1997, provisional application No. is to increase the number of external pins available for the
22{%49}3:3.}) 3}82902114-5111%-13‘10,0 19-2!711, al%d f;g‘;lsmﬂal appli- input and output of user data (user I/0). Specifically, a
ton 0. HHZ,e2, nun. B4, 2 technique is to reduce the number of dedicated pins used for
(51) Int. CL7 oo rnrennrinene . GOGF 17/50 user 1/0, leaving more external pins available for user 1/0.
(52) US.Clu oo 716/5 The dedicated pins used to irnplement a function such as the
(58) Field of Search 716/5; 711/5; 7147727 JTAG boundary scan architecture may be also be used to
provide other functionality, such as to select the program-
(56) References Cited ming modes. In a specific embodiment, a JTAG instruction
) code that is not already used for a JTAG boundary scan
U.S. PATENT DOCUMENTS instruction stored in an instruction register (220) may be
3761695 A 9/1973 Eichelberger 235/153 Ac ~ used to replace the programming mode select pins (252) in
3783254 A 1/1974 Eichelberger 235/152 2 programmable logic device (PLD).
3,806,801 A 4/1974 Eichelberger el al. ... 340/172.5
4,488259 A 12/1984 MEICY .oeovverrirmrrmcnennne 364/900 29 Claims, 8 Drawing Sheets
Ir\m‘m /—Jﬂl
Register
Decoding the o308
Instyuction
Generaling @ 510
Programming Mode
Contro) Signal
um::onwdﬂqml V‘“’
in a Programming
Mode Decoder
Gerarating Programming |/~ %
Signala
cobpngte |7
ntagrated Ciroult

US 6,421,812 Bl
Page 2

U.S. PATENT DOCUMENTS

5,361,373 A 11/1994 Gilsoncovereereeernenren. 395/800
5,489,858 A 2/1996 Pierce et al. 326/56
5,491,666 A 2/1996 Sturges 365/201
5,581,564 A 12/1996 Miller et al. . e 3717223
5,590,305 A 12/1996 Terrill et al. 395/430
5,594,367 A 1/1997 Trimberger et al. ... 326/41
5,644,496 A 7/1997 Agrawal et al. 364/489
5,650,734 A 7/1997 Chu et al. 326/38
5,734,868 A 3/1998 Curd et al. 395/500
5,737,567 A 4/1998 Whittaker et al. 395/430
5,829,007 A * 10/1998 Wise et al.ccoeevreeernn 711/5
5,841,867 A 11/1998 Jacobson et al. ... 380/25
5,869,979 A 2/1999 Bocchino 326/38
5991908 A * 11/1999 Baxler et al. . 7147727
6,058,255 A * 5/2000 Jordanc.cccoovereenunnnne 716/5

OTHER PUBLICATIONS

Altera Corporation, Data Sheet, “Flex 8000 Programmable
Logic Device Family,” Aug., 1994, ver. 4, pp. 1-22.
Altera Corporation, Data Sheet, “Max 7000 Programmable
Logic Device Family,” Jun. 1996, ver 4, pp. 193-261.
Altera Corporation, Application Note 39, “JTAG Boundary—
ScanTesting In Altera Devices,” Nov., 1995, ver. 3, pp. 1-28.
IEEE Computer Society, “IEEE Standard Test Access Port
and Boundary—Scan Architecture (IEEE Std 1149.1-1990),”
Institute of Electrical and Electronics Engineers, Inc., New
York, NY, Oct. 21,1993, pp. 1-1 to 12—-6 and Appendix A-1
to A-12.

IEEE Computer Socicty, “Supplement to (IEEE Std
1149.1-1990), IEEE Standard Test Access Port and
Boudary—Scan Architecture (IEEE Std 11493.1b-1994),”
Institute of Electrical and Electronics Engineers, Inc., New
York, NY, Mar. 1, 1995, pp. 1-67.

Xilnix Corporation, “The Programmable Logic Data Book,”
1993, pp. 1-1 to 10-8.

Xilnix Corporation, “The Programmable Logic Data Book,”
Section 9, 1994, pp. 9-1 to 9-32.

Xilnix Corporation, “The Programmable Logic Data Book,”
Product Description, “XC2000 Logic Cell Array Families,”
Aug. 1994, pp. 2-187 to 2-216.

Xilnix Corporation, “The Programmable Logic Data Book,”
Product Description, “XC3000, XC3000A, XCO000L,
SC3100, XC3100A Logic Cell Array Families,” pp. 2-105
to 2-152.

Xilnix Corporation, “The Programmable Logic Data Book,”
Product Specification, “XC4000 Series Field Programmable
Gate Arrays,” Jul. 30, 1996, version 1.03, pp. 4-5 to 4-76.

* cited by examincr

v J

U.S. Patent Jul. 16, 2002 Sheet 1 of 8 US 6,421,812 B1

7121
PROCESSING PLD
UNIT
! !
1 |
(|
N A 4 1135
i 131 ./—
! 105 ! 111
1
MEMORY 110

FIGURE 1

US 6,421,812 B1

Sheet 2 of 8

Jul. 16, 2002

U.S. Patent

7 TANOL £67
STYNSIS SAONW 05 y300030Q \&N Nid 103135 300N

ez__)_s_éeomm_mN ﬂ JAOW ONINWVHOONHd [lﬁr NId 1D373S 3aONW

TYNOIS LO3138 3AOW N _ 47 4Y4

STVNDIS TOHINOD 01907 TOYLNOD NVIS

NVOS OvLir m - I AYVYANNOYg OV.1r
€ 1174

INST2
INST1
INSTO

O3 NOILONULSNI IaL < liaL

oar <_1+—oalL

UPDTDR
CLKDR
SHFTDR
UPDTIR
CLKIR
SHFTIR

0zZ

ree e
8QL8 EXE oL — 1oL
Q-Jdx §OI
00X 7]
57w 1sul —11suL
3ANIHOVIA 31VLS

01z oOvir SWL — 1 shL

o

U.S. Patent Jul. 16, 2002

——> JTEST

[230
340
ZZIM
0 {gc

350

Sheet 3 of 8

{— SAMPLE
> EXTEST

SAMPLE

360
ZZDN §¢ EXTEST

zZ
<C
N
N
c>| OI
- N @
™ el «
’ 3
7
)
e e P
9 9 Q0N
Zz Z ZZZ

US 6,421,812 Bl

FIGURE 3

US 6,421,812 B1

Sheet 4 of 8

Jul. 16, 2002

U.S. Patent

| JCE. [IRJK

|elas AH_lOAIOA_r
€0 o8l o8N

(3)

ovvy

cB

_m:wm-o,;mmAU,oA

%‘W

oey

X8

Ueds <1

Eg

%"\

ocy

o
_——
-

1893 AU.’OA

%

oLy

omN\\

OA_ﬁo LX
g4

0

13SK

<1
1s3Lr

VN3

v v

U.S. Patent Jul. 16, 2002 Sheet 5 of 8 US 6,421,812 B1

Input Instruction /— 501

to Instruction
Register
Decoding the e 303
instruction
Generating a /— 510

Programming Mode
Control Signal

Using the Programming 515
Mods Control Signal |
in a Programming
Mode Decoder

520
Generating Programming /—
Signals

525
Configuring the /—
Integrated Circuit

FIGURE §

US 6,421,812 B1

Sheet 6 of 8

Jul. 16, 2002

U.S. Patent

Nid
019

079

RJTAG

OdNI

829
OdNI

> 9 TINOIA
[72]
(2]
>
Z
m <I9 /A
M3 ba| —C
1SN MISNY 1dNI
q =
30 83000
OVLiry
1noa $€9 ﬁ
NI — n
4n90IX NIGOD
xliva o)
§ y3ddng
S 1ndino
Z
3
%v DON “vooos_ vom>obaoo =
IANI

9ANI

=
ovird

9

U.S. Patent Jul. 16, 2002 Sheet 7 of 8 US 6,421,812 B1
)
= i
o2 Z

/ 620

710

FIGURE 7

720

725
,-*—/_
"V"
740 735 jﬁ

INPO
628

US 6,421,812 B1

Sheet 8 of 8

Jul. 16, 2002

U.S. Patent

019

g30r

0 8 TANOIA
o)
o)
>
\E%
4
T —<]
> MITISNY |———maisny
830 [—< 83000 uToA_|AH_HIoA
ovird —— oviry
1noa |
Nid NId —— NIgoD “__IoA_|AH_‘
4N80IX
X1va
& w3d4nsg
€ indlno
pd
o
:v OON voooz "Vom>9<ooo =
IANI

9ANI

—C3 Nidr

US 6,421,812 B1

1

PROGRAMMING MODE SELECTION WITH
JTAG CIRCUITS

This application claims the benefit of a U.S. provisional
application No. 60/049,275, filed Jun. 10, 1997; No. 60/049,
478, filed Jun. 13, 1997; No. 6()/049,246, filed Jun. 10, 1997,
No. 60/052,990, filed Jun. 10, 1997; No. 60/049,247, filed
Jun. 10, 1997; No. 60/049,243, filed Jun. 10, 1997; No.
60/050,953, filed Jun. 13, 1997; and No. 60/049,245, filed
Jun. 10, 1997, all of which are incorporated herein by
reference.

BACKGROUND OF THE INVENTION

The present invention relates to the field of integrated
circuits, and more specifically to techniques to effectively
provide greater number of external pins for input and output
of data.

Semiconductor technology continues to improve. This
technology allows greater and greater functionality to be
provided by a single integrated circuit or “chip.” Signals are
input to and output from the chip using external pins or pads.
The chip interfaces to external circuitry, possibly on other
chips, using the external pins.

The performance of a system depends in part on the
amount or rate at which data can be transferred on and off
the chip. This transfer rate may be referred to as the data
bandwidth. One technique for increasing system perfor-
mance is to provide more rapid transfer rates. This may be
accomplished by improvements in process technology or
circuit design. Another technique to increase system perfor-
mance is to transfer a greater amount of data at onc time (or
“in parallel”). Therefore, for greater performance, it is
important there are many external pins available for input
and output of user data.

In an integrated circuit, certain pins are sometimes dedi-
cated to functions other than user data I[/O. For example, in
a programmable integrated circuit such as a PLD or FPGA,
some pins may be dedicated to the programming and testing
(such as JTAG boundary scan testing) of the device. These
dedicated external pins reduce the number of pins available
for user I/0. The performance of the chip may be detrimen-
tally affected since not as many user 1/0 signals may be
transflerred in parallel.

Consequently, there is a need for techniques of effectively
providing greater number ol external pins for input and
output to obtain higher performance. Specifically, there is a
need for techniques to reduce the number of exiernal pins
dedicated to functions other than user 1/0, which would
make a greater number of external pins available for the
input and output of user data.

SUMMARY OF THE INVENTION

The present invention is a technique to provide higher

system performance by increasing the amount of data that ss

may be transferred in parallel by increasing the number of
external pins available for the input and output of user data
(user I/O). Onc technique is to reduce the number of
dedicated pins used for functions other than uscr /O, leaving
more external pins available for user I/0. The dedicated pins
used to implement a function such as the JTAG boundary
scan architecture may be also be used to provide other
functionality, such as to select the programming modes. In
a specific embodiment, a JTAG instruction code that is not
already used for a JTAG boundary scan instruction may be
used to replace the programming mode select pins in a
programmable logic device (PLD).

20

25

30

35

40

45

60

65

2

In a technique of the present invention, the JTAG instruc-
tion used to replace the mode pins is shifted into a JTAG
instruction register as are regular JTAG instructions. A
JTAG boundary scan control logic block generates control
signals to a programming mode decoder. Based on the
instruction, the programming mode decoder selects the
proper programming mode, and generates the appropriate
programming mode signals. The programming mode signals
are provided to the programming circuitry, and integrated
circuit will be appropriately configured.

In a specific implementation, each single bit of the JTAG
instruction code may be used to replace one programming
mode select pin. In another implementation, the whole
JTAG instruction code may be used 1o replace one mode
select pin after instruction decoding. Technically, by doing
this, many, or all, the mode pins can be eliminated, thus
increasing the number of total available 1/O pins. This
concept provides advantages compared to JTAG program-
ming and in-system programming (ISP) in such a way that
a PLD device may be configured for different modes includ-
ing test, scan, and programming modes.

The advantages of using JTAG instructions to replace
programming the mode select pins of a programmable
integrated circuit include saving device package costs and
leaving space for more user I/Os. Overall, this increases the
available functionality and value of the devices. There is
relatively little cost to implement the circuits to implement
PLD programming mode selection with ITAG circuits.

In a specific embodiment, the present invention is a
method of configuring a programmable integrated circuit.
An instruction is provided to a JTAG instruction register.
The instruction is passed to a JTAG boundary scan control
logic block. The JTAG boundary scan contro] logic block
generates a control signal. The control signal is passed to a
programming mode decoder. Based on the control signal, a
programming mode signal is generated to place the pro-
grammable integrated circuit in a conliguration mode.

Further, the present invention is a programniable inte-
grated circuit including a JTAG state machine; an instruction
register coupled to the JTAG state machine; a JTAG bound-
ary scan control logic block coupled to the instruction
register; and a programming mode decoder coupled to
receive a mode signal from the JTAG boundary scan control
logic block.

Another aspect of the present invention includes the use
of JTAG circuitry resident on a programmable integrated
circuit to select a programming mode of the integrated
circuit. Further, the prescnt invention includes the usc of an
instruction input to a JTAG instruction register, where this
instruction is not used to perform a ICLE 1149.1 standard
function, to place a programmable integrated circuit into a
specific programming mode identified by the instruction. A
still further aspect of the present invention is the use of
JTAG circuits on a programmable logic device o place the
programmable logic device in a configuration mode.

Other objects, features, and advantages of the present
invention will become apparent upon consideration of the
following detailed description and the accompanying
drawings, in which like reference designations represent like
features throughout the figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a digital system incorporating a program-
mable logic device;

FI1G. 2 shows an implementation of programming mode
selection using JTAG circuitry;

J

US 6,421,812 B1

3

FIG. 3 shows an implementation of JTAG boundary scan
control logic circuitry;

FIG. 4 shows an implementation of a programming mode
decoder;

FIG. § shows a flow diagram of a technique for config-
uring an integrated circuit;

FIG. 6 shows circuitry for selectably enabling use of a
JTAG input pin;

FIG. 7 shows a circuit implementation of a JTAG input
buffer; and

FIG. 8 shows a circuit implementation for selectably
enabling use of a JTAG output pin.

DESCRIPTION OF THE SPECIFIC
EMBODIMENTS

FIG. 1 shows a block diagram of a digital system. The
system may be provided on a single board, on multiple
boards, or even within multiple enclosures linked by elec-
trical conductors or a network (e.g., a local area network or
the internet). This digital system may be used in a wide
variety of applications and industries including networking,
telecommunications, automotive, control systems, consumer
electronics, computers, workstations, military, industrial,
digital processing, and many others. In the embodiment of
FIG. 1, a processing unit 101 is coupled to a memory 105
and an I/0 111. Further, a programmable logic device (PLD)
121 is incorporated within this digital system. PLD 121 may
be specially coupled to memory 105 through connection 131
and to 1/0 111 through connection 1385.

Programmable logic devices (PLDs) are sometimes also
referred to as PALs, PLAs, FPLAS, CPLDs, EPLDs,
EEPLDs, LCAs, or FPGAs. PLDs are well-known inte-
grated circuits that provide the advantages of fixed inte-
grated circuits with the flexibility of custom integrated
circuits. Such devices allow a user to electrically program
standard, off-the-shelf logic elements to meet a user’s spe-
cific needs. See, for example, U.S. Pat. No. 4,617,479,
incorporated herein by reference for all purposes. Such
devices are currently represented by, for example, Altera’s
MAX® and FLEX® series of devices. The lormer are
described in, for example, U.S. Pat. Nos. 5,241,224 and
4,871,930, and the Altera Data Book, June 1996, all incor-
porated herein by reference in their entirety for all purposes.
The latter are described in, for example, U.S. Pat. Nos.
5,258,668, 5,260,610, 5,260,611, and 5,436,575, and the
Altera Data Book, June 1996, all incorporated hercin by
reference in their entirety for all purposes.

Processing unit 101 may direct data to an appropriate
system component for processing or storage, eXecute a
program stored in memory 105 or input using 1/0 111, or
other similar function. Processing unit 101 may be a ceniral
processing unit (CPU), microprocessor, floating point
coprocessor, graphics coprocessor, hardware controller,
microcontroller, programmable logic device programmed
for use as a controller, or other processing unit. Memory 105
may be a random access memory (RAM), read only memory
(ROM), fixed or flexible disk media, PC Card flash disk
memory, tape, or any other storage retrieval means, or any
combination of these storage retrieval means. PLD 121 may
serve many different purposes within the system in FIG. 1.
PLD 121 may be a logical building block of processing unit
101, supporting its internal and external operations. PLD

10

15

2s

30

40

50

55

60

121 is programmed or configured to implement the logical

functions necessary to carry on its particular role in system
operation.

