

Exhibit A

(12) United States Patent
Iourcha et al.

1111111111111110111111111119,11111111f11111111111111111110111111
(to) Patent No.:	 US 6,658,146 B1
(45) Date of Patent: 	 *Dec. 2, 2003

(54) FIXED-RATE BLOCK-BASED IMAGE
COMPRESSION WITH INFERRED PIXEL
VALUES

(75) Inventors: Konstantine I. Iourcha, San Jose, CA
(US); Krishna S. Nayak, Stanford, CA
(US); Zhou Hong, San Jose, CA (US)

(73) Assignee: S3 Graphics Co., Ltd., Grand Cayman
(KY)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 09/351,930

(22) Filed:	 Jul. 12, 1999

Related U.S. Application Data

(63) Continuation of application No. 08/942,850, filed on Oct. 2,
1997, now Pat. No. 5,956,431.

(51) Int. C1.7 	 GO6K 9/00
(52) U.S. Cl. 	 382/166; 382/162; 382/232
(58) Field of Search 	 382/232, 253,

382/239, 236, 166, 162, 272; 345/593;
341/106; 358/1.9, 500

(56)
	

References Cited

U.S. PATENT DOCUMENTS

	4,821,208 A * 4/1989 Ryan et al. 	 364/158

FOREIGN PATENT DOCUMENTS

JP
	

405216993 A * 8/1993 	 GO6F/15/70

OTHER PUBLICATIONS

Feng et al., "A Dynamic Address Vector Quantization Algo-
rithm Based on Inter–Block and Inter–Color Correction for
Color image Coding", IEEE International Conference on

Acoustics, Speech, and Signal Processing, vol. 3, May 1989,
pps. 1755-1758.*

(List continued on next page.)

Primary Examiner	 Anh Hong Do
(74) Attorney, Agent, or Firm—Carr & Ferrell LLP

(57)	 ABSTRACT

An image processing system includes an image encoder
system and a image decoder system that are coupled
together. The image encoder system includes a block decom-
poser and a block encoder that are coupled together. The
block encoder includes a color quantizer and a bitmap
construction module. The block decomposer breaks an origi-
nal image into blocks. Each block is then processed by the
block encoder. Specifically, the color quantizer selects some
number of base points, or codewords, that serve as reference
pixel values, such as colors, from which quantized pixel
values are derived. The bitmap construction module then
maps each pixel colors to one of the derived quantized
colors. The codewords and bitmap are output as encoded
image blocks. The decoder system includes a block decoder.
The block decoder includes a block type detector, one or
more decoder units, and an output selector. Using the
codewords of the encoded data blocks, the comparator and
the decoder units determine the quantized colors for the
encoded image block and map each pixel to one of the
quantized colors. The output selector outputs the appropriate
color, which is ordered in an image composer with the other
decoded blocks to output an image representative of the
original image. A method for encoding an original image and
for decoding the encoded image to generate a representation
of the original image is also disclosed.

22 Claims, 16 Drawing Sheets

(*) Notice:

INPUT
IMAGE

CONVERT
HEADER

INFO

DECOMPOSE
IMAGE INTO

BLOCKS

ENCODE
EACH BLOCK

COMPOSE
HEADER AND

ENCODED
BLOCKS

WRITE
HEADER AND

ENCODED
BLOCKS

C	

US 6,658,146 B1
Page 2

U.S. PATENT DOCUMENTS OTHER PUBLICATIONS

A. Schilling, et al.; "Texram: A Smart Memory for Textur-
4,887,151 A	 * 12/1989 Wataya 	 358/539 ing"; IEEE Computer Graphics & Applications; May 1996;
5,734,744 A 3/1998 Wittenstein et al. 	 382/166 16(3) pp. 9-19.
5,748,904 A	 * 5/1998 Huang et al. 	 345/544 G. Knittel, et al.; "Hardware and Software for Superior

5,787,192 A	 * 7/1998 Takaichi et al. 	 382/166 Texture Performance"; In 10; Eurographics Hardware Work -

shop '95; Maastricht, NL; Aug. 28-29, 1995; pp. 1-8.
5,822,465 A 10/1998 Normile et al. 	 382/253 G. Campbell, et al.; "Two Bit/Pixel Full Color Encoding";
5,956,425 A	 * 9/1999 Yoshida 	 382/234 Computer Graphics, (Proc. Siggraph '86); Aug. 18-22,
5,956,431 A	 * 9/1999 Iourcha et al. 	 382/253 1986; vol. 20, No. 4, Dallas TX; pp. 215-219.

6,075,619 A	 * 6/2000 Iizuka 	 358/432 * cited by examiner

INPUT DEVICE
125

U.S. Patent Dec. 2, 2003	 Sheet 1 of 16 US 6,658,146 B1

145

PROCESSING
UNIT
110

MEMORY
115

STORAGE
DEVICE

120

GRAPHICS
SUBSYSTEM

135

OUTPUT
DEVICE

130

FIG. 1 105

IMAGE
SOURCE

210

V

IMAGE
ENCODER

220

MEMORY 115 /
STORAGE DEVICE

120

V

IMAGE
DECODER

230

205

OUTPUT
240

FIG. 2A

w

270 H

260 FIG. 2B

V

U.S. Patent	 Dec. 2, 2003 Sheet 2 of 16	 US 6,658,146 B1

BLOC
HEADER

CONVERTER•
41•=11111n11•

318a
BLOCK

ENCODERT

DEC318n 	S..

IMAGE	 r_315

ENCODED IMAGE	r 319

OUTPUT
	 320

220

COMPOSER

FIG. 3B

U.S. Patent	 Dec. 2, 2003 Sheet 3 of 16	 US 6,658,146 B1

310
IMAGE

IMAGE
DECOMPOSER

318 321
BLOCK HEADER

ENCODER CONVERTER

ENCODED IMAGE r_ 319

	r_ 320
OUTPUT

22° FIG. 3A

COMPOSER

	Ix- 310
IMAGE

321

U.S. Patent	 Dec. 2, 2003 Sheet 4 of 16	 US 6,658,146 B1

COLOR
QUANTIZER

335

BLOCK TYPE
MODULE

345

CURVE SELECTION
MODULE 355

BITMAP
CONSTRUCTION

MODULE 340

CODEWORD
GENERATION
MODULE 360

FIG. 3C
	 318

IMAGE DATAORIG.
HEADER

,380°
1

380b

U.S. Patent
	

Dec. 2, 2003	 Sheet 5 of 16
	

US 6,658,146 B1

380
FIG. 3D

r 385a 390-1 - 390-R

MOD.
HEADER 390 • •	 •

385
FIG. 3E

390a1,J 390b1	 C)

CW0 • • • WJ-

I I
BITMAP

I

• • •

390
FIG. 3F

RESULT

Fig 4A

(START

1

INPUT
IMAGE

DECOMPOSE
IMAGE INTO

BLOCKS

	 L	

ENCODE
EACH BLOCK

4,

COMPOSE
HEADER AND

ENCODED
BLOCKS

CONVERT
HEADER

INFO

WRITE
HEADER AND

ENCODED
BLOCKS

(START

COMPUTE
CODEWORDS

•
COMPUTE OR
QUANTITIZE

COLORS FOR
IMAGE

BLOCKS

I
(RESULT

Fig 4B

U.S. Patent	 Dec. 2, 2003
	

Sheet 6 of 16	 US 6,658,146 B1

U.S. Patent US 6,658,146 B1Dec. 2, 2003	 Sheet 7 of 16

426

428

START

438
SELECT

BLOCK TYPE
STORE ERROR

COMPUTE
OPTI MAL
ANALOG
CURVE

440

STORE BLOCK
TYPE AND

CODEWORDS

SELECT
PARTITION

442
LUSTERING
COMPLETE?

NO-

COMPUTE
OPTIMAL

CODEWORDS
FOR

PARTITION

YES

NO

YES
i 446

COMPUTE
ERROR

OUTPUT
BLOCK TYPE &
CODEWORDS
PRODUCING
MIN ERROR

FIG. 4C 447

(RESULT)