In a PLD, the number of available external pins limits the
amount of data that may be input and output of the P1.D at

65

4

the same time. The number of available external pins
depends in part on the size and configuration of the package
selected. Although larger package sizes provide greater
numbers of external pins, it may not be desirable to use a
larger package size since it will be more expensive, use more
board space, and may have increased parasitics. Therefore,
it is important to maximally use the available external pins
for a given package.

On a typical PLD, some pins are dedicated for a particular
purpose and other pins (ie., I/O pins) are for input and
output of logical data. For example, dedicated pins may be
for testing or configuring the PLD. I/O pins are used to input
and output user data. Dedicated pins cannot generally be
used for user I/O. Therefore, the number of dedicated pins
reduces the pins available for user I/0. Saving even a single
dedicated pin, and using this pin instead for user 1/0, may
provide a great cost savings. For example, saving a single
dedicated pin may avoid the use of the next larger package
size.

In a PLD, there are typically dedicated pins for configu-
ration and for testing. Configuration signals (e.g., pattern
information) are input via a first set of dedicated pins. Test
instructions and data (e.g., JTAG information) are input via
a second set of dedicated pins. A technique to reduce the
number of dedicated pins is to share the dedicated pins used
for configuration and testing. The same amount of function-
ality would then be obtained using fewer dedicated pins This
would increase the available number pins for user /0.
Although described with respect to PLDs, the techniques of
the present invention are also applicable to other types of
integrated circuits such as ASICs, microprocessors, and
memories where it Is desirablc to reduce the number of
dedicated pins and instead use these pins for user I/0.

FIG. 2 shows a specific cmbodiment of the present
invention. FIG. 2 shows a block diagram of ITAG circuitry
and programming mode selection circuitry. JTAG circuitry
is discussed in some detail in Altera’s Application Note 39,
“IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera
Devices,” November 1995, incorporated herein by refer-
ence. In brief, the JTAG circuitry implements the IEEE
1149.1 specification or boundary-scan testing architecture.
‘The JTAG circuitry can test pin connections without using
physical test probes and can capture functional data while a
device is operating normally.

‘The circuitry has JTAG dedicated pins TMS, TRST,
TCLK, TDI, and TDO. Note that TRST pin may not be
present in some embodiments. The TMS, TRST, and TCLLK
pins are coupled to a JTAG state machine 210. JTAG state
machine 210 is a state machine providing output signals
SHFTIR, CLKIR, UPDTIR, SHFTDR, CLKDR, and
UPDTDR bascd on the TMS, TRST, TCLK inputs. JTAG
statc machine 210 controls the scquential operation of the
circuitry.

TDI is a serial input to an instruction register 220, and
TDO is a serial output. JTAG state machine 210 controls the
serially shifting of an instruction from TDI into instruction
register 220. The instruction may be serially shifted out
through TDO. Further, the instruction may also be output in
parallel via INSTO, INST1, and INST2 lines. In the JTAG
circuitry, there are also data registers (such as a boundary-
scan register) that are not explicitly shown in FIG. 2. A
description of the JIAG data registers may be found in
Application Note 39.

The instruction is coupled 1o a JTAG boundary control
scan control logic 230 via parallel INSTO, INST1, and
INST2 lines. JTAG boundary scan control logic 230 gener-

US 6,421,812 B1

5

ates JTAG scan control signal 235. JTAG scan control
signals 235 are routed to the appropriate JTAG circuitry to
control JTAG operation. Further, JTAG boundary scan con-
trol logic 230 also generates a mode select signal 240
provided to a programming mode decoder 250. Program-
ming mode decoder also has inputs from mode select pin 1
(252) and mode select pin 2 (253), and generates program-
ming mode signals 255.

FIG. 3 shows a specific implementation of circuitry
within JTAG boundary scan control logic 230. The input
signals are INSTO, INST2, NINSTO, NINST1, and NINST2.
NINSTO, NINST1, and NINST2 are the complements of
INSTO, INST1, and INST2, respectively. For example,
NINSTO, NINST1, and NINST2 may be obtained by invert-
ing the INSTO, INST1, and INST2 using inverters. Output
signals are JTEST, SAMPLE, and EXTEXT.

The circuitry includes NAND gates 310, 320, and 330.
NAND gate 310 has as inputs NINSTO, NINSTI1, and
INST2. NAND 310 couples to an inverter 340 to output
JTEST. NAND gate 320 has as inputs INST0, NINST1, and
INST2. NAND 320 couples to an inverter 350 to output
SAMPLE. NAND gate 330 has as inputs NINST0, NINST1,
and NINST2. NAND 330 couples to an inverter 360 to
output EXTEST.

The JTAG boundary scan control logic 230 circuitry
determines which mode the PLD will be in based on the
instruction input by the user. In this embodiment, the
instruction has three bits, INSTO, INST1, and INST2. In
other embodiments, there may be more or less than three bits
depending on the desired number of different instructions.
For example, in some embodiments, the instruction has ten
bits. With three bits, up to eight different instructions can be
implemented. With ten bits, up to 2'° different instructions
can be implemented.

The circuitry in FIG. 3 decodes the instructions as fol-
lows. A “001” indicates a JTEST mode (where INSTO is 0,
INST1 is 0, and INST2 is 1). A *“101” indicates a SAMPLE
mode. A “001” indicates an EXTEST mode. SAMPLE and
EXTEST are JTAG modes. JTEST is a configuration or
programming mode. Therefore, by using the same dedicated
pins are used to input JTAG instructions, a programming
mode may also be indicated. This means a separate dedi-
cated pin to indicale a programming mode is not needed,
thus saving a dedicate pin which may be used instead for
uscr I/O. Furthermore, there may be other JTAG modes (not
shown in FIG. 3) such as BYPASS which is typically
indicated by a *“111” instruction.

In the SAMPLE and EXTEXT modes, the corresponding
SAMPLE and EXTEST signals will be logic high. And, in
the JTEST mode, the JTEST signal will be a logic high.
SAMPLE and EXTEXT are examples of JTAG control
signals 235. JTEST is an example of mode select signal 240.

I'IG. 4 shows circuitry for programming mode decoder
250. Inputs are ENA, JTEST, and MSEL. ENA is an enable
signal to enable decoder 250. JTEST is generated by JTAG
boundary scan control logic 230 (such as the circuitry shown
in FIG. 3). MSEL is representative of mode select a pins 252
and 253. However, the implementation F1G. 4 only shows
one mode select pin in order to illustrate the principles ot the
present invention. Tn practice, there may be as many or as
few mode select pins as desired to obtain the number of
desired modes.

Outputs of decoder 250 are TEST, SCAN, ASYNC-
SERIAL, and SERIAL. These signals are routed to the
appropriate programming circuilry to configure the PLD.
The programming circuitry may generate high voltages such

10

25

30

35

40

55

60

65

6

as those used in the programming of Flash, EEPROM,
EPROM, and other nonvolatile memory cells. The program-
ming circuitry may also be used to configure other types of
memory cells such as SRAM and DRAM cells.

The circuitry includes NAND gates 410, 420, 430, and
440. NAND gate 410 has inputs JTEST, ENA, and MSEL.
NAND gate 410 outputs through a pair of serially coupled
inverters to generate TEST. NAND gate 420 has inputs
JTEST, ENA, and BB (i.e., complement of MSEL). NAND
gate 420 outputs through a pair of serially coupled inverters
to generate SCAN. NAND gate 430 has inputs CB (i.c.,
complement of JTEST), ENA, and MSEL. NAND gate 430
outputs through a pair of serially coupled inverters to
generate ASYNC-SERIAL. NAND gate 440 has inputs CB,
ENA, and BB. NAND gate 440 outputs through a pair of
serially coupled inverters to generate SERIAL.

In operation, a “test” programming mode is entered when
ENA is high, JTEST is high, and MSEL is high. A “scan”
programming mode is entered when ENA is high, JTEST is
high, and MSEL is low. An “async-serial” programming
mode is entered when ENA is high, JTEST is low, and
MSEL is high. A “serial” mode is entered when ENAis high,
JTEST is low, and MSEL is low.

In practice, there are many implementations of the bound-
ary scan control logic circuitry 230 and programming mode
decoder 250 shown in FIGS. 3 and 4. Other implementations
may use other selections for the decoding and other logical
structures including AND and OR gates or look-up tables, to
name a few examples.

For example, other specific instructions may be used to
indicate a programming mode. Standard JTAG instructions
are identified by 101, 000, and 111. Consequently, a pro-
gramming mode control signal may be implemented by
using an instruction not already used by JTAG. The available
instructions are 001, 010, 011, 100, and 110. In FIG. 3, the
choice of the specific instruction to indicate the JTEST
programming mode was 001. However, any of the other
available instructions could have been selected, and the
appropriate changes made to the circuilry.

Furthermore, FIG. 3 only shows a single JTEST program-
ming mode; however, circuitry may provide for more than
one programming mode signal. With a 3-bit instruction,
there can be up to five programming mode instructions. The
circuitry can be modified to provide more than one pro-
gramming mode instruction, and thus save greater numbers
of dedicated mode select pins.

The circuitry shown in FIGS. 3 and 4 illustrates (by way
of an specific example) a technique to eliminate one mode
select pin by implementing a JTEST instruction. The JTEST
instruction is recognized by the JTAG circuitry to indicate a
programming modec. Using the JTEST signal, programming
mode decoder 250 provides four modes, taking as input only
one dedicated mode select pin. Without the JTEST
instruction, two dedicated mode select pins would have been
required to have four different programming modes. The
JTEST instruction saves one mode select pin. Therefore,
using the technique of the present invention, fewer dedicated
pins are required to implement the programming modes,
leaving more external pins for user 1/0.

In further embodiments of the present invention, dedi-
cated pins to indicate the programming modes may be
eliminated altogether. In that case, the programming modes
would be determined entirely by the instruction in instruc-
tion register 220. And there may be multiple JTEST signals.
For example, an imstruction may be decoded to provide
ITEST1, JTEST2, and JTEST3 signals used to distinguish

9

US 6,421,812 B1

7

between up to eight programming modes. As discussed
above, the number of available programming modes
depends on the number of available instructions not being
used to implement JTAG modes.

The techniques and circuitry of the present invention are
also applicable for in-system programming (ISP) of a PLD,
where the PLD is programmed while resident on a printed
circuit board.

FIG. 5 shows a flow diagram of a technique of the present
invention. The technique of the present invention permits the
programming or configuration of an integrated circuit using
the JTAG circuitry. In a step 501, an instruction is input into
JTAG instruction register 220 of the integrated circuit. The
instruction may be serially shifted in via the TDI pin
according to the control signals from JTAG state machine
210. In a specific embodiment, the instruction may have
three bits INSTO, INST1, and INST2.

In a step 505, the instruction in the instruction register is
decoded. The instruction is passed in parallel to JTAG
boundary scan control logic 220. JTAG boundary scan
control logic 220 generates the appropriate control signal to
indicate a JTAG mode or a programming mode. For
example, SAMPLE and EXTEST are JTAG modes, and
JTEST is a programming mode.

In a step 510, the JTEST signal is generated by JTAG
boundary scan control logic 220 to indicate a programming
mode. The JTEST signal may be implemented using an
available instruction which is not used as a JTAG instruc-
tion.

In a step 518, the JTEST signal is passed to programming
mode decoder 250. In a step 520, using the JTEST signal, the
programming mode decoder 250 generates programming
mode signals 255 (such as TEST, SCAN, ASYNC-SERIAL,
and SERIAL) that are passed to the programming circuitry.

Based on programming mode signals 258, the integrated
circuit will be configured by the programming circuitry. The
configuration of the integrated circuit may be in an
in-system programming (ISP) mode.

The present invention may be used in conjunction and is
compatible with other techniques to effectively increase the
available number of user I/O pins, such as described in U.S.
patent application Ser. No. 09/094,226, filed Jun. 9, 1998,
now U.S. Pat. No. 6,314,550, which is incorporated by
reference.

Another technique to increase the number of pins is to
permit the use of the JTAG pins for user /O when JTAG is
not used by the user. To implement the JTAG standard in an
integrated circuit, the integrated circuit needs at least four
pins: TCLK, TMS, TDIN, and TDO. These are dedicated
pins for accessing JTAG functionality. However, for cus-
tomers who do not use JTAG, these pins are not used. The
technique of the present invention allows these customers to
use the JTAG pins as regular 1/0 pins. The technique ol the
present invention is especially useful for programmable
logic devices (PLDs), field programmable gate arrays
(FPGAs), and many other types of integrated circuits.

In the method of the present invention, the information
whether JI'AG operation is enabled or disabled is encoded in
an option register bit. After power up of the integrated
circuit, the default state of option register allows these four
pins to be used as JTAG pins. Thus, JTAG operation is
enabled. After the option register bit is programmed, there
are two cases.

(1) The customer may choose to use JTAG, and the option
register is configured to reflect this. Then, these four pins
will continue to function as JTAG pins.

10

15

25

30

40

45

50

53

60

65

8

(2) In the case the customer chooses not to use JTAG, the
option register is configured to reflect this. The four JTAG
pins will be disconnected from the JTAG circuitry. JTAG
operation will not be enabled. After the device enters the
user mode, these four pins can be used as regular 1/0 pins,
thus avoiding the waste of these pins when JTAG is not used.

The configuration of the option register may be held using
memory cells such as SRAM, EPROM, EEPROM, Flash,
RAM, and many others. The configuration information may
be nonvolatile.

During programming, the JTAG state machine stays in the
reset state regardless the state of JTAG pins.

An advantage of the method of the present invention is to
allow four more 1/0 pins for those customers who do not use
JTAG. These customers can treat the four pins as regular I/O
pins during both programming and user mode. Further, there
is no “difficult to use” problem.

FIGS. 6, 7, and 8 show a circuit implementation for an
integrated circuit with configurably or selectably enabled
and disabled JTAG pins.

FIG. 6 shows circuitry which may be used for the TDI,
TCLK, and TMS input pins. Pin 610 is the 1/0O pin of the
integrated circuit, and is coupled to an output buffer 615.
Output buffer 615 has transistor drivers coupled to a noisy
positive supply VCCN and noisy ground supply VSSN.
VCCN and VSSN are distinguished from quiet positive and
ground supplies VCCQ and VSSQ, respectively. Some
degree of isolation is achieved by separating the quiet and
noisy supplies. However, in some implementations, there
may be only VCC and VSS supply pins, where there are not
separate noisy and quiet supplies.

Output buffer 615 is a data output buffer for drive data to
pin 610. Output data is input at a DIN input. An OEB input
controls whether pin 610 is tristated. A RNSLEW input
controls whether the slew rate at the drivers of the output
buffer are slowed in order to minimize or prevent ground or
power bounce. A DATX output passes data from pin 610 to
an input buffer for the integrated circuit. The input buffer
includes inverters INV7 and INV6. An output of INV6
drives the internal circuitry.

An RITAG input to the circuitry determines whether
JTAG functionality is enabled or disabled. A JTAG input
buffer is represented by block, the details of which are
shown in FIG. 7. The JTAG input buffer includes inverters
710 and 720 and a transmission gate 725. An input of
inverter 710 is coupled to DAI'X (see FIG. 6). A control
electrode of an NMOS transistor of transmission gate 725 is
coupled to RITAG. A control electrode of a PMOS transistor
of transmission gate 725 is coupled through an inverter 725
to RITAG. An output of inverter 726 is also coupled to a gate
of an NMOS transistor 740, which is coupled between an
output 628 of the JTAG input buffcr and ground.

When RJTAG is a logic high, the JTAG input buffer 620
is enabled to pass data to the internal JTAG circuitry and
JTAG functionality is permitted.

When RITAG is a logic low, JTAG functionality if
disabled. This is occurs by disabling the JTAG input buffer.
Transmission gate 728 is turned off, decoupling an output of
inverter 720 from output 628 of the JTAG input buffer.
Transistor 740) is turned on in order to ground output 628. A
PMOS transistor 635 is turned on in order to couple VCC to
the input of the JTAG input buffer 620, ensuring the input is
a logic high. Then, inverters 720 and 710 will be in a known
state, and not consume unnecessary power. RITAG will
control the output buffer 615 to function as a user 1/0 pin.

FIG. 8 shows circuitry which may be used lor a TDO
output pin. Depending on the states of RITAG and JOEB,

“

US 6,421,812 B1

9

the JTAG functionality may be disabled. The input buffer
(ie., INV6 and INV7) and output buffer 615 are as described
above. A circuit block is a JTAG output buffer 810 for
outputting JTAG data. This JTAG data is input to the JTAG
output buffer through the JDIN pin. An output of the JTAG
output buffer 810 is coupled to pin 610.

When RITAG is logic high and JOEB is logic low, JTAG
functionality will be enabled. When RITAG is logic low and
JOEB is logic high, JTAG functionality will be disabled.
Specifically, the JTAG output buffer will be tristated, and
output buffer 615 will function similarly as for a user I/O
pin.