U.S. Patent	 Dec. 2, 2003	 Sheet 8 of 16	 US 6,658,146 B1

C START	
448

COMPUTE
GRAVITY
CENTER

IDENTIFY
VECTOR IN

COLORSPACE
TO MINIMIZE

FIRST
MOMENT

RESULT

START) 456

PROJECT 458
COLORS ONTO

CURVE

ORDER
COLORS
ALONG

ANALOG
CURVE

SEARCH FOR
OPTIMAL

PARTITION

C END	 464

450

452

454

460

462

FIG. 4D	 FIG. 4E

U.S. Patent	 Dec. 2, 2003
	

Sheet 9 of 16	 US 6,658,146 B1

HEADER
CONVERTER

508

ENCODED IMAGE
DATA 385 FROM

OUTPUT 320

ENCODED IMAGE
DECOMPOSER

501

• • •

BLC
505m

BLOCK DECODER
505a

• •

IMAGE COMPOSER
504

E

OUTPUT 240

FIG. 5A

BLOCK TYPE
DETECTOR

520

FIRST
DECODER

UNIT
533a-1

SECOND
DECODER

UNIT
533a-2

kth
DECODER

UNIT
533a-k

• • •

U.S. Patent	 Dec. 2, 2003	 Sheet 10 of 16	 US 6,658,146 B1

• •

OUTPUT SELECTOR
523

4	

505

FIG. 5B

U.S. Patent	 Dec. 2, 2003 Sheet 11 of 16	 US 6,658,146 B1

BLOCK TYPE
DETECTOR

520

FIRST
DECODER

UNIT
(4-COLOR)

530

SECOND
DECODER UNIT

(3-COLOR +
TRANSPARENCY)

540

OUTPUT SELECTOR
523

505

FIG. 5C

.	 , 554b

d full odder ___)
+

U.S. Patent	 Dec. 2, 2003	 Sheet 12 of 16	 US 6,658,146 B1

390 --\

V
CLA odder

+

550a

full odder
+

color 0 R
(or G, B)

5526
full adder F.
+

j-- 556a

554a
J

V
CLA odder

+

5506 -f

color 1 R
(or G, B)

full adder
+

.j- 556b

	t

codeword
0(16)

codeword
1(16)

ID ID ID ID
(2) (2) (2) (2)
ID ID ID ID
(2) (2) (2) (2)
ID ID ID ID
(2) (2) (2) (2)
ID ID	 ID ID
(2) (2) (2) (2)

conlporotor
> (16 bits)

558

adder
+

544,
546	 551a -]	 5516

R(or G, B)	 R(or G, B)
channel of color 0	 channel of color 1

552o-i

.

390a

390b

546 J 520

I
color 0	 color 1

(16)	 (16)

1 522 i

I	
; 	

2X1 MUX

5256T

2X1 MUX
525o

T

4X1 MUX	 ID
	

texel color 526

R(or G,B) channel
i

FIG. 5D

U.S. Patent	 Dec. 2, 2003	 Sheet 13 of 16	 US 6,658,146 B1

C START -'\ 600

RECEIVE
ENCODED

IMAGE DATA

DECOMPOSE
ENCODED

IMAGE DATA

605

610

615

620

DECODE
IMAGE

BLOCKS

COMPOSE
HEADER AND

DECODED
BLOCKS

612

CONVERT
HEADER

INFORMATION

9 625
OUTPUT FIG. 6A

U.S. Patent	 Dec. 2, 2003	 Sheet 14 of 16	 US 6,658,146 B1

C START	
630

650

635
CALCULATE
QUANTIZED

COLOR
LEVELSRECEIVE

ENCODED
IMAGE BLOCK

655

640 READ BITMAP
VALUE FOR
EACH PIXEL

DETECT
BLOCK TYPE

660

645

SELECT
DECODER

UNIT

MAP EACH
PIXEL TO

CALCULATED
COLOR

665

C RESULT)

FIG. 6B

U.S. Patent	 Dec. 2, 2003	 Sheet 15 of 16	 US 6,658,146 B1

ENCODED IMAGE
DATA
385

1
HEADER INFO

385a

ENCODED
IMAGE DATA

BLOCK PORTION
385b

BLOCK ADDRESS
COMPUTATION

MODULE
710

BLOCK FETCHING
MODULE

720

BLOCK DECODER
505

700

FIG. 7A

U.S. Patent	 Dec. 2, 2003 Sheet 16 of 16	 US 6,658,146 B1

)

START	
740

•
COMPUTE
ENCODED

BLOCK
ADDRESS

FETCH
ENCODED

BLOCK

COMPUTE
QUANTIZED

COLOR
LEVELS

SELECT
COLOR OF

PIXEL

C OUTPUT

745

750

755

760

765

FIG. 7B

US 6,658,146 B1
2

1. Field of the Invention
The present invention relates to image processing

systems, and more specifically, to three-dimensional render-
ing systems using fixed-rate image compression for textures.

2. Description of the Related Art
The art of generating images, such as realistic or animated

graphics on a computer is known. To generate such images
requires tremendous memory bandwidth and processing
power on a graphics subsystem. To reduce the bandwidth
and processing power requirements, various compression
methods and systems were developed. These methods and
systems included Entropy or lossless encoders, discrete
cosine transform or JPEG type compressors, block trunca-
tion coding, color cell compression, and others. Each of
these methods and systems, however, have numerous draw-
backs.

Entropy or lossless encoders include Lempel-Ziv encod-
ers and are used for many different purposes. Entropy coding
relies on predictability. For data compression using Entropy
encoders, a few bits are used to encode the most commonly
occurring symbols. In stationary systems where the prob-
abilities are fixed, Entropy coding provides a lower bound
for the compression than can be achieved with a given
alphabet of symbols. A problem with Entropy coding is that
it does not allow random access to any given symbol. The
part of the compressed data preceding a symbol of interest
must be first fetched and decompressed to decode the
symbol which takes considerable processing time and
resources as well as decreasing memory throughput.
Another problem with existing Entropy methods and sys-
tems is that they do not provide any guaranteed compression
factor which makes this type of encoding scheme imprac-
tical where the memory size is fixed.

Discrete Cosine Transform ("DCT") or JPEG-type
compressors, allow users to select a level of image quality.
With DCT, uncorrelated coefficients are produced so that 45

each coefficient can be treated independently without loss of
compression efficiency. The DCT coefficients can be quan-
tized using visually-weighted quantization values which
selectively discard the least important information.

DCT, however, suffers from a number of shortcomings. 50

One problem with DCT and JPEG-type compressors is that
they require usually bigger blocks of pixels, typically 8x8 or
16x16 pixels, as a minimally accessible unit in order to
obtain a reasonable compression factor and quality. Access
to a very small area, or even a single pixel involves fetching 55

a large quantity of compressed data, thus requiring increased
processor power and memory bandwidth. A second problem
with DCT and JPEG-type compressors is that the compres-
sion factor is variable, therefore requiring a complicated
memory management system that, in turn, requires greater 60

processor resources. A third problem with DCT and JPEG-
type compression is that using a large compression factor
significantly degrades image quality. For example, the image
may be considerably distorted with a form of a ringing
around the edges in the image as well as noticeable color 65

shifts in areas of the image. Neither artifact can be removed
with subsequent low-pass filtering.

20

25

35

40

10

15

A fourth problem with DCT and JPEG-type compression
is that such a decompressor is complex and has a significant
associated hardware cost. Further, the high latency of the
decompressor results in a large additional hardware cost for
buffering throughout the system to compensate for the
latency. Finally, a fifth problem with DCT and JPEG-type
compressors is that it is not clear whether a color keyed
image can be compressed with such a method and system.

Block truncation coding ("BTC") and color cell compres-
sion ("CCC") use a local one-bit quantizer on 4x4 pixel
blocks. The compressed data for such a block consists of
only two colors and 16-bits that indicate which one of the
two colors is assigned to each of the 16 pixels. Decoding a
BTC/CCC image consists of using a multiplexer with a
look-up table so that once a 16-texel-block (32-bits) is
retrieved from memory, the individual pixels are decoded by
looking up the two possible colors for that block and
selecting the color according to the associated bit from the
16 decision bits.

The BTC/CCC methods quantize each block to just two
color levels resulting in significant image degradation.
Further, a two-bit variation of CCC stores the two colors as
eight-bit indices into a 256-entry color lookup table. Thus,
such pixel blocks cannot be decoded without fetching addi-
tional information that can consume additional memory
bandwidth.

The BTC/CCC methods and systems can use a three-bit
per pixel scheme which store the two colors as 16-bit values
(not indices into a table) resulting in pixel blocks of six

30
bytes. Fetching such units, however, decreases system per-
formance because of additional overhead due to memory
misalignment. Another problem with BTC/CCC is that when
it is used to compress images that use color keying to
indicate transparent pixels, there will be a high degradation
of image quality.

Therefore, there is a need for a method and system that
maximizes the accuracy of compressed images while mini-
mizing storage, memory bandwidth requirements, and
decoding hardware complexities, while also compressing
image data blocks into convenient sizes to maintain align-
ment for random access to any one or more pixels.

SUMMARY OF THE INVENTION

An image processing system includes an image encoder
system and an image decoder system that are coupled
together. The image encoder system includes a block decom-
poser and a block encoder that are coupled together. The
block encoder includes a color quantizer and a bitmap
construction module. The block decomposer breaks an origi-
nal image into image blocks, each having a plurality of pixel
values (e.g. colors) or equivalent color points. Each image
block is then processed by the block encoder. Specifically,
the color quantizer computes some number of base points, or
codewords, that serve as reference pixel values, such as
colors, from which computed or quantized pixel values are
derived. The bitmap construction module then maps at least
one pixel value in the image block to one of the computed
or quantized colors or one of the codewords. The codewords
and bitmap are output as encoded image blocks.

The decoder system includes a block decoder having one
or more decoder units and an output selector. The block
decoder may also include a block type detector for deter-
mining the block type of an image block. The block type
determines the number of computed colors to use for map-
ping each pixel color from an image block. Using the
codewords of the encoded data blocks, the comparator and

1
FIXED-RATE BLOCK-BASED IMAGE

COMPRESSION WITH INFERRED PIXEL
VALUES

This is a CON of Ser. No. 08/942,850, filed Oct. 2, 1997, 5

now U.S. Pat. No. 5,956,431.

BACKGROUND OF THE INVENTION

US 6,658,146 B1
3

the decoder units determine the computed colors for the
encoded image block and map each pixel to one of the
computed colors. The output selector outputs the appropriate
color, which is ordered in an image composer with the other
decoded blocks to output an image representative of the 5

original image.
The present invention also includes a method of com-

pressing an original image block having a set of original
colors. The method includes: computing a set of codewords
from the set of original colors; computing a set of computed
colors using the set of codewords; and mapping each origi-
nal color to one of the computed colors or one of the
codewords to produce an index for each original color.

The compressed or encoded image block, which has a first
set of indices and a set of codewords, where a set is equal
to or greater than one, is decoded by: computing at least one
computed color using the set of codewords; and mapping an
index within the first set of indices to one of the computed
colors or one of the codewords.

Those of ordinary skill in the art will readily recognize
that the present invention may be practiced using any
general purpose computer system, such as the computer
system described below, or any "hardwired" device specifi-
cally designed to perform the method, such as but not
limited to devices implemented using ASIC or FPGA tech-
nology and the like.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data processing system in
accordance with the present invention;

FIG. 2A is a block diagram of an image processing system
in accordance with the present invention;

FIG. 2B is a graphical representation of an image block in
accordance with the present invention;

FIG. 3A is a block diagram of a first embodiment an
image encoder system in accordance with the present inven-
tion;

FIG. 3B is a block diagram of a second embodiment of an
image encoder system in accordance with the present inven-
tion;

FIG. 3C is a block diagram of an image block encoder in
accordance with the present invention;

FIG. 3D is a data sequence diagram of an original image
in accordance with the present invention;

FIG. 3E is a data sequence diagram of encoded image data
of the original image output from the image encoder system
in accordance with the present invention;

FIG. 3F is a data sequence diagram of an encoded image
block from the image block encoder in accordance with the
present invention;

FIGS. 4A-4F are flow diagrams illustrating an encoding
process in accordance with the present invention;

FIG. 5A is a block diagram of an image decoder system
in accordance with the present invention;

FIG. 5B is a block diagram of a first embodiment of a
block decoder in accordance with the present invention;

FIG. 5C is a block diagram of a second embodiment of a
block decoder in accordance with the present invention;

FIG. 5D is a logic diagram illustrating a first embodiment
of a decoder unit in accordance with the present invention;

FIGS. 6A-6B are flow diagrams illustrating a decoding
process in accordance with the present invention;

FIG. 7A is a block diagram of a subsystem for random 65

access to a pixel or an image block in accordance with the
present invention; and

4
FIG. 7B is a flow diagram illustrating random access to a

pixel or an image block in accordance with the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

FIG. 1 is a block diagram of a data processing system 105
constructed in accordance with the present invention. The
data processing system 105 includes a processing unit 110,
a memory 115, a storage device 120, an input device 125, an
output device 130, and a graphics subsystem 135. In
addition, the data processing system 105 includes a data bus
145 that couples each of the other components 110, 115, 120,
125, 130, 135 of the data processing system 105.

The data bus 145 is a conventional data bus and while
shown as a single line it may be a combination of a processor
bus, a PCI bus, a graphical bus, and an ISA bus. The
processing unit 110 is a conventional processing unit such as
the Intel Pentium processor, Sun SPARC processor, or
Motorola PowerPC processor, for example. The processing
unit 110 processes data within the data processing system
105. The memory 115, the storage device 120, the input
device 125, and the output device 130 are also conventional
components as recognized by those skilled in the art. The
memory 115 and storage device 120 store data within the
data processing system 105. The input device 125 inputs
data into the system while the output device 130 receives
data from the data processing system 105.

FIG. 2A is a block diagram of an image processing system
205 constructed in accordance with-the present invention. In
one embodiment, the image processing system 205 runs
within the data processing system 105. The image process-
ing system 205 includes an image encoder system 220 and
an image decoder system 230. The image processing system
205 may also include a unit for producing an image source
210 from which images are received, and an output 240 to
which processed images are forwarded for storage or further
processing. The image encoder system 220 is coupled to
receive an image from the image source 210. The image
decoder system 230 is coupled to output the image produced
by the image processing system 205. The image encoder
system 220 is coupled to the image decoder system 230
through a data line and may be coupled via a storage device
120 and/or a memory 115, for example.

Within the image encoder system 220, the image is broken
down into individual blocks and processed before being
forwarded to, e.g., the storage device 140, as compressed or
encoded image data. When the encoded image data is ready
for further data processing, the encoded image data is
forwarded to the image decoder system 230. The image
decoder system 230 receives the encoded image data and
decodes it to generate an output that is a representation of the
original image that was received from the image source 210.

FIGS. 3A and 3B are block diagrams illustrating two
separate embodiments of the image encoder system 220 of
the present invention. The image encoder system 220
includes an image decomposer 315, a header converter 321,
one or more block encoders 318 (318a-318n, where n is the
nth encoder, n being any positive integer), and an encoded
image composer 319. The image decomposer 315 is coupled
to receive an original image 310 from a source, such as the
image source 210. The image decomposer 315 is also
coupled to the one or more block encoders 318 and to the
header converter 321. The header converter 321 is also
coupled to the encoded image composer 319. Each block
encoder 318 is also coupled to the encoded image composer
319. The encoded image composer 319 is coupled to the
output 320.

10

15

20

25

30

35

40

45

50

55

60

US 6,658,146 B1
65

The image decomposer 315 receives the original image
310 and forwards information from a header of the original
image 310 to the header converter 321. The header converter
321 modifies the original header to generate a modified
header, as further described below. The image decomposer
315 also breaks, or decomposes, the original image 310 into
R number of image blocks, where R is some integer value.
The number of image blocks an original image 310 is broken
into may depend on the number of image pixels. For
example, in a preferred embodiment an image 310 com-
prised of A image pixels by B image pixels will typically be
(A/4)*(B/4) blocks, where A and B are integer values. For
example, where an image is 256 pixels by 256 pixels, there
will be 64x64 blocks. In other words, the image is decom-
posed such that each image block is 4 pixels by 4 pixels (16
pixels). Those skilled in the art will recognize that the
number of pixels or the image block size may be varied, for
example mxn pixels, where m and n are positive integer
values.

Briefly turning to FIG. 2B, there is illustrated an example
of a single image block 260 in accordance with the present
invention. The image block 260 is comprised of pixels 270.
The image block 260 may be defined as an image region W
pixels 270 in width by H pixels 270 in height, where W and
H are integer values. In a preferred embodiment, the image
block 260 is comprised of W=4 pixels 270 by H=4 pixels
270 (4x4).

Turning back to FIGS. 3A and 3B, each block encoder
318 receives an image block 260 from the image decom-
poser 315. Each block encoder 318 encodes or compresses
each image block 260 that it receives to generate an encoded
or compressed image block. Each encoded image block is
received by the encoded image composer 319 which orders
the encoded blocks in a data file. The data file from the
encoded image composer 319 is concatenated with a modi-
fied header from the header converter 321 to generate an
encoded image data file that is forwarded to the output 320.
Further, it is noted that having more than one block encoder
318a-318n allows for encoding multiple image blocks
simultaneously, one image block per block encoder
318a-318n, within the image encoder system 220 to
increase image processing efficiency and performance.