The foregoing description of preferred embodiments of
the invention has been presented for the purposes of illus-
tration and description. It is not intended to be exhaustive or
to limit the invention to the precise form described, and
many modifications and variations are possible in light of
the teaching above. The embodiments were chosen and
described in order to best explain the principles of the
invention and its practical applications to thereby enable
others skilled in the art to best utilize and practice the
invention in various embodiments and with various modi-
fications as are suited to the particular use contemplated. It
is intended that the scope of the invention be defined by the
following claims.

What is claimed is:

1. A method of configuring a programmable integrated
circuit comprising:

providing an instruction to a JTAG instruction register;

passing the instruction to a JTAG boundary scan control
logic block wherein the JTAG boundary scan control
logic generates JTAG scan control signals;

generating in the JTAG boundary scan control logic block
a control signal;

passing the control signal to a programming mode
decoder; and

bascd on the control signal, generating a programming
mode signal to place the programmable intcgrated
circuit in a configuration mode.

2. The method of claim 1 wherein the instruction is not an

1EEE 1149.1 JTAG instruction.

3. The method of claim 1 wherein the instruction is shifted
serially into the JTAG instruction register.

4. 'The method of claim 1 wherein the instruction is passed
in parallel to the JTAG boundary scan control logic block.

5. The method of claim 1 wherein the control signal is not
a JTAG scan control signal.

6. The method of claim 1 further comprising:

in the configuration mode, loading configuration infor-
mation into the programmable integrated circuit
through non-J'TAG external pins.

7. The method of claim 1 further comprising:

configuring programmable memory cells of the program-
mable integrated circuit in the configuration mode.

8. The method of claim 7 wherein the programmable

memory cells are EEPROM or Flash cells.

9. The method of claim 7 wherein the programmable
memory cells are SRAM cells.

10. The method of claim 1 wherein the programming
mode decoder comprises:

a plurality of logic gates, each having an input coupled to
the control signal and at least two inputs coupled to
mode select signals, and providing four separate pro-
gramming mode signals.

11. A method of configuring a programmable integrated

circuit comprising:

35

40

50

60

65

10

storing in a JTAG instruction register an instruction
indicating the programmable integrated circuit is to be
configured,

placing the programmable integrated circuit in a configu-
ration mode based on the instruction stored in the JTAG
instruction register; and

configuring programmable memory cells of the program-
mable integrated circuit in the configuration mode.
12. The method of claim 11 further comprising:

decoding the instruction using a JTAG boundary scan

control logic block; and

determining the instruction is not a JTAG scan control

signal.

13. The method of claim 11 wherein configuring the
programmable integrated circuit comprises imprinting the
programmable integrated circuit with a desired pattern.

14. The method of claim 11 further comprising:

in the configuration mode, selecting a configuration mode
operation based on the instruction stored in the JTAG
instruction register and a mode select pin.
15. The method of claim 11 wherein the programmable
memory cells are EEPROM or Flash cells.
16. The method of claim 11 wherein the programmable
memory cells are SRAM cells.
17. A methaod of operating a programmable logic device
comprising;
serially inputting an instruction to an instruction register
of the programmable logic device;

decoding the instruction in a control logic block;

when the instruction is an IEEE 1149.1 JTAG instruction,
performing IEEE 1149.1 JTAG operations in the pro-
grammable logic device;

when the instruction is a configuration instruction, gen-
erating a control signal in the control logic block;

in response to the control signal, generating a program-
ming mode signal to place the programmable logic
device into a configuration mode.

18. The method of claim 17 further comprising:

when in the configuration mode, permitting a user to
configure the programmable logic device.

19. The method of claim 17 wherein the configuration

instruction is not a IEEE 1149.1 standard JTAG instruction.
20. The method of claim 17 further comprising:

when the instruction is not the configuration instruction,
not placing the programmable logic device in the
configuration mode.

21. The method of claim 17 further comprising:

when in the configuration mode, permitting a user to

select from a plurality of differem modes within the
configuration mode.

22. The method of claim 21 wherein the user’s selection
of one of the plurality of different modes is input by way of
parallel instruction bits provided to the programmable logic
device.

23. A technique of programming a programmable logic
device while it is resident on a system board comprising the
method recited in claim 17.

24. The method of claim 17 wherein the JTAG instruction
comprises a plurality of bits clocked into the programmable
logic device.

25. The method of claim 17 wherein the control logic
block comprises a plurality of NAND gates, each coupled to
the instruction register.

J

US 6,421,812 B1

1
26. The methed of claim 17 further comprising:

configuring programmable memory cells of the program-
mable integrated circuit in the configuration mode.
27. The method of claim 26 wherein the programmable
memory cells are EEPROM or Flash cells.
28. A method of placing a programmable logic integrated
circuit into its configuration mode to program memory cells
of the programmable logic integrated circuit comprising

12

inputting a configuration instruction into a register of the
programmable logic integrated circuit, wherein the register
is also used for IEEE 1149.1 JTAG operations when IEEE
1149.1 JTAG instructions are input into the register.

29. The method of claim 28 wherein the memory cells are
EEPROM or Flash cells.

EE T

Exhibit B

YV 0D A R OV 0
US005563592A

United States Patent (i (11] Patent Number: 5,563,592
CIiff et al. 451 Date of Patent: Oct. 8, 1996
[54] PROGRAMMABLE LOGIC DEVICE HAVING Shih-Fu Chang et al., “Designing High-Throughput VLC
A COMPRESSED CONFIGURATION FILE Decoder Part 1—Concurrent VLSI Architectures”, /EEE
AND ASSOCIATED DECOMPRESSION Transactions on Circuits and Systems for Video Technology,

(Jun. 1992) 2:2:187-96.

Ming-Ting Sun et al,, “High-Speed Programmable 1Cs for
Decoding of Variable-Length Codes”, SPIE, (1989)

[75} Inventors: Richard G. Cliff, Milpitas; L. Todd
Cope, San Jose, both of Calif,

[73] Assignee: Altera Corporation, San Josc, Calif. 1153:28-39.
Shih-Fu Chang et al., “VLSI Designs for High-Speed

[21] Appl. No.: 156,561 Huffman Decoder”, IEEE International Conference on

) Computer Design: VLSI in Computers and Processors,
[22] Filed: Nov. 22, 1993 (1991), pp. 500-503.
{511 Int. C18 . HO3M 746 J. C. Vermeulen, “Logarithmic Counter Array with Fast
[52] US.CL. 341/63; 364/715.02 Access”, IBM Technical Disclosure Bulletin, (Nov. 1984),
(58] Field of Search 341/63, 64; 364/715.03, 27:6:3380-3381.

364/715.02, 715.09
Primary Examiner—Howard L. Williams

[56] References Cited Attorney, Agens, or Firm—Townsend and Townsend and
U.S. PATENT DOCUMENTS Crew LLP
4,446,516 5/1984 NiShimuraceerereerseeeriseesarens 341/63

Yose 157 ABSTRACT

: 323/65/2? A method of utilizing compression in programming pro-

326/39 grammable logic devices is disclosed. The present invention

4,791,660 12/1988
5,258,932 11/1993
5,260,610 11/1993
5,260,611 11/1993

5440718 8/1995 Kumagai el al. ... 395481 Ccompresses the configuration file to be used in programming
o a programmable logic device. The compression step reduces
FOREIGN PATENT DOCUMENTS the size of the configuration file. The reduction in the size of
0500267 8/1992 European Pat. Off. . the cornpress.ion file results in the reduction m the size of th_e
memory device used to store the configuration file before it
OTHER PUBLICATIONS is used to program the programmable logic device.
Jock Tomlinson et al.,, “Designing with reprogrammable
FPGAs”, Australian Electronics Engineering, Feb. 1993,
67-70. 34 Claims, 8 Drawing Sheets

506\ {507

HOST
COMPUTER | 504 CONFIGURATION
/] MEMORY
COMPRESSION
MEANS COMPRESSED DECOMPRESSION
DATA MEANS

o 2/ DATA N 508

| 510

PLD

U.S. Patent Oct. 8, 1996 Sheet 1 of 8 5,563,592

CONFIGURATION | _~102
FILE

Y

104
COMPRESSION s

h J

STORE THE 106
COMPRESSED DATAIN
THE SERIAL EPROM

Y

DECOMPRESSION | —108
OF DATA

A

PROGRAM THE 110
PROGRAMMABLE
100 LOGIC DEVICE

FIG. 1

U

U.S. Patent Oct. 8, 1996 Sheet 2 of 8 5,563,592
INPUT 202
CONFIGURATION FILE
} 202
GETTHE FIRST |7 2%/ N 220
MEMORY PATTERN GET THE NEXT THIS THE
! MEMORY LAST MEMORY
INITIALIZE THE COUNT PATTERN PATTERN
VARIABLE TO ZERO_N_ 505 -
224
FIRST BIT GENERATE THE COMPRESSED
YES OF THE MEMORY ~ NO CONFIGURATION FILE USING
PATTERN A 208 THE COMPRESSED MEMORY
LOGIC “1” / PATTERNS
?
COUNT = : 206
COUNT +L DONE |~
le
210
IS THE
NEXT BIT A
LOGIC “1"
GENERATE THE BCD 214
REPRESENTATION OF THE VALUE OF |~ 200
THE COUNT VARIABLE AND STORE 200
HAS 216
THE LAST 217
BIT IN THE MEMORY™, NO,| RESET THE COUNT |~ 21
PATTERN BEEN VARIABLE TO ZERO
ETECTED
?
YES
GENERATE A COMPRESSED |~ 218
MEMORY PATTERNBY |,
CONCATENATING THE DATA
OBTAINED IN STEP 214

FIG. 2

5,563,592

Sheet 3 of 8

Oct. 8, 1996

U.S. Patent

£ Old 02¢€ -
iM_T / WI0oviva
ree g v VAR viva
g10 a
o MO 91g 3 ¥2€ 13s34d
9] a 81€ TS g zze
3ud ,/ A2
HMd 80¢ avao
= cle
R
°10 zm 1
o ov v_n_uzA MO @310 ad
90 ¢ 0 @u OEE 1EE L
SO<— 974 19 / / —4Qaoy Qavoip
12005 D1 av €IND N ao a 1
) ae ZIND 00 m
= Qe FIND —~_ €0 i
HO at 0IND N VO
W N 82c 62¢ \
so<—Jov MO v0E 20¢
20¢—oe 29 ”*
1002 19
00 ¢—1O1 ar
ac
az
90e | ar

5,563,592

Sheet 4 of 8

Oct. 8, 1996

U.S. Patent

v Ol

_ooooooooooooooooo
[

U.S. Patent

Oct. 8, 1996 Sheet 5 of 8 5,563,592
INPU
PUT CONFI%JRAHON FILEN 400 424
GET THE FIRST MEMORY R £
PATTERN, INITIALIZE ATEST R THE CONTENTS
REGISTER, AND ALLOCATE - 404 IN THE COMPRESSED
MEMORY FOR THE CONFIGURATION FILE
COMPRESSED
CONFIGURATION FILE
= 426
GET THE FIRST FOUR BITS | 406 THIS THE ™ YES
LAST MEMORY
OF THE MEMORY PATTERN PATTER 430
408 /
NO| ™\ zERO? " (YES
412 410 GEJAES%E\EXT |~ 428
. -/ PATTERN
ADDALEADING ‘’| | SET THE FIRST !
TO THE FOUR BIT OF DUMP
BITS AND STORE| | REGSITER TO RESETTHE | 432
THEM IN FIRST 5 ZERO DUMP REGISTER
BITS OF THE TO ALL ZEROS
DUMP REGISTER T
l
414
THE END OF
THE MEMORY
PATTERN BEEN " YES
REACHED
NO 400
GET THE NEXT | 416
FOUR BITS
418
ARE
ALLLOGIC MYES
ZERO?
ADD A LEADING LOGIC ‘1" TNEXT BIT OF
TO THE FOUR BITS AND SETSE DTUMP | -422
SET THE NEXT 5 BITS OF REGISTER
THE DUMP REGISTER EQUAL TO ZERO
EQUAL TO THE RESULT

FIG. 5

U.S. Patent Oct. 8, 1996 Sheet 6 of 8 5,563,592
506\ /507
HOST]
COMPUTER /J 504 CONFIGURATION
Ve MEMORY
COMPRESSION
MEANS COMPRESSED DECOMPRESSION
DATA MEANS
7 \508
502/ DATA
510
PLD
FIG. 6
506 507
\ 4‘/
CONFIGURATION
300~ MEMORY
HOST y
DATA COMPRESSION
OMP
COMPUTER . MEANS]
/ DECOMPRESSION
502 MEANS
DATA \508
510
PLD

Fia. 7

v v

U.S. Patent Oct. 8, 1996 Sheet 7 of 8 5,563,592
HOST 506
COMPUTER - 504
> ra
COMPRESSION _| CONFIGURATION
MEANS COMPRESSED MEMORY
DATA
COMPRESSED
502/ DATA / s
, e
DECOMPRESSION
MEANS
PLD
FIG. 8

s 506

CONFIGURATION
300 MEMORY

HOST DATA COMPRESSION
COMPUTER MEANS

—/ COMPRESSED
502

DATA 508
| / . 510

DECOMPRESSION
MEANS

PLD

FIG. 9

5,563,592

Sheet 8 of 8

Oct. 8, 1996

U.S. Patent

1Noviva

805

0ES

R\XJO

0} Old
>
12s ‘
82S in v
3
410) \NNm
dolddind d
H3LNNOO
- L NMOd
O aj« < g+
9¢S ves
0cs \
avoOT1 ONAS
2cS

A

0X

A

IX

A

X

£X

o

5,563,592

1

PROGRAMMABLE LOGIC DEVICE HAVING
A COMPRESSED CONFIGURATION FILE
AND ASSOCIATED DECOMPRESSION

BACKGROUND OF THE INVENTION

The present invention relates to the field of data process-
ing. In particular, it relates to the use of data compression in
for transmitting and storing configuration data for program-
ming programmable logic devices.

Today’s advanced technology has provided for design,
development and manufacturing of complicated program-
mable logic devices. Such devices include those described in
U.S. Pat. Nos. 5,260,610 and 5,260,611, incorporated herein
by reference for all purposes. These devices include numer-
ous programmable elements to provide flexibility. By pro-
gramming these programmable elements, the user defines
the function that the programmable logic device must per-
form. Configuration files are used to program the program-
mable logic devices. A typical configuration file includes at
least one memory pattern. The memory pattern includes a
series of low “0” and high “1” bits which are used to
program the individual programming elements. Configura-
tion files are stored on the PLD or in memory associated
with the PLD and are loaded onto the PLD at power-up or
when the PLD system receives a signal to reconfigure the
PLD.

Typically, a configuration file includes more than one
memory pattern. It is also possible that more than one
configuration file are used to program a typical program-
mable logic device. The configuration files are usually stored
in memory banks and are individually retrieved to program
the corresponding programmable logic device. Typically,
EPROMs are used to store the configuration files.

As the complexity of the programmable logic devices
grows, so does the number of programmable elements used.
This requires configuration files with a greater number of
“1s” and “0s” to program the programmable memory
devices. As the size of the configuration files increases, so
does the size of the EPROMs needed to store them. Large
EPROMs are expensive and require large silicon area to be
manufactured. The size of the silicon area is more important
when the EPROM is manufactured on the same substrate as
the programmable logic device. The size of the EPROMs
limit the complexity of the programmable logic device.

From the foregoing, it can be appreciated that there is a
need for an apparatus and method of reducing the size of the
configuration files belore they are stored in memory, par-
ticularly where the configuration files are stored in memory
located on the same substrate as the PLD.

SUMMARY OF THE INVENTION

The method and apparatus of the present invention com-
press the data file which is used to program a particular
programmable logic device. The compressed data file is then
stored in a memory element. Once it is necessary to program
the programmable logic device, the compressed data file is
decompressed and then is used to program the program-
mable logic device.

In one embodiment of the present invention, the com-
pression and decompression are done by hardware. In a
second embodiment, the compression is done by software
extemal to the PL and the decompression is done by
hardware either located on the PLD, or closely associated
with the PLD and an external configuration file memory.

20

25

30

35

35

63

2

Therefore, the present invention offers a solution to the
problems caused by storage of large memory patterns that
are used in programming the programmable logic devices.

Other advantages of the present invention will be more
evident as the invention is disclosed in the ensuing detailed
description of the invention and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the preferred embodiment of the method
of the present invention;

FIG. 2 is a flow chart showing the preferred method of
performing the compression in the present invention;

FIG. 3 shows a circuit diagram of a compression circuit;

FIG. 4 shows the timing diagram of the circuit of FIG. 3
used to compress an example configuration file;

FIG. § is a flow chart which illustrates an alternative
method in performing the compression in the present inven-
tion;

FIG. 6 shows one embodiment of the system according to
the present invention;

FIG. 7 shows a second embodiment of the system accord-
ing to the present invention;

FIG. 8 shows a third embodiment of the system according
to the present invention;

FIG. 9 shows a fourth embodiment of the system accord-
ing to the present invention; and

FIG. 10 shows a circuit diagram of a decompression
circuit used in the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention offers a solution to the problem of
storing large configuration files. By reducing the number of
bits in an individual configuration file through compression,
the present invention eliminates the need for large memory
elements either associated with or on the PLD in which to
store them.