The modified header and the encoded image blocks
together form the encoded image data that represents the
original image 310. The function of each element of the
image encoder system 220, including the block encoder 318,
will be further described below with respect to FIGS.
4A-4E.

The original image 310 may be in any one of a variety of
formats including red-green-blue ("RGB"), YUV 420, YUV
422, or a proprietary color space. It may be useful in some
cases to convert to a different color space before encoding
the original image 310. It is noted that in one embodiment
of the present invention, each image block 260 is a 4x4 set
of pixels where each pixel 270 is 24-bits in size. For each
pixel 270 there are 8-bits for a Red(R)-channel, 8-bits for a
Green(G)-channel, and 8-bits for a Blue(B)-channel channel
in a red-green-blue ("RGB") implementation color space.
Further, each encoded image block is also a 4x4 set of
pixels, but, each pixel is only 2-bits in size and has an
aggregate size of 4-bits as will be further described below.

FIG. 3C is a block diagram illustrating a block encoder
318 of the present invention in greater detail. The block
encoder 318 includes a color quantizer 335 and a bitmap
construction module 340. The color quantizer 335 is coupled
to the bitmap construction module 340. Further, the color

quantizer 335 further emphasizes a block type module 345,
a selection module 355, and a codeword generation module
360. The block type module 345 is coupled to the selection
module 355. The selection module 355 is coupled to the

5 codeword generation module 360.
Each image block 260 of the decomposed original image

310 is received and initially processed by the color quantizer
335 before being forwarded to the bitmap construction
module 340 for further processing. The bitmap construction

10
module 340 outputs encoded image blocks for the encoded
image composer 319 to order. The bitmap construction
module 340 and the color quantizer 335, including the block
type module 345, the selection module 355, and the code-
word generation module 360, are further discussed below in
FIGS. 4A-4E.

Briefly, FIG. 3D is a diagram of a data sequence or string
380 representing the original image 310 that is received by
the block decomposer 315. The data string 380 of the
original image 310 includes an a-bit header 380a and a b-bit
image data 380b, where a and b are integer values. The
header 380a may include information such as the pixel
width of the image 310, the pixel height of the image 310,
and the format of the image 310, e.g., the number of bits to
the pixel in RGB or YUV format, for example, as well as
other information. The image data is the data 380b repre-
senting the original image 310 itself.

FIG. 3E is a diagram of a data sequence or string 385
representing encoded image data 385 that is generated and
output 320 by the image encoder system 220. The data string

30
for the encoded image data 385 includes a modified header
portion 385a and an encoded image block portion 390-
1-390-R. The modified header portion 385a is generated by
the header converter 321 from the original header 380a for
the original image 310. The modified header generated by

5
the header converter 321 includes information about file
type, a number of bits per pixel of the original image 310,
addressing into the original image 310, other miscellaneous
encoding parameters, as well as the width and height infor-
mation indicating the size of that original image 310. The

40
encoded image block portion 390-1-R includes the encoded
image blocks 390-1-390-R from the block encoders 318,
where R is an integer value that is the number of blocks
resulting from the decomposed original image 310.

FIG. 3F is a diagram of a data sequence or string 390
45 representing an encoded image block in accordance with the

present invention. It is understood that the data string 390
representing the encoded image block may be similar to any
one of the encoded image blocks 390-1-390-R shown in the
encoded image data string 385.

50	 The data string 390 of the encoded image block includes
a codeword section 390a which includes J codewords,
where J is an integer value, and a bitmap section 390b. The
codeword section 390a includes J codewords 390a that are
used to compute the colors indexed by the bitmap 390b. A

55 codeword is a n-bit data string, where n is an integer value,
that identifies a pixel property, for example a color compo-
nent. In a preferred embodiment, there are two 16-bit
codewords 390a, CWO, CW1 (J=2). The bitmap is a Q-bit
data portion and is further discussed below in FIG. 4B.

60 Further, in a preferred embodiment, each encoded image
block is 64-bits, which includes two 16-bit codewords and
a 32-bit (4x4x2 bit) bitmap 395. Encoding the image block
260 as described provides greater system flexibility and
increased data processing efficiency as will be further dis-

65 cussed below.
FIGS. 4A-4E describe the operation of the image encoder

system 220. FIG. 4A describes the general operation of the

1 5

2 0

2 5

3

US 6,658,146 B1
87

image encoder system 220. At the start 402 of operation,
data string 380 of the original image 310, that includes the
a-bit header 380a and the b-bit image data 380b, is input 404
into the block decomposer 315 from the image source 210.
The block decomposer 315 decomposes 406 the original
image 310 to extract the a-bit header 380a and forward it to
the header converter 321. The block decomposer also 315
decomposes, 406 the original image 310 into image blocks.
Each image block 260 is independently compressed, or
encoded, 410 in the one or more block encoders 318.

The header converter 321 converts 408 the a-bit header to
generate a modified header 385a. The modified header 385a
is forwarded to the encoded image composer 319. Simulta-
neous with the header converter 321 converting 408 the
a-bit header, each image block is encoded 410 by the one or
more image encoders 318a-318n to generate the encoded
image blocks 390-1-390-R. Again, it is noted that each
image block 260 may be processed sequentially in one block
encoder 318a or multiple image blocks 260 may be pro-
cessed in parallel in multiple block encoders 318a-318n.

The encoded image blocks 390 are output from the block
encoders 318 and are placed into a predefined order by the
encoded image composer 319. In a preferred embodiment,
the encoded image blocks 390 are ordered in a file from left
to right and top to bottom in the same order in which they
were broken down by the block decomposer 315. The image
encoder system 220 continues by composing 412 the modi-
fied header information 385a from the header converter 321
and the encoded image blocks 390. Specifically, the modi-
fied header 385a and the ordered encoded image blocks 390
are concatenated to generate the encoded image data file
385. The encoded image data file 385 is written 414 as
encoded output 320 to the memory 115, the storage device
120, or the output device 130, for example.

FIG. 4B shows the encoding process 410 for the encoder
system 220 described above in FIG. 2. At the start 418 of
operation, codewords are computed 420. As discussed above
in FIG. 3F, in a preferred embodiment there are two code-
words 390a, CWO, CW1. The process for computing code-
words is further described below in FIG. 4C.

Once the codewords are computed 420 pixel values or
properties, such as colors, for the image block 260 are
computed or quantized quantized 422. Specifically, the
codewords 390a provide points in a pixel space from which
M quantized pixel values may be inferred, where M is an
integer value. The M quantized pixel values are a limited
subset of pixels in a pixel space that are used to represent the
current image block. The process for quantizing pixel
values, and more specifically colors, will be described below
in FIGS. 4D and 4E. Further, it is noted that the embodi-
ments will now be described with respect to colors of a pixel
value although one skilled in the art will recognize that in
general any pixel value may be used with respect to the
present invention.

In a preferred embodiment, each pixel is encoded with
two bits of data which can index one of M quantized colors
(M=4). Further, in a preferred embodiment the four quan-
tized colors are derived from the two codewords 390a where
two colors are the codewords themselves and the other two
colors are inferred from the codewords, as will be described
below. It is also possible to use the codewords 390a so that
there is one index to indicate a transparent color and three
indices to indicate colors, of which one color is inferred.

In a preferred embodiment, the bitmap 390b is a 32-bit
data string. The bitmap 390b and codewords 390a are output
424 as a 64-bit data string representing an encoded image

block 390. Specifically, the encoded image block 390
includes the two 16-bit codewords 390a (n=16) and a 32-bit
bitmap 390b. Each codeword 390a CWO, CW1 that is a
16-bit data string includes a 5-bit red-channel, 6-bit green-

5 channel, and 5-bit blue-channel.
Each of the encoded image blocks 390 is placed together

390a1-390aR, and concatenated with header information
385a derived from the original header 380a of the original
image 310. The resulting 424 output is the encoded image

10 data 385 representing the original image 310.
FIG. 4C describes the process for computing 420 the

codewords for the image blocks 260 in more detail. At the
start 426 of the process, the color quantizer 335 uses the
block type module 345 to select 428 the first block type for

is the image block 260 that is being processed. For example,
one block type selected 428 may be a four-color and another
block type selected 428 may be a three-color plus
transparency, where the colors within the particular block
type have equidistant spacing in a color space.

Those of ordinary skill in the art will readily recognize
that selecting a block type for each image is not intended to
be limiting in any way. Instead, the present invention may be
limited to processing image blocks that are of a single block
type. This eliminates the need to distinguish between dif-
ferent block types, such as the three and four color block
types discussed above. Consequently, the block type module
345 in FIG. 3B and reference number 428 in FIG. 4C are
optional and are not intended to limit the present invention
in any way.

Once the block type is selected 428, the process computes
430 an optimal analog curve for the block type. Computation
430 of the optimal analog curve 430 will be further
described below in FIG. 4D. The analog curve is used to

35
simplify quantizing of the colors in the image block. After
computing 430 the optimal analog curve, the process selects
432 a partition of the points along the analog curve. A
partition may be defined as a grouping of indices {1
(WxH)} into M nonintersecting sets. In a preferred

40
embodiment, the indices (1 . . . 16) are divided into three or
four groups, or clusters, (M=3 or 4) depending on the block
type.

Once a partition is selected 432, the optimal codewords
for that 20 particular partition are computed 434. Compu-

45 tation 434 of the optimal codewords is further described
below in FIG. 4E. In addition to computing 434 the
codewords, an error value (squared error as describe below)
for the codewords is also computed 436. Computation 436
of the error values is further described below with respect to

5 0 FIG. 4E also. If the computed 436 error value is the first
error value it is stored. Otherwise, the computed 436 error
value is stored 438 only if it is less than the previously stored
error value. For each stored 438 error value, the correspond-
ing block type and codewords are also stored 440. It is noted

55 that the process seeks to find the block type and codewords
that minimize the error function.

The process continues by determining 442 if the all the
possible partitions are complete. If there are more partitions
possible, the process selects 432 the next partition and once

60 again computes 434 the codewords, computes 436 the
associated error value, and stores 438 the error value and
stores 440 associated block type and codewords only if the
error value is less than the previously stored error value.

After all the possible partitions are completed, the process
65 determines 444 whether all the block types have been

selected. If there are more block types, the process selects
428 the next block type. Once again, the process will

2 0

2 5

3

US 6,658,146 B1
109

compute 430 the optimal analog curve, select 432, 442 all
the possible partitions, for each partition it will compute
434, 436 the codewords and associated error value, and store
438, 440 the error value and associated block type and
codeword only if the error value is less than the previously
stored error value. After the last block type is processed, the
process outputs 446 a result 447 of the block type and
codewords 390a having the minimum error.

In an alternative embodiment, the optimal analog curve
may be computed 430 before searching the block type. That
is, the process may compute 430 the optimal analog curve
before proceeding with selecting 428 the block type, select-
ing 432 the partition, computing 434 the codewords, com-
puting 436 the error, storing 438 the error, and storing 440
the block type and codeword. Computing 430 the optimal
analog curve first is useful if all the block types use the same
analog curve and color space because the analog curve does
not need to be recomputed for each block type.

FIG. 4D further describes the process of identifying the
optimal analog curve. The selection module 355 starts 448
the process by computing a center of gravity 450 for pixel
270 colors of an image block 260. Computing 450 the center
of gravity includes averaging the pixel 270 colors of the
image block 260. Once the center of gravity is computed
450, the process identifies 452 a vector in color space to
minimize the first moment of the pixel 270 colors of the
image block 260.

Specifically, for identifying 452 the vector the process fits
a straight line to a set of data points, which are the original
pixel 270 colors of the image block 260. A straight line is
chosen passing through the center of gravity of the set of
points such that it minimizes the "moment of inertia" (the
means square error). For example, for three pixel properties,
to compute the direction of the line minimizing the moment
of inertia, tensor inertia, T, is calculated from the individual
colors as follows:

— COiC2i

T=	

-	

Co;

—CO;C2;	 C2iCli Co; + CI;

where Co, C1, and C2 represent pixel properties, for example
color components in RGB or YUV, relative to a center of
gravity. In a preferred embodiment of an RGB color space,
Co, is the value of red, C 1, is the value of green, and C„ is
the value of blue for each pixel, i, of the image block.
Further, i takes on integer values from 1 to WxH, so that if
W=4 and H=4, i ranges from 1 to 16.

The eigenvector of tensor, T, with the smallest eigenvalue
is calculated using conventional methods known to those
skilled in the art. The eigenvector direction along with the
calculated gravity center, defines the axis that minimizes the
moment of inertia. This axis is used as the optimal analog
curve, which in a preferred embodiment is a straight line.
Those of ordinary skill in the art will readily recognize that
the term optimal analog curve is not limited solely to a
straight line but may include a set of parameters, such as
pixel values or colors, that minimizes the moment of inertia
or means square error when fitted to the center of gravity of
the pixel colors in the image block. The set of parameters
may define any geometric element, such as but not limited
to a curve, a plane, a trapezoid, or the like.

FIG. 4E illustrates the process undertaken by the code-
word generation module 360 for selecting 432 the partitions,
computing 434, 436 the codewords for the partitions and the

associated error, and storing 438, 440 the error value, block
type, and codeword if the error value is less than a previ-
ously stored error value. The process starts 456 with the
codeword generation module 360 projecting 458 the WxH

5 color values onto the previously constructed optimal analog
curve. The value of WxH is the size in number of pixels 270
of an image block 260. In a preferred embodiment, where
Wand Hare both 4 pixels, WxH is 16 pixels.

Once the colors are projected 458 onto the analog curve,
10 the colors are ordered 460 sequentially along that analog

curve based on the position of the color on the one-
dimensional analog curve. After the colors are ordered 460,
the codeword generation module 360 searches 462 for
optimal partitions. That is, the codeword generation module

15 360 takes the WxH colors (one color associated with each
pixel) that are ordered 460 along the analog curve and
partitions, or groups, them into a finite number of clusters
with a predefined relative spacing. In a preferred
embodiment, where W=4 and H=4, so that WxH is 16, the

20 16 colors are placed in three or four clusters (M=3 or 4).
In conducting the search 462 for the optimal partition, the

color selection module 360 finds the best M clusters for the
WxH points projected onto the optimal curve, so that the
error associated with the selection is minimized The best M

25 clusters are determined by minimizing the mean square error
with the constraint that the points associated with each
cluster are spaced to conform to the predefined spacing.

In a preferred embodiment, for a block type of four
equidistant colors, the error may be defined as a squared

30 error along the analog curve, such as

E2=Icr„,„o(x, —Po)2±Icr„t„i(x, — (F3)Po±(1/2)PD) 2±Id„t„2.(x,—

((1/2)Po±(2/3)P1))2±Id„t„3(x, —P02

where E is the error for the particular grouping or clustering,
35 po and p i are the coded colors, and x, are the projected points

on the optimal analog curve.
In instances where the block type indicates three equidis-

tant colors, the error may be defined as a squared error along
the analog curve, such as

40	
E2=1,1„t„o(x, —Po)2+1,1„t„i(x, — ((1/2)Po±(1/2)P0) 2±Ici„t„2 (x,-1)1) 2

where, again, E is the error for the particular grouping or
clustering, P o and pi are the coded colors, and x, are the
projected points on the optimal analog curve.

45	 After the resulting 447 optimal codewords 390a are
identified, they are forwarded to the bitmap construction
module 340. The bitmap construction module 340 uses the
codewords 390a to identify the M colors that may be
specified or inferred from those codewords 390a. In a

50 preferred embodiment, the bitmap construction module 340
uses the codewords 390a, e.g., CWO, CW1, to identify the
three or four colors that may be specified or inferred from
those codewords 390a.

The bitmap construction module 340 constructs a block
55 bitmap 390b using the codewords 390a associated with the

image block 260. Colors in the image block 260 are mapped
to the closest color associated with one of the quantized
colors specified by, or inferred from, the codewords 390a.
The result is a color index, referenced as ID, per pixel in the

60 block identifying the associated quantized color.
Information indicating the block type is implied by the

codewords 390a and the bitmap 390b. In a preferred
embodiment, the order of the codewords 390a CWO, CW1,
indicate the block type. If a numerical value of CWO is

65 greater than a numerical value of CW1, the image block is
a four color block. Otherwise, the block is a three color plus
transparency block.

US 6,658,146 B1
11

As discussed above, in a preferred embodiment, there are
two image block types. One image block type has four
equidistant colors, while the other image block type has
three equidistant colors with the fourth color index used to
specify that a pixel is transparent. For both image block
types the color index is two bits.