FIG. 1 illustrates a flow chart showing the steps of the
method of the present invention. Process 100 first inputs the
configuration file in step 102. The configuration file is then
compressed in step 104 using a software compression algo-
rithm or a hardware compression circuit. The compression
step reduces the number of bits in the configuration file by
a ratio of as much as 2 to 1. The compressed configuration
file is then stored in a memory element, such as a senial
EPROM, in step 106. Since the size of the generated
configuration file is substantially smaller than the original
configuration file, a memory element with smaller storage
capacity can be used to store the generated file.

To program the programmable logic device, the original
configuration file must be recreated. In step 108, the com-
pressed configuration file is decompressed using a decom-
pression circuit. Finally, in step 110, the configuration file
generated in step 108 is used to program the programmable
logic device.

In addition to reducing the size of the memory element,
the reduction of the size of the individual configuration files
allows for storing more than one configuration file in a single
memory element. This eliminates the need for multiple
memory elements where more than one configuration file
can be used to program a programmable logic device.

5,563,592

3

As mentioned above, the compression step can be per-
formed by software or hardware. The flow chart of FIG. 2
shows the preferred method of performing the compression
step 104 in FIG. 1. The compression process shown in FIG.
2 begins by inputting a configuration file as shown in step
202. This configuration file is typically stored in the memory
of the host processing unit. This processing unit (shown in
FIGS. 6 and 7) executes the software realizing the steps
shown in the flowchart FIG. 2. As mentioned above, a
typical configuration file includes at least one memory
pattern which is used to program the programmable logic
device. However, almost always, configuration files include
more than one memory pattern.

Process 200 continues by obtaining the first memory
pattern to be compressed in step 204. In step 205, the value
of a count variable is initialized to zero. The count variable
is used to keep track of the number of low bits between two
high bits in the memory pattern. As mentioned above, a low
bit refers to a logic “0” bit and a high bit refers to alogic “1”
bit. In step 206, the first bit of information in the memory
pattern is examined. If the first bit is a high bit, the process
proceeds to step 214, which will be described later.

If the first bit is a low bit, process 200 increments the
value of the count variable and proceeds to step 210. In step
210, the next bit is examined. If the next bit is a high bit,
process 200 proceeds to step 214. If the next bit is a low bit,
process 200 proceeds to step 212. In step 212, the value of
the count variable is examined to determine whether it has
reached a maximum preset value. If the value of the count
variable is equal to the maximum value, then process 200
proceeds to step 214, otherwise, it returns to step 208 and
proceeds as explained above.

The maximum preset value of the count variable depends
on the representation scheme used in step 214. For example,
in the embodiment of the present invention, a Binary Coded
Hexadecimal Representation (“BCH") representation of the
value of the count variable is generated at step 214. It is well
known in the art that four bits are used to generate the BCH
representation of a single hexadecimal digit number. It is
also well known that the maximum hexadecimal decimal
number that can be represented by four bits is hexadecimal
F or decimal fifteen. Therefore, in the present embodiment,
the maximum preset value of the count variable is set to
filteen. Obviously, this number can change depending on the
different schemes used to represent the value of the count
variable.

Three different alternatives to reach step 214 arc
described above. While in step 214, process 200 generates
the BCH representation of the value of the count variable.
The outcome of step 214 is stored in memory and will be
retrieved later to construct the compressed configuration file.
In step 216, process 200 determines whether the last bit in
the memory pattem was just examined. If the answer to step
216 is no, process 200 resets the value of the count variable
to zero in step 212, retumns to step 210, and proceeds as
described above. If the answer to step 216 is yes, process
200 constructs the compressed memory pattern by retrieving
and concatenating the BCH representations of the current
memory pattern. The compressed memory pattern is stored
in the memory of the host processor.

After step 218, process 200 proceeds by determining
whether the current memory pattern is the last memory
pattern in the configuration file in step 220. If the answer is
no, process 200 retrieves the next memory pattern in the
configuration file from the memory of the host processor,
returns to step 205, and continues as described above. If the

—

5

45

60

4

answer to step 220 is yes, process 200 generates the com-
pressed version of the configuration file in step 224, This is
done by retrieving the compressed memory patterns from
the memory of the host processor and forming a file from all
compressed memory patterns.

FIG. 3 illustrates an electronic circuit 300 which performs
the compression step 104 in FIG. 1 using hardware. Circuit
300 includes a counter 302, 4-bit registers 304 and 306, “D”
flip-flop (“FF”) 308, NOR gates 310 and 312, 4-input AND
gate 314, AND gate 316, OR gate 318, and invertors 320 and
334,

Counter 302 is used to count the number of low bits
between two high bits in a memory pattern. Counter 302
includes four inputs A-D, a LOAD input which is asserted
when connected to a low level signal, a clock input “CK”,
and four outputs 328-332. It should be realized that a low
level signal is realized by providing ground potential at the
prospective inputs. The information on inputs A-D when
loaded in counter 302 provides the initial count value of
counter 302. In operation, counter 302 counts up or down
from this initial count value. For example, if inputs A and B
carry alow level signal and inputs C and D carry a high level
signal, the initial value of counter 302 is three. In the
embodiment of FIG. 3, inputs A-D are permanently con-
nected to a low level signal. Outputs 328-331 carry the
binary equivalent of the latest count value of the counter,
Inputs A-D are loaded in counter 302 when a low level
signal appears on LOAD input 332.

Outputs 328—331 are connected to inputs 1D—4D of both
4-bit registers 304 and 306. This allows for laiching the
information on outputs 328-331 in registers 304 and 306.
Each of the two registers 304 and 306 further includes a
clear input (“CLR"), a clock input and other inputs that are
connected to ground potential as shown in FIG. 3. The CLR
input of both registers 304 and 306 are connected to GRE-
SET signal 322. GRESET input is nsed to initialize circuit
300, as will be described later. The CK input of register 304
is connected to the inverse Q output of FF 308 and the CK
input of register 306 is connected to the Q output of FF 308.

The D input of FF 308 is connected to its inverse Q output
and its clock input is connected to the output of AND gate
316. The signal at the output of AND gate 316 is also
referred to as the GRAB signal 336. As it will be more
clearly described below, a high to low or a low to high
transition of the GRAB signal is used to latch the informa-
tion on outputs 328-331. FF 308 further includes a CLR
input which is connected to the output of invertor 334.
Invertor 334 generates a clear signal to clear FF 308 by
inverting the GRESET signal 322. The A input of AND gate
316 is connected to the output of OR gate 318, and the B
input of AND gate 316 is connected to the output of invertor
320. The input of invertor 320 is connected to DATACLK
signal 326, which is the system clock signal. The A input of
OR gate 318 is connected to the output of AND gate 314 and
its B input is connected to the DATA input terminal 324. The
individual bits of each memory pattern serially enters com-
pression circuit 300 via DATA input terminal 324.

The inputs of AND gate 314 are connecied to outputs
328-331. DATA input terminal 324 and DATACLK signal
326 are also connected to A and B inputs of NOR gate 312,
respectively. The A and B inputs of NOR gate 310 are
connected to the GRESET signal 322 and GRAB signal 336,
respectively.

Circuit 300 operates as follows. A high level signal
connected to GRESET signal 322 forces NOR gate 310 to
generate a low signal at its output. This places a low level

5,563,592

5

signal at the LOAD input of counter 302, which loads in the
information on its inputs. GRESET signal 322 is also used
to clear registers 304 and 306, and FF 308 via invertor 334.
With FF 308 cleared, a low level signal appears at its Q
output and a high level signal appears at its inverse Q output.

To begin the compression, a low level signal is applied to
GRESET 322. As mentioned before, the information bits in
the memory pattern serially enters circuit 300 via DATA
input terminal 324. As long as low level bits are inputted, the
output of NOR gate 312 follows the clock input at DATA-
CLK terminal 326. This provides a clock signal at the CK
input of counter 302 which forces counter 302 1o count. In
the embodiment of FIG. 3, counter 302 counts up from the
initial count value. Thus, so far, the counter is counting the
number of low level bits in the memory pattem.

Once the first high level bit appears at DATA input
terminal 324, the output of NOR gate 312 is forced to a low
level. This stops the clock signal at the CK input of counter
302, thus stopping counter 302 from further counting. A high
level bit at DATA input terminal 324 also forces the output
of OR gate 318 to high, which forces the output of AND gate
316 to follow the clock signal at the output of invertor 320.
Invertor 320 inverts the clock signal received at DATACLK
terminal 326.

As mentioned above, the output of AND gate 316 is
connected to the CLK input of FF 308, and the inverse Q of
FF 308 is set to high once FF 308 is cleared. This places a
high level signal at the D input of FF 308. Therefore, the first
high to low transition of the clock signal at the output of
AND gate 316 forces the Q output of FF 308 to high level.
A transition from low to high at the Q output of FF 308
provides a clock signal for register 306, thus causing the
information on outputs 328-331 to be latched in register
306.

The above occurs during a single high to low transition of
the sigral at the output of AND gate 316. This signal is
referred to as the GRAB signal. The next transition from a
low to a high level at the output of AND gate 316 forces the
output of NOR gate 310 to low, which provides a load signal
to counter 302. Counter 302 is then reloaded with the initial
value of zero.

The next time that a high bit is detected, again the output
of OR gate 318 switches to high level, which forces the
output of AND gate 316 to follow the clock signal at the
output of invertor 320. This time, a transition from low to
high at the output of AND gate 316 forces the Q output of
FF 308 t0 a low level, and low to high at the inversc Q of
FF 308 provides a clock signal for rcgister 304, which
allows the information on outputs 328-331 to be latched into
register 304, This is the second GRAB signal.

Above, we described how the GRAB signals are gener-
ated if a high bit is detected after a low bit. If the number of
low bits between two high bits are more than a present
maximum number, circuit 300 generates a GRAB signal. If
the counter counts to the maximum value, then outputs
328-331 will all carry high level signals. This forces the
output of AND gate 314 to high, which forces the output of
OR gate 318 to high. The rest of the opcration is similar to
what has been described above. In the embodiment of FIG.
3, the maximum count is fifieen. Therefore, if there are more
than fifteen logic “‘Os™ between two logic *1s” in the memory
pattern, a GRAB signal is generated by circuit 300.

FIG. 4 shows a timing diagram of circuit 300 compressing
the following memory pattern:

000100110000000000000000011

Signal A represents the above memory pattern, signal B
represents the clock signal at DATACLK terminal 326,

15

20

40

45

50

65

6

signal C represents the signal at the output of AND gate 316
(i.e. the GRAB signal), signal D represents the clock signal
to counter 302, signals E and F represent clock signals to
registers 304 and 306, signal G represents the signal at
GRESET terminal 322, signal H represents the output of
counter 302, and signal I represents the output of circuit 300.

As explained above, two GRAB signals are needed to
Inad both registers 304 and 306. Therefore, valid com-
pressed data is read on the falling edge of every other GRAB
signal. Arrows 340 point to the position in signal C where
valid signals are read. In the present example, counter 302
counts the number of low bits, which is three, until the first
high bit is detected. Then, the binary value of three is loaded
in register 306 as explained above with reference to FIG. 3.
Since the first high bit has been detected, a zero initial count
is reloaded in counter 302. The next low bit in the memory
pattemn forces counter 302 to start counting again. There are
two other low bits in the data before the next high bit is
detected.

Once the next high bit is detected, outputs QA-QD are
loaded in register 304 as explained above. At this point, the
outputs of register 304 and 306 are read and stored (not
shown). The detected high bit forces a reloading of counter
302. The next bit is another high bit which forces the
generation of another GRAB signal 342. This forces the
loading of the information on outputs 328-331, which is the
binary equivalent of zero, in register 306. This process
continues unti] the whole memory pattern is compressed.
The following shows the results of the example in FIG. 4.

Pattern: 0001001 10000000000000000011

Compressed: 001100100000111100100000Note that the
first four bits of the pattern “0001" are compressed as
the BCH digit “3” or “0011” signifying three “Q's™
followed by a “1”. The next three bits of the pattern
“001” are compressed into the hexadecimal digit “2” or
“0010” signifying two “0’s” preceding a “1” bit. The
next bit in the pattem is compressed as hexadecimal
“0000" signifying no “0’s"”" preceding a “1” bit, and bits
9 through 23 of the pattern are compressed as hexa-
decimal F or “1111” signifying a string of fifteen “0’s”
with no “1” bits It can be seen from the above that the
compressed pattern has fewer bits than the un-com-
pressed patiem. The above is for illustrative purposes
only.

FIG. 5 shows an alternative method of performing the
compression step 104 in FIG. 1. The compression process,
according to the embodiment of FIG. 4, starts by obtaining
the configuration file to be compressed in step 402. Next,
process 400 selects the first memory pattern to be com-
pressed, initializes a test register by loading a logic “0” in
each individual register of the test register in stcp 404. The
test register is used to temporarily store the compressed
memory pattern and includes a fairly large number of
individual registers. Each individual register holds one bit of
compressed data.

In steps 406 and 408, the first four bits of the memory
pattern are examined. If all are low level bits, the first bit of
the test register is set to low in step 410 and the process
proceeds to execute step 414. If any of the four bits is a high
level bit, a leading high bit is added to the above four bits
and the resulting five bits are stored in the first five registers
of the test register in step 412. The process then proceeds to
step 414.

In step 414, the compressor determines whether the four
bits of data just examined were the last four bits in the
memory pattern. If the answer is no, the next four bits of the
memory pattern are examined in step 418. Again, if all are

5,563,592

7

low level bits, process 400 sets the next bit of the test register
to low level in step 422 and returns to step 414. If any of the
four bits is a high level bit, process 400 adds a leading high
level bit to the examined four bits and stores the resulting
five bits in the next five bits of the test register. Process 400
then returns to step 414. Once in step 414, the compressor
proceeds as explained above.

If the answer to the question in step 414 is yes, which
means that the end of the memary pattern is reached, process
400 proceeds to step 424. In step 424, process 400 stores the
content of the test register, which is the compressed version
of the memory pattemn. In step 426, process 400 determines
whether the previous memory pattern was the last memory
pattern in the configuration file. If no, process 400 selects the
next memory pattern in step 428, re-initializes the test
register in step 432, and proceeds to step 406. If the answer
to the step 426 is yes, the compression is over. The resulting
configuration file is then stored in the serial EPROM, as
shown in step 106 of FIG. 1.

As mentioned before, the compression can be performed
by software or hardware. In the former, the software tool
residing in a host computer performs the compression step.
In the latter, the compression step is performed by an
electronic circuit, such as the one shown in FIG. 3. The
electronic circuit can reside in the host computer or it can be
packaged with the memory element used to store the com-
pressed configuration files.

FIG. 6 shows an embodiment of the system of the present
invention where software is used to perform the compres-
sion step 104 in FIG. 1. FIG. 6 shows a host computer 502,
compression software 504, serial device integrated circuit
506 which includes memory array 507 and decompression
circuit 508, and programmable logic device 510. Host
computer 502 can be any personal computer, such as IBM or
IBM compatible personal computers, Macintosh personal
computers, SUN or DEC (Digital Equipment Corporations)
work stations.

In operation, the user generates one or more configuration
files using a programming tool (not shown), such as the
ALTERA MAX™ programming tools, supplied by the
manufacturer of programmable logic device 510. Hereinaf-
ter, we will assume that only one configuration file is
generated by the user. Compression software 504 can be a
part of the programmable tool, or it can be a separate
software tool used by the programming tool. Compression
software 504 compresses the configuration file and generates
a compressed configuration file. The compressed configu-
ration file is then stored in memory array 507 of serial device
506. To program programmable logic device 510, the pro-
gramming tool reirieves the stored configuration file from
memory array 507 by addressing the memory locations
where the compressed configuration file is stored. Since the
output of memory array 507 is connected to the input of
decompression circuit 508, the retrieved file is inputted into
decompression circuit 508. Decompression circuit 508
decompresses the compressed configuration file and regen-
erates the original configuration file. The original configu-
ration file is then used to program programmable logic
device 510.

FIG. 7 shows the embodiment of the present invention
wherein the compression is done by hardware. The system
of FIG. 7 includes a host computer 502, a serial device
integrated circuit 506, and a programmable logic device 510.
Serial device integrated circuit 506 includes compression
circuit 300 (refer to FIG. 3), memory array 507, and decom-
pression circuit 508. Host computer 502 is of the type
mentioned above.