The output of the bitmap construction module 340 is an
encoded image block 390 having the M codewords 390a
plus the bitmap 390b. Each encoded image block 390 is
received by the encoded image composer 319 that, in turn,
orders the encoded image blocks 390 in a file. In a preferred
embodiment, the encoded image blocks 390 are ordered
from left to right and from top to bottom in the same order
as the blocks were broken down by the block decomposer
315. The ordered file having the encoded image blocks 390
is concatenated with the header information 385a that is
derived from the header 380a of the original image 310 to
generate the encoded image data 385 that is the image
encoder system 220 output 320. The image encoder system
220 output 320 may be forwarded to the memory 115, the
storage device 120, or the output device 130, for example.

The image encoder system 220 of the present invention
advantageously reduces the effective data size of an image,
for example, from 24-bits per pixel to 4-bits per pixel.
Further, the present invention beneficially addresses trans-
parency issues by allowing for codewords to be used with a
transparency identifier.

FIG. 5A is a block diagram of an image decoder system
230 in accordance with the present invention. The image
decoder system 230 includes an encoded image decompos-
ing unit 501, a header converter 508, one or more block
decoders 505 (505a-505m, where m is any positive integer
value representing the last block decoder), and an image
composer 504. The encoded image decomposer 501 is
coupled to receive the encoded image data 385 that was
output 320 from the image encoder system 220. The
encoded image decomposer 501 is coupled to the one or
more block decoders 505a-505m. The one or more block
decoders 505a-505m are coupled to the image composer
504 that, in turn, is coupled to the output 240.

The encoded image decomposer 501 receives the encoded
image data 385 and decomposes, or breaks, it into its header
385a and the encoded image blocks 390-1 —390-R. The
encoded image decomposer 501 reads the modified header
385a of the encoded image data 385 and forwards the
modified header 385a to the header converter 508. The
encoded image decomposer 501 also decomposes the
encoded image data 385 into the individual encoded image
blocks 390-1-390-R that are forwarded to the one or more
block decoders 505a-505m.

The header converter 508 converts the modified header
385a to an output header. Simultaneously, the encoded
image blocks 390-1-390-R are decompressed or decoded by
the one or more block decoders 505a-505m. It is noted that
the each encoded image block 390 may be processed
sequentially in one block decoder 505a or multiple encoded
image blocks 390-1-390-R may be processed in parallel
with one block decoder 505a-505m for each encoded image
block 390--390-R. Thus, multiple block decoders
505a-505m allows for parallel processing that increases the
processing performance and efficiency of the image decoder
system 230.

The image composer 504 receives each decoded image
block from the one or more block decoders 505a-505m and
orders them in a file. Further, the image composer 504
receives the converted header from the header converter
508. The converted header and the decoded image blocks are

12
placed together to generate output 240 data representing the
original image 310.

FIG. 5B is a block diagram of a first embodiment of a
block decoder 505 in accordance with the present invention.

5 Each block decoder 505a-505m includes a block type
detector 520, one or more decoder units, e.g., 533a—/ to
533a—k (k is any integer value), and an output selector 523.
The block type detector 520 is coupled to the encoded image
decomposer 501, the output selector 523, and each of the one

10 or more decoder units, e.g., 533a—/-533a—k. Each of the
decoder units, e.g., 533a—/-533a—k, is coupled to the output
selector 523 that, in turn, is coupled to the image composer
504.

The block type detector 520 receives the encoded image
15 blocks 390 and determines the block type for each encoded

image block 390. Specifically, the block type detector 520
passes a selector signal to the output selector 523 that will
be used to select an output corresponding to the block type
detected. The block type is detected based on the codewords

20 390a. After the block type is determined, the encoded image
blocks 390 are passed to each of the decoder units, e.g.,
533a—/-533a—k. The decoder units, e.g., 533a—/-533a—k,
decompress or decode each encoded image block 390 to
generate the colors for the particular encoded image block

25 390. The decoder units, e.g., 533a—l-53a—k, may be
c-channels wide (one channel for each color component (or
pixel property) being encoded), where c is any integer value.
Using the selector signal, the block type detector 520
enables the output selector 523 to output the color of the

30 encoded image block 390 from one of the decoder units, e.g.,
533a—l-533a—k that corresponds with the block type
detected by the block type detector 520. Alternatively, using
the selector signal, the appropriate decoder unit 533 could be
selected so the encoded block is processed through that

35 decoder unit only.
FIG. 5C is a block diagram of a second embodiment of a

block decoder 505 in accordance with the present invention.
In a second embodiment, the block decoder 505 includes a
block type detector 520, a first and a second decoder unit

40 530, 540, and the output selector 523. The block type
detector 520 is coupled to receive the encoded image blocks
390 and is coupled to the first and the second decoder units
530, 540 and the output selector 523.

The block type detector 520 receives the encoded image
45 blocks 390 and determines, by comparing the codewords

390a of the encoded image block 390, the block type for
each encoded image block 390. For example, in a preferred
embodiment, the block type is four quantized colors or three
quantized colors and a transparency. Once the block type is

50 selected and a selector signal is forwarded to the output
selector 523, the encoded image blocks 390 are decoded by
the first and the second decoder units 530, 540. The first and
the second decoder units 530, 540 decode the encoded image
block 390 to produce the pixel colors of each image block.

55 The output selector 523 is enabled by the block type detector
520 to output the colors from the decoder unit 530, 540 that
corresponds to the block type selected.

FIG. 5D is a logic diagram illustrating one embodiment of
a decoder unit through a red-channel of the that decoder unit

60 in accordance with the present invention. Specifically, the
decoder unit is similar to the decoder units 530, 540 illus-
trated in FIG. 5C. Moreover, the functionality of each of
those decoder units 530, 540 is merged into the single logic
diagram illustrated in FIG. 5D. Further, those skilled in the

65 art will understand that although described with respect to
the red-channel of the decoder units 530, 540 the remaining
channels, e.g., the green-channel and the blue-channel, in

US 6,658,146 B1
13 14

each decoder unit 530, 540 are similarly coupled and func-
tionally equivalent.

The logic diagram illustrating the decoder units 530, 540
is shown to include portions of the block type detector 520,
for example a comparator unit 522. The comparator unit 522
works with a first 2x1 multiplexer 525a and a second 2x1
multiplexer 525b. The comparator unit 522 is coupled to the
first and the second 2x1 multiplexers 525a, 525b. Both 2x1
multiplexers 525a, 525b are coupled to a 4x1 multiplexer
526 that serves to select the appropriate color to output.

The red-channel 544, 546 of the first decoder unit 530
includes a first and a second red-channel line 551a, 551b and
a first and a second red-color block 550a, 550b. Along the
path of each red-color block 550a, 550b is a first full adder
552a, 552b, a second full adder 554a, 554b, and a CLA
("carry-look ahead") adder 556a, 556b. The first and the
second red-channel lines 551a, 551b are coupled to the first
and the second red-color blocks 550a, 550b, respectively.
Each red-color block 550a, 550b is coupled to the first full
adder 552a, 552b associated with that red-color block 550a,
550b. Each first full adder 552a, 552b is coupled to the
respective second full adder 554a, 554b. Each second full
adder 554a, 554b is coupled to the respective CLA adder
556a, 556b.

The second decoder unit 540 comprises the first and the
second red-channel lines 551a, 551b and the respective first
and second red-color blocks 550a, 550b and an adder 558.
The first and the second channel lines 551a, 551b are
coupled to their respective red-color blocks 550a, 550b as
described above. Each red-color block 550a, 550b is
coupled to the adder 558.

The CLA adder 556a from the path of the first red-color
block 550a of the first decoder unit 530 is coupled to the first
2x1 multiplexer 525a and the CLA adder 556b from the path
of the second red-color block 550b of the first decoder unit
530 is coupled to the second 2x1 multiplexer 525b. The
adder 558 of the second decoder unit 540 is coupled to both
the first and the second 2x1 multiplexers 525a, 525b.

The 4x1 multiplexer 526 is coupled to the first and the
second red-channel lines 551a, 551b, as well as to the first
and the second 2x1 multiplexers 525a, 525b. The 4x1
multiplexer 526 is also coupled to receive a transparency
indicator signal that indicates whether or not a transparency
(no color) is being sent. The 4x1 multiplexer 526 selects a
color for output based on the value of the color index,
referenced as the ID signal, that references the associated
quantized color for an individual pixel of the encoded image
block 390.