—_

0

45

50

55

65

8

In operation, the user generates a configuration file using
the above-mentioned programming tool. The generated con-
figuration file is then sent to serial device integrated circuit
506 to be stored. However, before storing the configuration
file, it is compressed by compression circuit 300. The
compressed configuration file is then stored in memory array
507. To program programmable logic device 510, the pro-
gramming tool retrieves the stored configuration file from
memory array 507 by addressing the memory locations
where the compressed configuration file is stored. Since the
output of memory array 507 is connected to the input of
decompression circuit 508, the retrieved file is inputted into
decompression circuit 508. Decompression circuit 508
decompresses the compressed configuration file and regen-
erates the original configuration file. The original configu-
ration file is then used to program programmable logic
device 510.

FIGS. 6 and 7 illustrate the situations where the decom-
pression circuit is part of serial device integrated circuit 506.
FIGS. 8 and 9 illustrate the embodiments of the present
invention where decompression circuit 508 is part of pro-
grammable logic device 510,

FIG. 8 shows a host computer 502, compression software
504, serial device integrated circuit 506 which includes
memory array 507, and programmable logic device 510
which includes decompression circuit 508.

FIG. 9 shows a host computer 502, a serial device
integrated circuit 506, and a programmable logic device 510
which includes decompression circuit 508. Serial device
integrated circuit 506 includes compression circuit 300
(refer to FIG. 3) and memory array 507.

As mentioned above, host computer 502 can be any
personal computer, such as IBM or IBM compatible per-
sonal computers, Macintosh personal computers, SUN or
DEC (Digital Equipment Corporations) work stations. The
systems of FIGS. 8 and 9 operate exactly as do the systems
in FIGS. 6 and 7, respectively, except that decompression
circuit 508 now resides within the package of programmable
logic device 510.

FIG. 10 illustrates an embodiment of decompression
circuit 508 of FIGS. 6 and 7. FIG. 10 shows a 4-bit down
counter 520, a 3input NOR gate 524, a 4-input NAND gate
523, and a “D” FF 526. Decompression circuit 508 operates
on four parallel bits of the compressed configuration file at
a time and generates output bits in response to the informa-
tion on its four inputs.

As shown in FIG. 10, counter 520 includes four inputs
which are connected to input lines X0-X3, a clock input 521
coupled to the system clock 530, and a SyncLoad input 522
which is connected to the output of NOR gate 524. Counter
520 further includes four outputs connected to the inputs of
NOR gate 524. Input lines X0-X3 are also connected to the
inputs of NAND gate 523. FF 526 includes a “D” input
which is connected to the output of NOR gate 524, a clock
input 527 which is connected to the system clock 530, a clear
(“CLR”) input 528 which is connected to the output of
NAND gate 523, and a Q output.

The operation of circuit 508 is best understood through an
example. Assume that input lines X0-X3 carry the BCH
equivalent of the number five. As describe above, a four-bit
binary equivalent of number five represents the situation
where five low level bits were detected before a high level
bit was detected in a memory pattern. Therefore, circuit 508
must generate six output bits. The first five bits are low level
bits and the last bit is a high level bit. Also, assume that
circuit 508 is initialized which means that the outputs of
counter 520 are all set at low level. This generates a high

5,563,592

9

level signal at the output of NOR gate 524, which is
connected to SyncLoad input 522. As long as a high level
signal is connected to SyncLoad input 522, the information
on the input of counter 520 is loaded in as the initial count
value. In the present example, the binary equivalent of the
number five will be loaded in counter 520.

This immediately forces the output of NOR gate 524 to
low. Since a continuous clock signal is connected to the
clock input of FF 526, the next clock signal forces the output
of FF 526 to low. Thus, a first low level bit is then generated.
On the next clock signal the counter decrements its count
value. A binary equivalent of the new count value appears on
the outputs of counter 320. The output of NOR gate 524
remains at low level, which provides a low signal at the “D”
input of FF 526. The next clock input to FF 526 will not
change the level of its output, maintaining a low level at the
output of FF 526. Thus, the second low level bit is generated.

This process continues for the next three clock signals. At
the end of the third clock signal, the outputs of counter 520
carry the binary equivalent of zero. This forces the output of
NOR gate 524 to high level, which places a high level at the
output of FF 526. The next clock signal switches the output
of FF 526 from low to high. Thus, the sixth bit, which is a
high level bit, is generated. The above process continues
until the end of the compressed configuration file is reached.

NAND gate 523 is provided for situations where X0-X3
are all high, which means that at least fifteen low bits were
detected between two high bits. An all high level input to
NAND gate 523, forces its output to low level. This provides
avalid clear signal of FF 526 to the CLR input, which forces
the Q output of FF 526 to remain low as long as X0-X3 are
all high. Thus, for fifteen clock signals the output of FF 526
remains at low level. After fifteen clock signals, the next four
bits in the corpressed configuration file is provided to
X0-X3 inputs. If any of the four inputs X0-X3 carry a low
bit, the output of NAND gate 523 switches to high level, and
circuit 508 functions as explained above.

The present invention has now been explained with
reference 1o specific embodiments. Other embodiments will
be apparent to those of ordinary skill in the art. It is therefore
not intended that this invention be limited except as indi-
cated by the appended claims.

What is claimed is:

1. A method of programming a programmable logic
device, comprising:

compressing a configuration file by instructions in a

digital computer to generate a compressed configura-
tion file;
storing said compressed configuration file into a storage
device used for programming said programmable logic
device; .

decompressing said compressed configuration file to gen-
erate a set of configuration data; and

programming the programmable logic device using said

set of configuration data, wherein said storage device
comprises c¢lectronically programmable read only
memory for storing said compressed configuration file
and

wherein said programmable logic device comprises an

electronic decompression circuit to perform said
decompression step.

2. The method of claim 1, wherein said compressing step
comprises:

initializing a value of a count variable;

counting a number of first logic level bits in said input file

before detecting a second logic level bit;

10

setting said value of said count variable equal to the result
of said counting step; and
generating a representation of said value of said count
variable.
5 3. The method of claim 2 further comprising the steps of:

counting said first logic level bits before detecting a

second one of said second logic level bit;

performing said setting and said generating steps; and

re-initializing said value of said count variable.

4. The method of claim 3 further comprising generating
said compressed configuration file from said representations
of the value of said count variable.

5. The method of claim 4, wherein said compressed
configuration file is generated by concatenating said repre-
sentations.

6. The method of claim 2, wherein generating a repre-
sentation of said count variable comprises generating a
binary-coded hexadecimal equivalent of said value.

7. The method of claim 1, wherein said compressing step
is done by an electronic compression circuit.

8. The method of claim 7, wherein said storage device
comprises:

said electronic compression circuit;

electronically programmable read only memory for stor-

ing said compressed configuration file; and

an electronic decompression circuit to perform said

decompression step.
9. The method of claim 1, wherein said configuration file
is larger than said compressed configuration file.
10. The method of claim 1, wherein said set of configu-
ration data is equal in size to said configuration file.
11. The method of claim 1, wherein said decompression
step is performed using a run-length decompression scheme.
12. A method of programming a programmable logic
device, comprising:
compressing a configuration file to generate a compressed
configuration file by instructions in a digital computer;

storing said compressed configuration file into a dedicated
storage device used for programming said program-
mable logic device

decompressing said compressed configuration file to gen-

crate a set of configuration data; and

programming the programmable logic device using said

set of configuration data
wherein said storage device comprises:
an array of electronically programmable read only
memory for storing said compressed configuration file;
and

an electronic decompression circuit to perform said

decompression step.

13. The method of claim 12, wherein said compressing
step comprises

initializing a value of a count variablc;

counting a number of first logic level bits in said input file

before detecting a second logic level bit

setting said value of said count variable equal to the result

of said counting step; and

generating a representation of said value of said count

variable.

14. The method of claim 13 further comprising the steps
of:

counting said first logic level bits before detecting a

second one of said second logic level bit;

performing said setting and said generating steps; and

10

20

3

o

35

40

55

5,563,592

1

re-initializing said value of said count variable.

15. The method of claim 14 further comprising generating
said compressed configuration file from said representations
of the value of said count variable.

16. The method of claim 15, wherein said compressed
configuration file is generated by concatenating said repre-
sentations.

17. The method of claim 13, wherein generating a repre-
sentation of said count variable comprises generating a
binary-coded hexadecimal equivalent of said value.

18. The method of claim 12, wherein said compressing
step is done by software in a digital computer.

19. The method of claim 12, wherein said compressing
step is done by an electronic compression circuit.

20. The method of claim 12, wherein said configuration
file is larger than said compressed configuration file.

21. The method of claim 12, wherein said set of configu-
ration data is equal in size to said configuration file.

22. A method of programming a programmable logic

_device, comprising:
compressing a configuration file to generate a compressed
configuration file using an electronic compression cir-
cuit;
storing said compressed configuration file into a dedicated
storage device used for programming said program-
mable logic device;

decompressing said compressed configuration file to gen-

erate a set of configuration data; and

programming the programmable logic device using said

set of configuration data wherein said storage device
comprises said electronic compression circuit and elec-
tronically programmable read only memory for storing
said compressed configuration file; and

said programmable logic device comprises an electronic

decompression circuit to perform said decompression
step.

23. A method of programming a programmable logic
device comprising the steps of:

compressing a data file before storing the file in a con-

figuration memory;

compressing said data and storing compressed data in said

first integrated circuit;

decompressing said compressed data to form a decom-

pressed data stream; and

programming the programmable logic device with said

decompressed data stream.

24. An apparatus to be used in programming a program-
mable logic device, comprising:

compression means to compress an input file and to

generate 2 first output file;

a storage device coupled to said compression means for

receiving dnd storing said first output file;

i

30

35

45

50

12

decompression means on said storage device for decom-
pressing said first output file to generate a second
output file; and

means to transfer said second output file to the program-

mable logic device.

25, Apparatus as in claim 24, wherein said input file is
larger than said first output file.

26. Apparatus as in claim 24, wherein said input file and
said second output file are equal in size.

27. Apparatus as in claim 24, wherein said compression
means comprises a software compression program running
on a development computer.

28, Apparatus as in claim 24, wherein said compression
means comprises a compression circujt associated with a
development computer.

29. Apparatus as in claim 24, wherein said decompression
means comprises a run-length decompression circuit.

30. Apparatus for run length compressing a serial data file
having a plurality of first and second logic level bits wherein
said apparatus requires only a single data clock, comprising:

input terminal for inputting said serial data file;

clock terminal for inputting said data clock;

a counter having a plurality of inputs and outputs, said
inputs connected so that said counter begins counting
from zero when a reset signal is applied;

a plurality of parallel-in registers with inputs coupled to
outputs of said counter, and outputs generating a com-
pressed data file;)

a logic gate with its inputs coupled to the outputs of said
counter for generating a maximum signal indicating
that said counter has reached its maximum count; and

a first logic circuit for generating a grab signal with a first
input coupled to said input terminal, a sccond input
coupled to said clock terminal, a third input coupled to
said maximum signal and a first output coupled to a
clock input of said registers.

31. The apparatus of claim 30, wherein said counter
counts a number of said first logic level bits in said data file
before one of said second logic level bits is detected by said
logic circuit,

32. The apparatus of claim 30, wherein said plurality of
registers comprise first and second registers and further
comprising: .

a flip-flop with a clock input coupled to said grab signal,
an first output coupled to a clock input of said first
register and a second output coupled to a clock input of
said second register.

33. The apparatus of claim 32, wherein said first register
latches the output of said counter in response to said first
clock signal.

34. The apparatus of claim 32, wherein said second
register latches the output of said counter in response to said
second output.

Exhibit C

United States Patent

007036046B2

(12) a0y Patent No.: US 7,036,046 B2
Rally et al. @s) Date of Patent: Apr. 25,2006
(54) PLD DEBUGGING HUB 5,568,437 A 10/1996 Jamal
5,572,712 A 11/1996 Jamal
(75) Inventors: Nicholas James Rally, San Mateo, CA 5,629,617 A 5/1997 Uhling et al.
(US); Alan Louis Herrmann, 5,640,542 A 6/1997 Whitsel et al.
Sunnyvale, CA (US) 5,661,662 A 8/1997 Butts et al.
(73) Assignee: Altera Corporation, San Jose, CA (Continued)
(US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this EP 0762279 Al 3/1997
patent is extended or adjusted under 35
US.C. 154(b) by 654 days. OTHER PUBLICATIONS
Marantz, Joshua, “Enhanced Visibility and Performance on
(21) Appl. No.: 10/295,265 Functional Verification by Reconstruction”, Proceedings of
the 35® Annual Conference on Design Automation Confer-
(22) Filed: Nov. 14, 2002 ence, pp. 164-169. 1998.
(65) Prior Publication Data (Continued)
US 2004/0098638 Al May 20, 2004 Primary Examiner—Scott Baderman
1) Int. CL %_7[?[)) Attorney, Agent, or Firm—Beyer Weaver & Thomas,
GOG6F 11/00 (2006.01)
(52) US.CL . 714/39; 714/725 (57) ABSTRACT
(58) Field of Classification Search 714/39,
714/30, 725,733, 734; 703/15, 16, 17, 28;
326/38, 39 User logic within a PLD is debugged by way of the hub. The
See application file for complete search history. PLD includes a serial interface (such as a ITAG port) that
communicates with a host computer. Any number of client
(56) References Clted madules are within the PLD and provide instrumentation for
the PLD. A module is a logic analyzer, fault injector, system
U.S. PATENT DOCUMENTS debugger, etc. Each client module has connections with the
) user logic that allows the instrumentation to work with the
4,527,234 A 7’,1985 Be“a?’. user logic. The hub communicates with each client module
4,696,004 A 9/1987 Nakajima) onal iterTace and o ot
4788.492 A 11/1988 Schubert over d.hub/node signal mterl“ice dn‘d communicates with the
4:835:736 A 5/1989 Easterday ;ena] interface over a user signal interface. The hub routes
4,847,612 A /1989 Kaplinsky instructions and data from the host computer to a client
4,873,459 A 10/1989 El Gamo et al. module (and vice-versa) via the serial interface and uses a
5,036,473 A 7/1991 Butts et al. selection identifier to uniquely identify a module. The hub
5,058,114 A 10/1991 Kuboki et al. functions as a multiplexor, allowing any number of client
5,124,588 A 6/1992 Baltus et al. modulcs to communicate cxternally though the serial inter-
5,157,781 A~ 10/1992 Harwood et al. face as if each node were the only node interacting with user
5329470 A 7/1994 Sample et al. logic.
5,365,165 A 11/1994 El-Ayat et al.
5,425,036 A * 6/1995 Liuetal ...c..coceininnnnine 714/35
5,452,231 A 9/1995 Butts et al. 23 Claims, 9 Drawing Sheets

v

US 7,036,046 B2
Page 2

517,695
5,717,699
5,764,079
5,821,771
5,870,410
5,960,191
5,983,277
6,014,334
6,016,563
6,020,758

6,104,211 ¢

6,107,821
6,157,210
6,182,247
6,212,650
6,223,148
6,247,147
6,259,271
6,286,114
6,317,860
6,321,369
6,389,558
6,460,148
6,481,000
6,704,889
6,754,862
6,794,896
6,891,397

U.S. PATENT DOCUMENTS

2/1998 Manela et al.
2/1998 Haag et al.
6/1998 Patel et al.
10/1998 Patel et al.

9/1999 Sample et al.
1171999 Heile et al.
1/2000 Patel et al.
172000 Fleisher
2/2000 Patel et al.

8/2000 Kelem et al.
12/2000 Zaveri et al.

Bl * 1/2001 Herrmann et al.
BI 4/2001 Guccione

B1 4/2001 Stewart et al.
BLl* 6/2001 Beenstra et al. ..

P aE g S B R

* 2/1999 Norman et al.

* 82000 Alfkecooooviriiniirnininns

veeeneens 114125

326/91

............ 714739

............ 714/39

Bl 7/2001 Couts-Martin et al.

Bl* 9/2001 Veenstra et al. ..
Bl* 11/2001 Heile

Bl* 11/2001 Heile et al.
Bl* 5/2002 Herrmann et al
B1* 10/2002 Veenstra et al.
Bl* 11/2002 Zaveri et al. ..
Bl* 3/2004 Veenstra et al.
B1* 6/2004 Hoyer et al. ...
B1* 9/2004 Brebner ...

Bl* 5/2005 Brebner

............ 714/39

2003/0110430 Al* 6/2003 Bailisetal. 714/725
2004/0032282 Al* 22004 Leeetal ...ooeeenenns 326/39

OTHER PUBLICATIONS

Stroud, Charles et al., “Evaluation of FPGA Resources for
Built-in-Self-test of Programmable Logic Blocks”, Proceed-
ings of the 1996 ACM 4™ Intemational Symposium on
Field-programmable Gate Arrays, p. 107. 1996.

Collins, Robert R., “Overview of Pentium Probe Mode”,
(www.x86.org/ariticles/problemd/ProbeMode.htm), Aug.
21, 1998, 3 pgs.

Collins, Robert R., “ICE Mode and the Pentium Processor™,
(www.x86.0rg/ddj/Nov97/Nov97 htm), Aug. 21, 1986, 6
Pgs.

“PentiumPro Family Developer’s Manual”, vol. 1:
Specifications, Intel®Corporation, 1996, 9 Pgs.
“Pentium® Processor User’s Mamal”, vol. 1,
Intel®Corporation, 1993, Pgs. 3-11.

Xilinx, Inc.; ISE Logic Design Tools: ChipScope.

Praveen K. Jaini and Nur A. Touba; “Observing Test
Response of Embedded Cores through Surround Logic”;
1999 IEEE.

Nur A. Touba and Bahram Pouya; “Testing Embedded Cores
Using Partial Isolation Rings™; 1997 IEEE.

* cited by examiner

v u

U.S. Patent

Apr. 25, 2006 Sheet 1 of 9 US 7,036,046 B2

PLD
10
Core/Node
Connectlions 28
30
Hub/Node
Signat
Interface
[T
JSM
j Usesli Det|)ug 40 [
a .
@*ﬁ lntegr'f‘ace !
A D)
50 52

FiG. 1

¢ Old s

: l_._ A wwvadaCo
_ * _ _ n"ratEs
| : i U n"a1aINns o -

a tasaC |
E _ nTrar(h
__:__‘ _ _ ___ _ n 00103

US 7,036,046 B2

Sheet 2 of 9
[
T

e _ oql]
S _ * 11
o 0s
p E : _l_ _.I_ C ~ “ _ SrI_}
5 Pt R =G|
«
I 99y MSIYENd o HSSTHY YN o MSTUYYEY ¥ ¥SS
1l daaaa gyIIIlI I I1¥¥1adad a gulIIII I ¥y
¥ 0zd71 Ja¥M0zdt S 2104nz4arl S 204¥nzat 3 21Ia
3 3 S ic el ss 49 4 s 30 58S

U.S. Patent

v v

U.S. Patent Apr. 25, 2006 Sheet 3 of 9 US 7,036,046 B2

PLD
10

HUB TCK
Clock 206% =
Data In 202 HUB_TDI R
Data Out <294 |, HUB TDO)
Mode 208 Mcde

Select * T“

200 FIG. 3

U.S. Patent Apr. 25, 2006 Sheet 4 of 9 US 7,036,046 B2

/\Lr____: Connection to
60 User Logic Signals

Embedded
Loglc (m— Irigger

Analyzer Signals
Hub/Node
Interface 30 \f\/—‘\—/
| 22
41> Connection to
60 User Logic Signals
<*_£1> Fault
Injector _’_,_\/__/
Hub/Node 24
Interface 32

M Connection to
60 User Logic Signals

Debugging
System ::> Contral

Controller Signals
Hub/Node

interface 34 \«-"—\/—\‘/

26

Node Examples

FIG. 4

U.S. Patent Apr. 25, 2006 Sheet 5 of 9 US 7,036,046 B2

- -~

(USER DESIGN OF PL \,

~.

\\ o

~——

A

FOR PLD

402
USER CREATES DESIGN L

COMPILE
DESIGN

h 4

4086

ORIGINAL DESIGN

PROGRAM PLD AND 410
DEBUG DESIGN
Y
ADD INSTRUMENTATION, 414
HUB, INTERFACES TO [/

SUPPLY IDENTIFYING
CHARACTERISTICS FOR EACH ~—/
INSTRUMENT TO COMPILER

418

Y

RECOMPILE
EXPANDED DESIGN

Y

REPROGAM PLD
AND DEBUG

END

422
S

426

FIG. 5

U.S. Patent Apr. 25, 2006 Sheet 6 of 9 US 7,036,046 B2
////‘ \
/ RUN
_INSTRUMENTATION
IDENTIFY SELECTION 502
IDENTIFIER FOR |~~~
TARGET NODE
TURN ON 06
INSTRUMENTATION
\
PROVIDE INSTRUCTION 510
TO NODE VIA HUB, |~
WITH SELECTION
IDENTIFIER
514 RECEIVE 518
POLL |~ INTERRUPT |
INTERFACE FROM NODE
ISSUE READ 522
INSTRUCTION WITH [~
SELECTION IDENTIFIER
& 526

FIG. 6

PROCESS
RESULT FROM
NODE

US 7,036,046 B2

Sheet 7 of 9

Apr. 25,2006

U.S. Patent

M1 ICON i«

—

[(L"S30ON"NIvN3 300N [+

A
829

s3adNN

iasifay

b ssedAg

XOW /] _any

{[0”i-s18™d NIl SIAON_NLLNO ¥ FAON+

959 A oju) gy

SugTyITN x\meOzlz

¥a 14%]

g P

il

L '9Old

[4%)

9g9

21807 1043u0D qnH

~—<00LanH T

Zi9

7

SLIE ¥ NXS300N'N] K3
814 Jasibay uoionisul

<

0€9

[0 1-sLi8™d " NSHI

_L 3

S8 YN 4~ 8577735 gsW I3shusyl

| e

i [0"1-s1i8 o 8nH NI _mT
181168y YuS vonansIsuy

ﬁ_mw NQMZ Je-
<1 3GON_ J+—

<jysn3aoN Je-

¥ S ET Tr

AMOH 300N+

S3IQON N

SLIS U TN X SIAON™N -

{+"s30oN Nloal 3aoN]

o S3AON'N T

[y s300N"NIDU 3QON]

[0 L-SU8” Ml SN NINIT S 3GON |

J

029~

Sl

e
<{JIHS 8NH
—gand |
<pysn anH
—<JaranH |
——< 01 anH_}

“ v

U.S. Patent Apr. 25, 2006 Sheet 8 of 9 US 7,036,046 B2

710
PROGRAMMABLE

L
LOGIC DEVICE

- 714\ PUT
PROGRAMMING |/ cg¥S$E§ " 742
2o UNIT ' FILE SERVER ’5
5 726 i
COMPUTER COMPUTER
TER
SYSTEM SYSTEM Ccs)ygTUEM
A B
N 718 N 720 \ 722

FIG. 8

v “J

U.S. Patent Apr. 25, 2006 Sheet 9 of 9 US 7,036,046 B2

»— 900

904

802 914

o]

906

908

910
FIG. 9A
924 7’900
922 926 814
e 4 - [
PROCESSOR(S) MEMORY FIXED DISK REMDO;QBLE
'y Y 4
920
« 1\ v Y : 1‘.‘ T
904 910 912 930 940
e [4 4 L
DISPLAY KEYBOARD MOUSE SPEAKERS l:E-Er\éV&%KE

FIG. 9B

US 7,036,046 B2

1
PLD DEBUGGING HUB

This application is related to U.S. patent application Ser.
Nos. 10/351,017 and 10/629,508, and to U.S. Pat. Nos.
6,182,247, 6,247,147, 6,286,114, 6,389,558 and 6,460,148
and 6,704,889 and 6,754,862, which are all hereby incor-
porated by reference.

FIELD OF THE INVENTION

The present invention relates generally to analysis of a
hardware device in connection with a computer system.
More specifically. the present invention relates to control of
multiple debugging tools within a programmable logic
device.

BACKGROUND OF THE INVENTION

In the field of electronics various electronic design auto-
mation (EDA) tools are useful for automating the process by
which integrated circuits, multi<hip modules, boards, etc.,
are designed and manufactured. In particular, electronic
design automation tools are useful in the design of standard
integrated circuits, custom integrated circuits (e.g., ASICs),
and in the design of custom configurations for program-
mable integrated circuits. Integrated circuits that may be
programmable by a customer to produce a custom design for
that customer include programmable logic devices (PLDs).
Programmable logic devices refer to any integrated circuit
that may be programmed to perform a desired function and
include programmable logic arrays (PLAs), programmable
array logic (PAL), field programmable gatc arrays (FPGA),
complex programmable logic devices (CPLDs), and a wide
variety of other logic and memory devices that may be
programmed. Often, such PLDs are designed and pro-
grammed by a design engineer using an electronic design
automation too! that takes the form of a software package.

In the course of generating a design for a PLD, program-
ming the PLD and checking its functionality on the circuit
board or in the system for which it is intended, it is important
to be able to debug the PI.D because a design is not always
perfect the first time. Before a PLD is actually programmed
with an electronic design, a simulation and/or timing analy-
sis may be used to debug the electronic desigh. Once the
PLD has been programmed within a working system, how-
ever, it is also important to be able to debug the PLD in this
real-world environment.

And although a simulation may be used to debug many
aspects of a PLD, it is nearly impossible to generate a
simulation that will accurately exercise all of the features of
the PLD on an actual circuit board operating in a coniplex
system. For example, a simulation may not be able to
provide timing characteristics that are similar to those that
will actually be experienced by the PLD in a running system;
¢.g., simulation timing signals may be closer or farther apart
than what a PLD will actually experience in a real system.

In addition to the difficulties in generating a comprehen-
sive simulation, circuit board variables such as temperature
changes, capacitance, noise, and other factors may cause
intermittent failures in a PLD that are only evident when the
PLD is operating within a working system. Still further, it
can be difficult to generate sufficiently varied test vectors to
stress the PLD design to the point where most bugs are likely
to be observed. For example, a PLD malfunction can result
when the PLD is presented with stimuli that the designer did
not expect, and therefore did not take into account during the
design and simulation of the PLD. Such malfunctions are

10

20

40

45

50

5

an

60

65

2

difficult to anticipate and must be debugged in the context of
the complete system., Thus, simulation of an electronic
design is useful, but usually cannot debug a PLD com-
pletely.

One approach to debugging a hardware device within a
working system is to use a separate piece of hardware
equipment called a logic analyzer to analyze signals present
on the pins of a hardware device. Typically, a number of
probe wires are connected manually from the logic analyzer
to pins of interest on the hardware device in order to monitor
signals on those pins. The logic analyzer captures and stores
these signals for later viewing and debugging.

As an external logic analyzer may not always be optimal,
embedding a logic analyzer within the hardware device is
another technique used. For example, U.S. Pat. No. 6,182,
247 entitled “Embedded Logic Analyzer for a Program-
mable Logic Device™ discloses such a technique, and U.S.
Pat. Nos. 6,286,114 and 6,247,147 disclose enhancements.
In addition, viewing internal nodes in a device may be
performed as disclosed in U.S. Pat. Ser. No. 6,754,862.
Embedding a logic analyzer into a design is also a technique
used in the product “ChipScope ILA” available from Xilinx
Inc., of San Jose, California. The product “ChipScope Pro”
also available from Xilinx uses logic cores built directly into
a PLD to allow a user to access internal signals and nodes
for debugging.

As useful as these techniques are in debugging a PLD,
there is room for improvement. For example, as described in
U.S. Pat. No. 6,286,114, a user controls a single embedded
logic analyzer through a JTAG port. While such a technique
is extremely useful, in many situations it would be desirable
to have more than one internal debugging tool have access
to the JTAG port, while still maintaining the benefits of a
direct interface. In other words, it would be desirable for the

s user to be able to communicate with, and control, any

number of intemal logic analyzers, other debugging tools, or
other applications through the JTAG port or a suitable serial
interface.

For example, a PLD may use two different clock domains
(or more) such as a 100 MHz and a 50 MHz clock. With two
different clock speeds, a single embedded logic analyzer
might not be able to capture debugging data from within the
different clock domains. It would be useful to have two or
more logic analyzers, each running at a ditferent clock speed
and still communicating to the wser via a single, scrial
interface. The user may also wish to capture data from
within different parts of the PLD using two or more different
trigger conditions. Again, having more than one logic ana-
lyzer would be very useful.

The ChipScope product available from Xilinx, Inc. does
provide the ability to have multiple logic analyzers within a
PLD. It is believed, though, that these logic analyzers must
be placed in series within the PLD which has disadvantages.
For example, a user or software application desiring to
access one of the logic analyzers using the ChipScope
product needs to know about all of the internal logic
analyzers and where the particular analyzer sits in the series
chain. Requiring a user or software tool to be aware of all
internal debugging tools and to coordinate amongst them
can be confusing and inefficient.

It would be desirable to allow the user of an EDA tool to
communicate with, and control, any number of embedded
logic analyzers, debugging tools, or other intermal applica-
tions that are within a PLD. Further, it would be desirable tor
the user to be able to control such a tool irrespective of any
other internal tool, and to be able to do so via any single
JTAG port or other serial interface.

US 7,036,046 B2

3
SUMMARY OF THE INVENTION

To achieve the foregoing, and in accordance with the
purpose of the present invention, a PLD debugging hub is
disclosed that allows any number of client modules embed-
ded within a PLD to communicate to an extemnal computer
using a serial interface.

The present invention allows user logic present within a
PLD to be debugged by way of the hub. The PLD includes
a serial interface that allows communication with a host
computer. Within the PLD may be any number of client
modules that provide instrumentation for the PLD. Each
client module has connections with the user logic that allows
the instrumentation to work with the user logic. The hub
communicates with each client module over a hub/node
signal interface, and communicates with the serial interface
over a user signal interface. The hub may route instructions
from the host computer to any client module via the serial
interface.

In one sense, the hub disclosed functions as a multiplexor,
allowing any number of client modules (or “nodes™) to
communicate externally though a serial interface of the PLD
as if each node were the only node interacting with user
logic. In this way, it is transparent that other nodes may also
be present inside the PLD and control is simpler.

The hub described herein exists between a serial interface
and user logic and provides a mechanism for sharing com-
munication over a ITAG port (in one embodiment) amongst
multiple, heterogeneous client modules. These client mod-
ules (such as logic analyzers, debugging tools or other) may
operate independently and without knowledge of each of the
other modules. These client modules include but are not
limited to: a logic analyzer for capturing debugging data; a
fault injector for forcing internal nodes to certain values for
debugging; a debugging system controller used for control-
ling a debugging system within a microprocessor; and a
signal source (also called a “programmable ROM”) for use
as “soft” constants in DSP or other applications that make
use of fixed values. Other types of client modules are also
possible.

Unlike prior art techniques that might use multiple inter-
nal logic analyzers in a series within a PLD, the present
invention does not require a user or software tool 1o know
about such other modules within the PLD. The existence of
other modules is transparent when a user is communicating
with a single module. Any EDA tool comnmunicating with
and controlling a particular module need not be aware of,
and need not coordinate with, any other internal client
module. The advantage is that control is simplified by
providing and maintaining a uniform client module inter-
face, while allowing the flexibility and scalability of adding
other, possibly unrelated, client modules to the hub. This
allows the EDA tool to be designed to interface to its client
modules in such a way that the communication appears 10 be
exclusive to a module, regardless of the actual configuration
of the hub or of the presence of other modules.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further advantages thereof,
may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings in which:

FIG. 1 is a block diagram of a programmable logic device
(PLD) that embodies the present invention.

20

40

6C

65

4

FIG. 2 illustrates the functional relationship between
external JTAG signals and the user debug signal interface.

F1G. 3 illustrates an altemnative embodiment in which the
hub communicates outside the PLD using a serial interface.

FIG. 4 illustrates examples of possible client modules.

FIG. 5 is a flow diagram illustrating one embodiment in
which a PLD is programmed for debugging.

FIG. 6 is a flow diagram illustrating one embodiment in
which a PLD is debugged.

FIG. 7 is a block diagram of one embodiment of the hub.

FIG. 8 is a block diagram of an embodiment of a
programmable logic development system.

FIGS. 9A and 9B illustrate a computer system suitable for
implementing embodiments of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1is a block diagram of a programmable logic device
(PLD) 10 that embodies the present invention. Included are
user logic 20, any number of client modules 30-36, a hub 40,
interfaces 60 and 70, and a JTAG interface 50 and 52. User
logic 20 is any electronic design created by a user that is
programmed into a PLD; techniques for designing user logic
and for programming a PLD are well known in the ant. Client
modules 30-36 (or “nodes”) may be any module pro-
grammed into the PLD. In general, a module is a specific
picce of instrumentation used to analyze, control or debug
the user Jogic 20. As mentioned above, a module may be an
embedded logic analyzer, a fault injector, a debugging
system controller, a signal source, or other client instrumen-
tation. F1G. 4 illustrates examples of possible client modules
(or “nodes™). The core/node connections 22-28 are the
responsibility of each module, i.e., the particular connec-

s tions and how they are implemented will be specific to each

module. Implementation of such connections is known in
the art, and is also described in the above-referenced prior
art in the Background.

PLD 10 highlights the interfaces between hub 40, the
JTAG State Machine (JSM) 52, the nodes, thé user logic 20,
and the external JTAG signals 50 (TCK, TMS, TDI and
TDO). The hub, nodes, user logic and their interconnections
are preferably soft (i.e., realized in core logic). The four
JTAG pins, their connection to the JSM, and JSM itself are
preferably hard (i.e., dedicated hardware resources provided
by the PL.D). Alternatively, the hub and nodes may be a
dedicated hardware resource of a PLD, in which case a
particular PLD would be designed specifically to provide
certain nodes. Or. the JSM may be implemented in core
logic, providing more flexibility for the invention to be
implemented on any PLD, and not necessarily on a PLD
with a dedicated JSM.