FIG. 6A is a flow diagram illustrating operation of the
decoder system 230 in accordance with the present inven-
tion. For purposes of illustration only, the process for the
decoder system 230 will be described with a single block
encoder 505 having two decoding units, e.g., 530, 540.
Those skilled in the art will recognize that the process is
functionally equivalent for decoder systems having more
than one block decoder 505 and more than one decoder
units, e.g., 533a-/-533a-k.

The process starts 600 with the encoded image decom-
poser 501 receiving 605 the encoded, or compressed, image
data 385 from the encoder system 220, for example, through
the memory 115 or the storage device 120. The encoded
image decomposer 501 decomposes 610 the encoded image
data 385 by forwarding the modified header 385a to the
header converter 508. In addition, the encoded image
decomposer 501 also decomposes 610 the encoded image
data 385 into the individual encoded image blocks 390-
1-390-R.

The header converter 508 converts 612 the header infor-
mation to generate an output header that is forwarded to the
image composer 504. Simultaneously, the one or more block
decoders 505a-505m decodes 615 the pixel colors for each

5 encoded image block 390. It is again noted that each
encoded image block 390 may be decoded 615 sequentially
in one block decoder 505a or multiple encoded image blocks
390-1-390-R may be decoded 615 in parallel in multiple
block decoders 505a-505m, as described above. The process

10 for decoding the encoded image blocks 390 is further
described in FIG. 6B. Each decoded 615 image block is then
composed 620 into a data file with the converted 612 header
information by the image composer 504. The image com-
poser 504 generates the data file as an output 625 that

15 represents the original image 310.
FIG. 6B is a flow diagram illustrating operation of the

block encoder 505 in accordance with the present invention.
Once the process is started 630, each encoded image block
390 is received by the block decoder 505 and the block type

20 for each encoded image block 390 is detected 640.
Specifically, for a preferred embodiment the first and the
second codewords 390a, CWO, CW1, respectively, are
received 635 by the block type detector 520 of the block
decoder 505. As discussed above, comparing the numerical

25 values of CWO and CW1 reveals the block type.
In addition, the first five bits of each codeword 390a, e.g.,

CWO, CW1, that represent the red-channel color are
received by the red-channel 545 of each of the first and the
second decoder units 530, 540, the second 6-bits of each

30 codeword 390a CWO, CW1 that represent the green-channel
color are received by the green-channel of each of the first
and the second decoder units 530, 540, and the last 5-bits of
each codeword 390a CWO, CW1 that represent the blue-
channel color are received by the blue-channel of each of the

35 first and the second decoder units 530, 540.
The block type detector 520 detects 640 the block type for

an encoded image block 390. Specifically, the comparator
522 compares the first and the second codewords 390a,
CWO, CW1, and generates a flag signal to enable the first

40 2x1 multiplexers 525a or the second 2x1 multiplexers 525b
which, in turn, selects 645 either the first decoding unit 530
or the second decoding unit 540, respectively. The process
then calculates 650 the quantized color levels for the
decoder units 530, 540.

45	 To calculate 650 the quantized color levels, the first
decoding unit 530 calculates the four colors associated with
the two codewords 390a, CWO, CW1, using the following
relationship:

CWO=first codeword=first color;
50 CW1=second codeword=second color;

CW2=third color=(2/3)CWO+(1/3)CW1;
CW3=fourth color=('/3)CWO-F(2/3)CW1.
In one embodiment, the first decoder unit 530 may

55 estimate the above equations for CW2 and CW3, for
example, as follows:

CW245/8) CW043/8) CW1 ; and
CW343/8) CW045/8) CW1 .
The red-color blocks 550a, 550b serve as a one-bit shift

60 register to get (2)CWO or (Y)CW1 and each full adder
552a, 552b, 554a, 554b also serves to shift the signal left by
1-bit. Thus, the signal from the first full adders 552a, 552b
is (1/4)CWO or (1/4)CW1, respectively, because of a two-bit
overall shift and the signal from the second full adders 554a,

65 554b is (1/8)CW0 or (1/8)CW1, respectively, because of a
three-bit overall shift. These values allow for the above
approximations for the color signals.

US 6,658,146 B1
1615

The second decoder unit 540 calculates 650 three colors
associated with the codewords 390a, CWO, CW1, and
includes a fourth signal that indicates a transparency is being
passed. The second decoder unit 540 calculates colors, for
example, as:

CWO=first codeword=first color;
CW1=second codeword=second color;
CW3=third color=(1/2)CW0+(1/2)CW1; and
T=Tr ansp arency.
In one embodiment the second decoder unit 540 has no

approximation because the signals received from the red-
color blocks 550a, 550b is shifted left by one-bit so that the
color is already calculated to (2)CWO and (1/2)CW1, respec-
tively.

After the quantized color levels for the selected 645
decoder unit 530, 540 have been calculated 650, each bitmap
value for each pixel is read 655 from the encoded image data
block 385. As each index is read 655 it is mapped 660 to one
of the four calculated colors if the first decoder unit 530 is
selected 645 or one of the three colors and transparency if
the second decoder unit 540 is selected. The mapped 660
colors are selected by the 4x1 multiplexer 526 based on the
value of the ID signal from the bitmap 390b of the encoded
image block 390. As stated previously, a similar process
occurs for selection of colors in the green-channel and the
blue-channel.

As the colors are output from the red-, green-, and
blue-channels, the output is received by the image composer
504. The image composer 504 orders the output from the
block encoders 505 in the same order as the original image
310 was decomposed. The resulting 665 image that is output
from the image decoder system 230 is the original image that
is forwarded to an output source 240, e.g., a computer
screen, which displays that image.

The system and method of the present invention benefi-
cially allows for random access to any desired image block
260 within an image, and any pixel 270 within an image
block 260. FIG. 7A is a block diagram of a subsystem 700
that provides random access to a pixel 270 or an image block
260 in accordance with the present invention.

The random access subsystem 700 includes a block
address computation module 710, a block fetching module
720, and the one or more block decoders 505. The block
address computation module 710 is coupled to receive the
header information 385a of the encoded image data 385. The
block address computation module 710 is also coupled to the
block fetching module 720. The block fetching module 720
is coupled to receive the encoded image block portion
390-1-R of the encoded image data 385. The block fetching
module 720 is also coupled to the block decoders 505.

FIG. 7B is a flow diagram illustrating a process of random
access to a pixel 270 or an image block 260 using the
random access subsystem 700 in accordance with the
present invention. When particular pixels 270 have been
identified for decoding, the process starts 740 with the image
decoder system 230 receiving the encoded image data 385.
The modified header 385a of the encoded image data 385 is
forwarded to the block address computation module 710 and
the encoded image block portion 390-1-R of the encoded
image data 385 is forwarded to the block fetching module
720.

The block address computation module 710 reads the
modified header 385a to compute 745 the address of the
encoded image block portion 390-1-R having the desired
pixels 270. The address computed 745 is dependent upon the
pixel coordinates within an image. Using, the computed 745
address, the block fetching module 720 identifies the

encoded image block 390 of the encoded image block
portion 390-1-R that has the desired pixels 270. Once the
encoded image block 390 having the desired pixels 270 has
been identified, only the identified encoded image block 390

5 is forwarded to the block decoders 505 for processing.
Similar to the process described above in FIG. 6B, the

block decoders 505 compute 755 the quantized color levels
for the identified encoded image blocks 390 having the
desired pixels. After the quantized color levels have been

10 computed 755, the color of the desired pixel is selected 760
and output 765 from the image decoder system 230.

Random access to pixels 270 of an image block 260
advantageously allows for selective decoding of only needed
portions or sections of an image. Random access also allows

is the image to be decoded in any order the data is required. For
example, in three-dimensional texture mapping only por-
tions of the texture may be required and these portions will
generally be required in some non-sequential order. Thus,
the present invention increases processing efficiency and

20 performance when processing only a portion or section of an
image.

The present invention beneficially encodes, or
compresses, the size of an original image 310 from 24-bits
per pixel to an aggregate 4-bits per pixel and then decodes,

25 or decompresses the encoded image data 385 to get a
representation of the original image 310. Further, the
claimed invention uses, for example, two base points or
codewords from which additional colors are derived so that
extra bits are not necessary to identify a pixel 270 color.

30 Moreover, the present invention advantageously accom-
plishes the data compression on an individual block basis
with the same number of bits per block so that the com-
pression rate can remain fixed. Further, because the blocks
are of fixed size with a fixed number of pixels 270, the

35 present invention beneficially allows for random access to
any particular pixel 270 in the block. The present invention
provides for an efficient use of system resources because
entire blocks of data are not retrieved and decoded to display
data corresponding to only a few pixels 270.