The JTAG port includes JSM 52 and pins 50. A JTAG
(Joint Test Action Group) port is implemented under the

s IEEE 1149.1 standard and is known to those of skill in the

art. In this embodiment, the JTAG port includes signals
TCLK, TMS, TDI and TDO. Signal TCLK is a clock signal
that controls the rate of serial data in and out of the JTAG
port. Signal TMS is a mode select signal used to direct
traversal of the sixteen states of the JSM. Signals TDI and
TDO are serial data in and serial data out, respectfully. JSM
52 is a standard part of the JTAG port and is preferably hard
logic. It is also referred to as the test action port (TAP)
controller.

Typically, a JTAG port is used either to program a PLD or
to assist with testing a circuit board on which PLDs are
located. Advantageously, it is realized that a JTAG port has

US 7,036,046 B2

5
traditionally been unused during the design and debugging
of a particular PLD. Thus, it is further realized that a JTAG
port on a PLD is under utilized and may be used during
debugging of a PLD as a means of communicating with and
controlling any number of internal client modules.

User Debug Signal Interface

The signal interface between JSM 52 and hub 40 is termed
a user debug signal interface 70. In one embodiment, it is a
hard interface that includes 7 signals. These 7 signals are
listed below in Table 1. The hub signal port column shows
the cotresponding connection at hub 49.

The user debug signals are provided by the JSM and may
be connected to core routing resources. The user debug
signals are active when either the USERO0 or USER! JTAG
instruction is the active instruction in the JSM. This condi-
tion is referred to as user debug mode (UDM). Unlike other
JTAG instructions that use dedicated hardware resources to
realize their target data registers, the target data register for
these two instructions is realized in core logic. The user
debug signals are used to control the communication to these
registers.

The user debug signals are inactive when the instruction
in the JSM is not USERO or USERGO so that the content of
their target data register is maintained while other operations
are performed on the JTAG port.

TABLE 1

ISM Signal Hub Signal

Port Port Description

CLOCK_U — HUB_TCK A gated TCK, active when the
ISM is in states CDR or SDR

TDI_U — HUB_TDI Directly connected to TDI and
abways available

RUNIDLE_U — HUB_RT! Indicates that the JSM is in the
RTI state

SHIFT_U* — HUB_SHIFT Indicates that the JSM is in the
SDR state

UPDATE_U — HUB_UPDATL Indicates that the JSM is in the
UDR state

USRI_U — HUB_USR1 Indicates that current instruction
in the ISM is the USER1
instruction

T™DO__U «~— HUB_TDO Connected to TDO when in UDM

and the JSM is in state SDR

FIG. 2 illustrates the functional relationship 100 between
external JTAG signals 50 and the user debug signal interlace
70. Shown are signals 102 that are signals present on the
JSM signal port as described in Table 1. In this example,
PLD 10 has a hub with three nodes and a maximum node
instruction length of 19. The first four timing signals in the
FIG. are of JTAG signals 50, while the next six timing
signals are those from the JSM signal port (with the excep-
tion of signal TDO_U which in an input to the port). FIG. 2
illustrates one example of how particular combinations of
ITAG signals 50 are used to produce outputs over user
debug signal intertace 70. Of course, more signals may be
added to the user debug signal interface, or there may be
fewer. For instance, the TCK and TMS signals could be
used, in addition to or in lieu of some signals in the user
debug signal interface defined in Table 1, to provide more
control and resolution into the current state of the JSM. Also,
the signals may be encoded differently, outputs may be
triggered on a falling edge instead of on a leading edge and
vice-versa, etc.

30

35

40

6(

65

6

Looking at FIG. 2 from left to right, the JSM moves from
RTT (not shown) to SIR, where the USER1 instruction
(0000001110) is shifted in (LSB to MSB). Upon the falling
edge of TCK when the JSM is in UIR, the USR1_U signal
goes high, indicating the USER1 instruction is now the
active instruction in the JSM (i.e., the JSM is in user debug
mode). Consequently, SHIFT_U goes low. Next, the JSM
moves to SDR, where 12 bits of zero are shifted in. Since
USERI is the active instruction in the JSM, this corresponds
to an instruction load for hub 40 with the HUB_INFO
instruction (irsr{11 .. . 10]="00"and irsr[2 . .. 0}="000"). The
JSM then moves to SIR, where the USERO0 instruction
(0000001100) is shifted in, and then to SDR, where the first
4 bits held in hub 40 Info Store 632 are shifted out.

Alternative Serial Interface

FIG. 3 illustrates an alternative embodiment 200 in which
hub 40 communicates outside the PLD 10 using a serial
interface. The serial interface shown is by way of example,
and other types of serial interfaces may be used. In this
example, communication takes place over four pins of the
PLD; of course, any number of pins may be used to perform
a similar function. Pins 202 and 204 transmit respectively a
data in signal and a data out signal to and from the PLD. Pin
206 is a clock signal provided by the external computer
which is used to synchronize the serial transmission of
commands, data and other information from the external
computer to the PLD, and from the PLD to the external
computer.

Mode select pin 208 is used to transmit commands, modes
and other control information from the external computer to
hub 40. Mode select 208 may use more than one pin and may
also be used to receive status or other information from the
hub. Mode select may also transmit identifying information
for a particular client module from the external computer to
the PLD. Pin 208 may be connected to a separate mode input
of hub 40 or to any of the signals listed in Table 1 as
appropriate. In this fashion, the hub communicates with an
external computer using a serial interface that is not neces-
sarily a JTAG port.

Hub/Node Signal Interface

The signal interface between hub 40 and any node 30-36
is termed the hub/node signal interface. This is preferably a
soft interface that includes 5 buses and 7 signals. The
hub/node signals are connected using core routing resources.
Such conncctions may easily be made by onc of skill in the
art. Table 2 below shows the hub/node signal interface with
respect to a particular node. In other words, although hub 40
may be connected to any number of nodes, the second
column of Table 2 shows only those connections on a single
node. Should there be more than one node, each node would
have the connections shown in the second column. In an
embodiment where Hub/Node connections are made auto-
matically by a netlist builder tool (e.g., an EDA tool), it 1s
preferable that that connected nodes use the bus/signal name
definitions shown in Table 2. By way of example, such a tool
may be the “Quartus” product availablc from Altera Corpo-
ration, or other netlist builder tool.

US 7,036,046 B2

TABLE 2

Hub Bus/Signal Port Node i Bus/Signal Port

Description

Node clock (common to all
Node data in (common to all

Indicates that the JSM is in the

RTI state (common to all

Indicates that the JSM is in the

SDR state (commen to all

Indicates that the JSM is in the

UDR state (common to all

Indicates that cument

instruction in the ISM is the
USERI instruction (common to

NODE_TCK - TCK

nodes)
NODE_TDI — TDI

nodes)
NODE_ RTI - RTI

nodes)
NODE_SHIFT — SHIFT

nodes)
NODE_ UPDATE — UPDATE

nodes)
NODE_USR1 — USRI

al] nodes)
NODE__CLRN — CLRN

to all nodes)
NODE_ENA[i] — ENA

Asynchronous clear (common

Indicates that the current

instruction in hub 40 is for

node i

NODE__IR_OUTIYi} ~ IR_IN[N_NODE_IR_BIT

Node i IR

[N_NODE_IR_BITS(i)-1..0] §(i)-1..0]

NODE_TDO[i] «~ TDO Node i data out
NODE_IRQ[i] +~ IRQ Node i interrupt
NODE__IR_IN[i] « IR_OUT[N_NODE_IR_B Node i IR capture port

[N_NODE_IR_BITS(i)-1..0] ITS(i)-1..0]

Details on the connections shown in Table 2 are as
follows. The variable N_NODE_IR_BITS(i) is the number
of instruction register bits required by a node i. The signals
NODE_TCK, NODE_TDI, NODE_RTI, NODE_SHIFT,
NODE_UPDATE and NODE_USR1 of the hub port for the
nodes are directly connected to the signals HUB_TCK,
HUB_TDI, HUB_RTI, HUB_SHIFT, HUB_UPDATE and
HUB_USR1 of the hub port for the JSM, respectively.

The NODE_CI.RN signal is an asynchronous, active low
clear signal that is activated when the JSM is in RT] after the
HUB_RESET instruction becomes the active Hub instruc-
tion. Since hub 40 is also reset by this signal, the
HUB_INFO instruction becomes the active Hub instruction.

The NODE_ENAJi] bus is a one-hot bus that is used to
inform a node that the current hub instruction is for that
node, e.g. if NODE,; ENA[3] is 1, then an instruction for
node 3 is the current instruction in the hub’s instruction
register. This means that when NODE_SHIFT is 1, the
associated target register for their instruction is part of the
JTAG TDI-TDO scan chain. Moreover, this places the
burden on nodes to provide a path between TDI and TDO.
Preferably, there is no discontinuity between TDI and TDO
when NODE_SHIFT is 1. For the HUB_INFO instruction,
a 4-bit shift register is used between TDI and TDO. For other
hub instruction patterns, hub bypass register 634 is between
TDI and TDO.

Hub 40 provides the instruction register resource for all

~nodes, and nodes obtain their instruction from their respec-
tive NODE_IR_OUTYi] port of the Hub. Hub 40 stores the
instruction for cach node in instruction register file 630.
Node TDOs are fed to their corresponding NODE_TDOVi]
input port of the Hub.

The NODE_IRQYi] port is provided so that nodes may
indicate that they need attention, i.e., a node has a result or
stored information that should be communicated externally
back to the user or EDA tool. For example, a node that is a
logic analyzer may have captured data that needs to be sent

30

35

40

n
<

60

65

back to a host computer to aid in debugging the PLD. In one
embodiment, this interrupt feature is implemented as fol-
lows. All of the NODE_IRQYi] inputs are OR’ed together,
and made available on the MSB of USER1 data register
scans (i.e., UDM instruction loads).

This single bit interrupt flag indicates the existence of a
service request on one or more Nodes. Due to the nature of
the shared JTAG user debugging access that hub 40 pro-
vides, a node should keep its IRQ signal high until the node
is serviced. ‘The host agent (such as an EDA tool running on
a host computer) controlling the communication with the
nodes polls each node it controls to see which (if any) nodes
need to be serviced. All nodes share the same interrupt level,
0 the host agent should establish a pecking order if multiple
nodcs need to be serviced simultaneously. Altemnatively, a
rigid interrupt level may be established in which nodes are
serviced in a particular order. When the host agent decides
to service a particular node, the host agent executes the
node’s interrupt service routine. This series of operations is
specific to a node, and is cxecuted by issuing instructions
and/or performing data exchange operations on the node.
Once this routine is complete, it is either up to the host agent
to direct the node to clear its IRQ signal, or the node’s logic
to automatically acknowledge that its interrupt has been
serviced and clear the IRQ signal without further interven-
tion from the host agent.

One method of communication from a node to the outside
world that avoids the overhead of accessing the target data
register of the node’s instruction utilizes the NODE_IR _
IN[i] bus and the hub’s instruction register (IR) capture
value. A given node i can use the NODE_IR_INTi] bus of
hub 40 to provide the IR capture value during UDM instruc-
tion loads when the current hub instruction is for node i. In
this way, information may be transferred without accessing
the target data register of the instruction currently being
applied in the UDM instruction load sequence. It also allows
for node i with an instruction that targets a read-only data

US 7,036,046 B2

9

register to save PLD resources and use a single register as
the instruction’s target data register, while providing the
read-only information in the IR capture value assuming that
the read-only data length is of equal or lesser value than the
IR length of node i. The HUB_FORCE_IR_CAPTURE
instruction may be used to force the IR capture value to be
from a node other than the one targeted by the current hub
instruction. This feature is very useful in that it may not be
known which instruction currently resides in the hub (i.e., it
may not be possible to ensure that an instruction for a
particular node was the last one issued), and the IR capture
value for a particular node is required. Issuing HUB_FOR-
CE_IR_CAPTURE prior to the issuance of an instruction for
node i will guarantee that the IR capture value is from node
i. The IR capture value is undefined when hub 40 is in
broadcast mode.

Examplary Flow Diagrams

FIG. 5 is a flow diagram illustrating one embodiment in
which a PLD is debugged. Of course, other similar design
methodologies may be used, including those referenced in
the Background section. A user first develops a design for a
PLD using an EDA tool and then compiles the design. The
design is then programmed into a PLD (such as PLD 10 with
the capability to implement the present invention. The user
then debugs the PLD, and, assuming that bugs are found in
the design, proceeds as follows.

The user returns to the design and instructs the EDA tool
to add a hub 40 and signal interfaces as described herein.
The user then instructs the EDA tool to add the instrumen-
tation needed (e.g., logic analyzers, fault injectors, etc.).
Alternatively, the PLD may have been preprogrammed for
this eventuality and already includes this logic. The com-
mands may be given via a graphical user interface (GUI), by
directly adding the required functionality to the design, or in
other similar ways. Advantageously, any number and type of
instruncntation may be added, constrained only by the size
of the PLD. Techniques for adding a particular instrumen-
tation will vary by the type, and are known to those of skill
in the art. For each instrumentation, the user supplies a
manufacturer identifier, a node identifier, a node version
number, and a node instance number.

The user next performs a recompile to include all of the
added instrumentation, hub, signal interfaces, etc. During
the recompile, the EDA tool (or compiler) assigns each node
a selection identifier to aid in sending instructions and data
to a node, as well as to aid in receiving information from a
node. The selection identifier is a unique identifier for a
particular node in the PLD, and is preferably derived from
a combination of the identifiers listed above, although the
selection identifier may be derived from other information as
well. The new design is then programmed onto a PLD and
the user may debug once again using any of the instrumen-
tation added.

F1G. 6 is a flow diagram illustrating one embodiment in
which a PLD is debugged. Once the instrumentation and hub
have been added (for example, as shown in FIG. 5), the user
is ready to begin using the instrumentation. To identify each
node, and to keep operation of other nodes transparent for a
chosen node, the EDA tool and hub use the selection
identifier to direct instructions to a node and to poll a node
for information. Preferably, the selection identifier precedes
an instruction for a node, although this could be reversed. In
a first step, an instruction is issued from the EDA tool to arm,

20

25

30

40

45

50

55

60

65

10

enable, or otherwise turn on the embedded instrumentation.
Each may be turned on separately, or all may be turned on
together.

To provide an instruction to a node (e.g., run, stop, trigger
condition, control command, etc.), the EDA tool provides
the instruction to the hub via the JTAG interface preceded by
the node’s selection identifier. To receive information from
a node, polling or interrupts may be used. Typically, the
outside host agent (EDA tool or other software) periodically
polls the JTAG interface for a signal that the node is ready
with information. Alternatively, a node may send back an
interrupt in an instruction scan. The interrupt may be a set
flag, a particular instruction, etc. Once the host agent has
detected that a node is ready with information (by polling,
interrupt, etc.), the host issues a read instruction preceded by
the node’s selection identifier in order (o receive the infor-
mation, or take other appropriate action.

Hub Implementation Example

FIG. 7 is a block diagram of one embodiment of hub 40.
Hub 40 serves to allow communication between any number
of nodes 30-36 and a JTAG port (or any other suitable serial
interface) so that a node may interact with user logic 20 as
a user desires. Typically, a node may be a logic analyzer and
hub 40 facilitates control of that logic analyzer, for example.
As previously described, signals 610 are received as input
from JSM $§2, and signal 612 is output to the JSM. Buses 620
are input from any number of nodes, and signals and buses
624 and 628 are output to any nodes that are present.

The data registers associated with the JTAG USERO and
USER1 instructions are user-defined. To provide instruc-
tions and information to the hub or to a node, the operation
of the hub mimics the instruction/data register (IR/DR)
paradigm defined by the JTAG standard. This operation is
accomplished by designating the user-defined DR for the
USER1 instruction as the hub’s instruction register, or
instruction shift register (IRSR). Correspondingly, the
USERQ instruction targets the hub’s data register. All nodes
also follow this paradigm. Therefore, to issue an instruction
to either hub 40 or a Node, the USERI1 instruction is the
active instruction in the JSM, and the instruction is shifted
in when the JSM is in the SDR state. Similarly. to shift in
associated target register data, the USERO instruction is the
active instruction in the JSM, and the associated target
register data is shifted in when the JSM is in the SDR state.

Hub 40 includes an instruction register file 630, a hub
information store 632, a hub bypass register 634, hub control
logic 636, and an instruction shift register 638. Also
included are multiplexors 650-656. As will be appreciated
by one of skill in the art, hub 40 may implemented in other
ways, yet still provide the same functionality.

Instruction register file (IRF) 630 consists of the instruc-
tion registers for all nodes. In other words, IRF 630 stores
instructions for all nodes in hub 40 before the mstruction is
sent out to each node. Advantageously, each node need not
store any instructions, and need not look at all instructions
provided to hub 40, thus providing greater efficiency.
Instruction shift register (IRSR) 638 receives instruction
information from the JSM via HUB_TDI scrially and trans-
fers it into the proper destination in the IRF 630 as directed
by the hub control logic (HCL) 636. In addition, IRSR 638
receives information from a node (i.e., the IR capture value)
and transfers it serially back to the JSM via HUB_1'DO 612.

Hub information store 632 is a repository of hub configu-
ration and node identification information. For example,

US 7,036,046 B2

1

store 632 keeps a record of: a manufacturer identifier,
indicating from which manufacturer a node originates; a
node identifier, indicating the type of instrumentation that
the node embodies; a node version number, indicating the
version of that particular type of instrumentation; and a node
instance number, which uniquely identifies a node. Further
details are provided below in Table 6 as an example of the
type of information that is stored to ensure proper operation.
Preferably, this information is compiled into the hub when
first compiled. Other information may be included in store
632 as deemed necessary. For instance, PLD resource usage
information for nodes may be kept in store 632, or other
important information necessary for proper use and control
of a node.

Hub bypass register 634 is used to maintain JTAG con-
tinuity when there is no target register for the hub, or if a
targeted node is outside the valid node selection space.
Register 634 provides a default path for any instruction
without a valid target register, or an invalid data register.
Hub control logic (HCL) 636 generates the necessary con-
trol signals used throughout the Hub. The User Debug
Signal Interface and the value in instruction shift register
638 (ISR) provide the input stimulus to the HCL. The
outputs from the HCL control the multiplexors used to steer
data to its proper destination, and serve as register enable
controls. HCL 636 also has the function of maintaining
JTAG continuity if an “out-of-bounds™ instruction is issued,
e.g., if an instruction targets a node outside the valid node
selection space the HCL will maintain JTAG continuity by
placing hub bypass register between HUB_TDI and
HUB_TDO. Alternatively, HCL may be implemented as two
logical boxes instead of the single one shown. For example,
the HICL may be broken into those signals and logic that
control the hub, and those that are used for controlling
output.

The following parameters are used to specify the hub, and
are provided by the netlist builder tool.

TABLE 3
Parameter Definition
N_NODES The number of nodes connected to
the hub
N_IR_BITS MAX(N_NODE_IR__BITS(i})
NODEL__INFO(i) A 32-bit value (described below)

10

20

25

30

35

40

45

12
The hub also makes use of the following constant defi-
nitjons.

TABLE 4
Constant Definition
N_SEL_BITS CEIL(LOG2(N_NODES + 1)
N_HUB_IR_BITS N_SEL_BITS + N_IR_BITS
SEL_MSB N_HUB_IR_BITS - 1
SEL_LSB N_IR _BITS

The length of the hub’s instruction register (IRSR) is
‘N_HUB_IR_BITS’ bits, which is the sum of N_IR_BITS
(i.e.,, MAX(N_NODE_IR_BITS(i)), the maximum of the
node and the minimum hub IR lengths) and N_SEL_BITS
(i.e., the number of bits required to encode the number of
nodes plus the hub). This encoded value (SELect) allows for
the hub and all nodes to have non-conflicting instruction
codes. By definition, the minimum hub IR length N_NO-
DE_IR_BITS(Hub)=N_SEL_BITS+3, SEL(Hub)=0
always, and SEL(Node(i))=i. Table 5 below shows the
instructions supported by the hub.

TABLE 5
Instruction Value Description
HUB_INFO 0 Provides information about the

hub and all of the nodes

Delays instruction

updates to nodes until
HUB_END_BROADCAST is
issued

Updates node instructions
Forces the instruction capture of
the next instruction load to come
from the specified node

Asserts NODE__CLRN while
JSM is in RTI

HUB_START_BROADCAST 1

HUB__END__BROADCAST 2
HUB_FORCE_IR_CAPTURE 3

HUB_RESET 7

When the HUB_INFQ instruction is issued, the data in
lhub information store 632 is shifted out 4 bits at a time, i.e.,
multiple cycles through the data register (DR) leg of the JISM
are required to retrieve all the data. Each nibble is loaded on
the rising edge of HUB_TCK when the JSM is in the CDR
state. The information held in hub information store 632 is
packed into lookup table (LUT) CRAM cells to reduce
resource usage. The data is shifted out LSB to MSB as
shown in Table 6.

TABLE 6
DWORDBIT 31 27 26 18 7 0
19 8
0 HUB. VERSION N_NODES MFG.ID N_IR_BITS
1 NODE, NODE, ID NODE, NODE, INSTANCE
VERSION MFG_ID
N NODEy NODEy ID NODEy NODE,y INSTANCE
VERSION MFG__ID

Y

US 7,036,046 B2

13

HUB_VERSION and MFG_ID are embedded in the
source logic of the hub. MFG_ID is a manufacturer’s
identification number assigned by an entity authorized to
maintain unique identifiers for this invention. N_NODES is
a parameter provided by the netlist builder tool, and N_HU-
B_IR_BITS is a constant computed as defined above. The
NODE_INFQ(i) parameters are concatenated by the netlist
builder tool and are passed on as one long parameter to the
hub. NODE ID, assigned by the manufacturer of the client
module, identifies the type of client module functionality.
For example, a NODE ID of 0 could represent a logic
analyzer, a NODE ID of | could represent a fault injector,
etc. NODE VERSION, also assigned by the manufacturer of
the client module, represents the version of this particular
type of client module. NODE INSTANCE, assigned by an
FDA tool inserting the hub and client modules into the PLD
design, identifies the instance of a particular NODE ID in the
PLD. For example, if there are two logic analyzers in the
same PLD [rom the same manufacturer and each is the same
version, NODE INSTANCE distinguishes between the two.

The HUB_START_BROADCAST instruction is used to
delay instruction updates to Nodes. This provides the ability
to issue instructions simultaneously to the all of the Nodes.

An application of this feature would be to simultaneously
arm multiple logic analyzers within the PLD. The
HUB_END_BROADCAST instruction updates all
NODE_IR_OUTYi] buses.

For nodes that use the instruction register (IR) capture
value, the last instruction issued may have been for a
different node, and the instruction register capture value will
be lor that other Node. The HUB_FORCE_IR_CAPTURE
instruction can be used to force the IR capture from a
particular Node. The format of this instruction for node i is
shown below.

TABLE 7
N_HUB_IR_BITS~1 N_SEL_ BITS+2 3 2 0
N_SEL_BITS+3
0 i 011

Programmable Logic Development System

In the course of developing an electronic design for
progranuning a programmable logic device (PLD), a pro-
grammable logic development system is used. As used
herein, “electronic design” refers to a design used to pro-
gram circuit boards and systems including multiple elec-
tronic devices and multi-chip modules, as well as integrated
circuits. For convenience, the present discussion generally
refers 10 “integrated circuits”, or to “PLDs”, although the
invention is not so limited.

FIG. 8 is a block diagram of an embodiment of a
programmable logic development system 710 that includes
a computer network 712, a programming unit 714 and a
programmable logic device 716 that is to be programmed.
Computer network 712 includes any number of compurers
connected in a network such as computer system A 718,
computer system B 720, computer system C 722 and com-
puter system file server 723 all connected together through
a network connection 724. Computer network 712 is con-
nected via a cable 726 to programming unit 714, which in
turn is connected via a programming cable 728 to the PLD
716. Alternatively, only one computer system could be
directly connected to programming unit 714. Furthermore,

25

3

=3

40

60

65

14

computer network 712 need not be connected to program-
ming unit 714 at all times, such as when a design is being
developed, but could be connected only when PLD 716 is to
be programmed.

Programming unit 714 may be any suitable hardware
programming unit that accepts program instructions from
computer network 712 in order to program PLD 16. By way
of example, programming unit 714 may include an add-on
logic programmer card for a computer, and a master pro-
gramming unit, such as are available from Altera Corpora-
tion of San Jose, California. PLD 716 may be present in a
system or in a programming station. In operation, any
number of engineers use computer network 712 in order to
develop programming instructions using an electronic
design automation software tool. Once a design has been
developed and entered by the engineers, the design is
compiled and verified before being downloaded to the
programming unit. The programming unit 714 is then able to
use the downloaded design in order to program PLD 716.

For the purposes of debugging a PLD according to an
embodiment of the present invention, any of the computers
shown or others may be used by an engineer to compile a
design. Furthermore, programming cable 728 may be used
to receive data from the PLD, or a separate debugging cable
may be used to directly connect a computer with device 716.
Such a programmable logic development system is used to
create an electronic design. A user creates a design by
specifying and implementing functional blocks.

The above-referenced U.S. patents disclose a design
methodology for using a system design specification in order
to develop a design with which to program a PLD. It should
be appreciated that the present invention may be practiced in
the context of a wide variety of design methodologies, and
with diverse electronic design automarion (EDA) software
tools.

Computer System Embodiment

FIGS. 9A and 9B illustrate a computer system 900 suit-
able for implementing embodiments of the present inven-
tion. FIG. 9A shows one possible physical form of the
computer system. Of course, the computer system may have
many physical forms ranging from an integrated circuit, a
printed circuit board and a small handheld device up to a

s huge super computer. Computer system 900 includes a

monitor 902, a display 904, a housing 906, a disk drivc 908,
a keyboard 910 and a mouse 912. Disk 914 is a computer-
readable medium used to transfer data to and from computer
system 900.

FIG. 9B is an example of a block diagram for computer
system 900. Attached to system bus 920 are a wide variety
of subsystems. Processor(s) 922 (also referred to as central
processing units, or CPUs) are coupled to storage devices
including memory 924. Memory 924 includes random

5 access memory (RAM) and read-only memory (ROM). As

is well known in the art, ROM acts to transler data and
imstructions uni-directionally to the CPU and RAM is used
typically to transfer data and instructions in a bi-directional
manner. Both of these types of memories may include any
suitable of the computer-readable media described below. A
fixed disk 926 is also coupled bi-directionally to CPU 922;
it provides additional data storage capacity and may also
include any of the computer-readable media described
below. Fixed disk 926 may be used to store programs, data
and the like and is typically a secondary storage medium
(such as a hard disk) that is slower than primary storage. It
will be appreciated that the information retained within fixed

US 7,036,046 B2

15

disk 926, may, in appropriate cases, be incorporated in
standard fashion as virtual memory in memory 924. Remov-
able disk 914 may take the form of any of the computer-
readable media described below.

CPU 922 is also coupled to a variety of input/output
devices such as display 904, keyboard 910, mouse 912 and
speakers 930. In general, an input/output device may be any
of: video displays, track balls, mice, keyboards, micro-
phones, touch-sensitive displays, transducer card readers,
magnetic or paper tape readers, tablets, styluses, voice or
handwriting recognizers, biometrics readers, or other com-
puters. CPU 922 optionally may be coupled to another
computer or telecommunications network using network
interface 940. With such a network interface, it is contem-
plated that the CPU might receive information from the
network, or might output information to the network in the
course of performing the above-described described method
steps. Furthermore, method embodiments of the present
invention may execute solely upon CPU 922 or may execute
over a network such as the Internet in conjunction with a
remote CPU that shares a portion of the processing.

In addition, embodiments of the present invention further
relate to computer storage products with a computer-read-
able medium that have computer code thereon for perform-
ing various computer-implemented operations. The media
and computer code may be those specially designed and
constructed for the purposes of the present invention, or they
may be of the kind well known and available to those having
skill in the computer software arts. Examples ol computer-
readable media include, but are not limited to: magnetic
media such as hard disks, floppy disks, and magnetic tape;
optical media such as CD-ROMs and holographic devices;
magneto-optical media such as floptical disks; and hardware
devices that are specially configured to store and execute
program code, such as application-specific integrated cir-
cuits (ASICs), programmable logic devices (PLDs) and
ROM and RAM devices. Examples of computer code
include machine code, such as produced by a compiler, and
files containing higher level code that are executed by a
computer using an interpreter.

Although the foregoing invention has been described in
some detail for purposes of clarity of understanding, it will
be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. There-
fore, the described embodiments should be taken as illus-
trative and not restrictive, and the invention should not be
limited to the details given herein but should be defined by
the following claims and their full scope of equivalents.

We claim:

1. A programmable logic device (PLD) arranged to pro-
vide instrumentation for user logic, said PLD comprising:

user logic arranged to perform a function designated by a

uscr;

a serial interface in communication with a host computer;

a client module in communication with said user logic

that provides instrumentation regarding said user logic;
and

a hub in communication with said client module and with

said serial interface, said hub being arranged to route
instructions from said host computer to said clicnt
module via said serial interface, whereby said client
module provides said instrumentation for said user
logic of said PLD.

2. APLD as recited in claim 1 wherein said client module
is a logic analyzer, a fault injector, a debugging system
controller or a signal source.

16
3. A PLD as recited in claim 2, said hub being further
arranged to route information from said client module to
said host computer via said serial interface.
4. APLD as recited in claim 1 further comprising:
5 a user signal interface that provides said communication
between said hub and said serial interface; and

a hub/node interface that provides said communication
between said hub and said client module.

5. APLD as recited in claim 4 wherein said serial interface

is a JTAG port.

6. APLD as recited in claim 1 wherein said serial interface
is a JTAG port.

7. APLD as recited in claim 1 further comprising:

a plurality of client modules, each in communication with
said user logic and each providing instrumentation
regarding said user logic,

wherein said hub is in communication with each of said
client modules, said hub being arranged to route
instructions from said host computer to one of said
client modules via said serial interface, whereby said
one client module provides instrumentation for said
user logic of said PLD.

8. A PLD as recited in claim 7 further comprising:

an instruction register of said hub that stores instructions
for each of said client modules, whereby use of said
instrumentation for one of said client modules is trans-
parent to the other client modules.

9. A system arranged to debug user logic in a program-

mable logic device (PLD), said system comprising:

a host coniputer;

a serial interface;

a PLD in communication with said host computer over
said serial interface, said PLD including,
user logic,

a plurality of client modules, each in communication
with said user logic, and

a hub in conumunication with each client module and
with said serial interface, said hub being arranged to
route instructions from said host computer to said
client modules via said serial interface; and

an EDA software tool of said host computer that is
arranged to send instructions to said client modules of
said PLD using said serial interface and via said hub,
whereby said client modules debug said user logic of
said PL.D.

10. A system as recited in claim 9 wherein one of said
client modules is a logic analyzer, a fault injector, a debug-
ging system controller or a signal source.

11. A system as recited in claim 10, said hub being further
arranged to route information from one of said client mod-
ules to said host computer via said serial interface.

12. A system as recited in claim 9 wherein said serial
interface is a JTAG port.

13. A system as recited in claim 9, said hub being lurther
arranged to route information from one of said clicnt mod-
ules to said host computer via said serial interface, whereby
said one client module debugs said user logic of said PLD.

14. A system as recited in claim 9 further comprising:

20

30

4

o
Loy

60
an instruction register of said hub that stores instructions
for each of said client modules, whereby use of an
instrumentation for one of said client modules is trans-
parent to the other client modules.
65 15.Ahub of a programmable logic device (PLD) arranged

to assist with instrumentation of said PLD, said hub com-
prising:

v,

v

US 7,036,046 B2

17

control Jogic;

a hub interface from said hub to each of a plurality of
client modules, each of said client modules providing
instrumentation for said PLD;

a user interface from said hub to a serial interface of said
PLD;

an instruction register that stores instructions for each of
said client modules;

logic gates arranged to route an instruction of said instruc-
tion register to one of said client modules based on a
selection identifier; and

logic gates arranged to receive data from one of said client
modules and to store said data in said instruction
register, whereby said hub assists with instrumentation

-of said PLD by communicating with said client mod-
ules.

16. A hub as recited in claim 15, said hub being further
arranged to route data from said client module to a host
computer via said serial interface.

17. A hub as recited in claim 15 wherein said serial
interface is a JTAG port.

18. A computer-readable medium for providing instru-
mentation for user logic of a programmable logic device
(PLD), computer code of said computer-readable medium
comprising electronic representations of:

user logic of said PLD;

a serial interface arranged to link a host computer with
said PLD;

a client module in communication with said user logic
that provides instrumentation regarding said user logic;
and

20

25

18

a hub in communication with said client module and with
said serial interface, said hub being arranged to route
instructions from said host computer to said client
module via said serial interface, whereby said client
module provides said instrumentation for said user
logic of said PLD.

19. A computer-readable medium as recited in claim 18
wherein said client module is a logic analyzer, a fault
injector, a debugging system controller or a signal source.

20. A computer-readable medium as recited in claim 19,
said hub being further arranged to route information from
said client module to said host computer via said serial
interface.

21. A computer-readable medium as recited in claim 18
wherein said serial interface is a JTAG port.

22. A computer-readable medium as recited in claim 18
further comprising electronic representations of:

a plurality of client modules, each in communication with
said user logic and each providing instrumentation
regarding said user logic,

wherein said hub is in communication with each of said
client modules, said hub being arranged to route
instructions from said host computer to one of said
client modules via said serial interface, whereby said
one client module provides instrumentation for said
user logic of said PLD.

23. A computer-readable medium as recited in claim 18

wherein said medium is associated with an EDA software
tool.