40	 In addition, the use of a fixed-rate 64-bit data blocks in the
present invention provides the advantage of having simpli-
fied header information that allows for faster processing of
individual data blocks. Also, a 64-bit data block allows for
data blocks to be processed rapidly, e.g., within one-clock

45 cycle, as the need to wait until a full data string is assembled
is eliminated. Further, the present invention also reduces the
microchip space necessary for a decoder system because the
decoder system only needs to decode each pixel to a set of
colors determined by, e.g., the two codewords.

50	 While particular embodiments and applications of the
present invention have been illustrated and described, it is to
be understood that the invention is not limited to the precise
construction and components disclosed herein and that vari-
ous modifications, changes and variations which will be

55 apparent to those skilled in the art may be made in the
arrangement, operation and details of the method and appa-
ratus of the present invention disclosed herein without
departing from the spirit and scope of the invention as
defined in the appended claims.

60	 What is claimed is:
1. A system for encoding an image, comprising:
an image decomposer, coupled to receive an image, for

breaking the image into one or more image blocks, each
image block having a set of colors;

65	 at least one block encoder for receiving each image block
and for compressing each image block to generate an
encoded image block, wherein each block encoder

US 6,658,146 B1
17 18

includes a color quantizer for receiving each image
block and for generating at least one codeword from
which at least one quantized color is derived, the color
quantizer having a selection module for computing a
set of parameters from the set of colors, the at least one
codeword derived from the set of parameters; and

an encoded image composer for receiving and ordering
the encoded image blocks into a data file.

2. The system of claim 1, further comprising a header
converter, coupled to the image decomposer and the
encoded image composer, for receiving a header from the
image, modifying the header, and outputting the modified
header with the data file.

3. The system of claim 1, wherein each block encoder
comprises:

a bitmap construction module for mapping the colors of
an image block to one of the at least one quantized
colors.

4. The system of claim 3, wherein the color quantizer
further comprises:

a block type module, coupled to receive the image block,
for selecting a block type for the image block; and

a codeword generation module for generating the least
one codeword from the set of parameters generated by
the selection module.

5. A system for decoding a compressed image, compris-
ing:

an encoded image decomposer, coupled to receive
encoded image data file having at least one compressed
image block, for breaking the encoded image data file
into individual compressed image blocks, each com-
pressed image block having at least one associated
codeword, each codeword generated by computing a
set of parameters, partitioning the set of parameters into
a plurality of partitions, and computing each codeword
from one of the partitions;

at least one block decoder for decompressing the com-
pressed image blocks into decompressed image blocks;
and

an image composer for ordering the decompressed image
blocks in an output file.

6. The system of claim 5, further comprising a header
converter, coupled to the encoded image decomposer and
the image composer, for receiving a modified header asso-
ciated with the encoded image data file, generating an output
header, and outputting the output header with the output file.

7. The system of claim 6, wherein each block decoder
further comprises:

a block type detector for selecting a block type for each
compressed image block received from the encoded
image decomposer;

at least one decoder unit for decompressing each com-
pressed image block based on the block type selected
by the block type detector; and

an output selector for outputting the image block from the
decoder unit in response to the block type selected by
the block type detector.

8. A method for generating an encoded image of an
original image having a header, comprising:

converting the header to a modified header;
decomposing the original image into image blocks, each

image block having a set of colors;
encoding each image block to generate an encoded image

block for each image block by computing a set of
codewords from the set of colors, computing a set of

computed colors using the set of codewords, and map-
ping each original color to one of the computed colors
or one of the codewords to produce an index for each
original color; and

5	 composing the modified header and each encoded image
block in a file to generate the encoded image.

9. The method of claim 8, wherein computing the set of
codewords further comprises:

selecting a block type for each image block, wherein the
10	 goemetric element is computed using the block type;

partitioning the set of parameters into a plurality of
partitions;

computing a set of codewords for each partition in the
plurality of partitions;

15	 computing an error for each computed set of codewords;
and

outputting the block type and set of codewords producing
the minimum computed error for each computed set of
codewords.

20	 10. A method for generating an original image from an
encoded image including a modified header and at least one
encoded image block, comprising:

receiving the encoded image data;
decomposing the encoded image into the modified header

25	 and the individual encoded image blocks;
reading the modified header to generate an output header;
decoding each individual encoded image block to gener-

ate a decoded image block, each individual encoded
image block having a set of codewords and a set of

30	 indices;
calculating at least one quantized color level for the

encoded image block using the set of codewords;
mapping at least one index from the set of indices to one

of the calculated quantized color levels or to a code-
word from the set of codewords; and

composing the output header and the individual decoded
image blocks to generate an output file of the original
image.

40	
11. A system for processing any identified pixel from an

encoded image data file having header information, includ-
ing at least once codeword computed from a set of
parameters, the set of parameters computed from a set of
colors within an original image block, and an encoded image

45
block portion including at least one encoded image block,
the system comprising:

a block address computation module, coupled to receive
each codeword from the header information, for com-
puting an address of an encoded image block having

50	 the identified pixel;
a block fetching module, coupled to receive the encoded

image block portion and the computed address, for
fetching the encoded image block having the identified
pixel; and

55	 a block decoder, coupled to receive the fetched encoded
image block, for decoding the image block to generate
a quantized color associated with the identified pixel.

12. A method for processing any identified pixel of an
encoded image data file having a header, including at least

60 once codeword computed from a set of parameters, the set
of parameters computed from a set of colors within an
original image block, and an encoded image block portion
including at least one encoded image block, the method
comprising:

65	 computing an address for an encoded image block having
the identified pixel, the address computed from the at
least one codeword for the encoded image block;

3 5

US 6,658,146 B1
19

fetching the encoded image block using the computed
address;

computing quantized color levels for the fetched encoded
image block; and selecting a color of the identified
pixel from the quantized color levels to output.

13. A method of compressing an original image block
having a first set of color points defined within a selected
color space, comprising:

fitting a geometric element to the first set of color points
so that the geometric element includes a second set of
color points having a minimal moment of inertia when
fitted to the center of gravity of the first set of color
points;

computing a set of codewords from the second set of color
points;

computing a set of computed colors using the set of
codewords;

mapping each of the first set of color points to one of the
computed colors or one of the codewords to produce an
index for each of the first set of color points; and

using the indices produced by the mapping each of the
first set of color points and the set of codewords to
represent the first set of color points.

14.The method of claim 13, wherein the set of parameters
defines at least two color points in the selected color space.

15. The method of claim 13, further including generating
an encoded image block having the set of codewords and the
indices produced in mapping the first set of color points.

16. The method of claim 13, wherein mapping further
includes mapping a first set color point to a predefined index,
if the first set color point represents an alpha value.

17. The method of claim 13, wherein mapping further
includes mapping a first set color point to a predefined index,
if the first set color point represents a color key value.

18.A method of compressing an original image having a
set of pixel parameters, each pixel parameter including a
color point parameter defined within an RGB color space,
comprising:

dividing the original image into at least one block of pixel
parameters;

identifying a block type of the at least one block of pixel
parameters;

computing a center of gravity for a set of color point
parameters associated with the block of pixel param-
eters;

20
fitting a geometric element to the set of color point

parameters associated with the block of pixel param-
eters so that the geometric element includes a subset of
color point parameters having a minimal moment of

5	 inertia when fitted to the center of gravity;
computing a set of codewords from the subset of color

point parameters;
computing a set of computed color point parameters using

10 the set of codewords;
mapping each of the pixel parameters within the block of

pixel parameters to one of the computed color point
parameters or to one of the codewords to produce an
index for each of the pixel parameters within the block

15	 of pixel parameters; and
representing the block of pixel parameters by using the set

of codewords, and the block type, and each index
produced by mapping.

20	
19. The method of claim 18, wherein mapping further

includes mapping a pixel parameter within the block of pixel
parameters to a predefined index, if the pixel parameter
represents a transparency identifier.

20. The method of claim 18, wherein mapping further
25 includes mapping a pixel parameter within the block of pixel

parameters to a predefined index, if the pixel parameter
represents an alpha value.

21. The method of claim 18, wherein mapping further
includes mapping a pixel parameter within the block of pixel

30 parameters to a predefined index, if the pixel parameter
represents a color key value.

22. A method of reducing a number of original colors in
an image block to at least three different colors and a bitmap
table, the method comprising:

35	 selecting a geometric element;
fitting the geometric element to the original colors so that

the geometric element includes a set of colors having a
minimal moment of inertia when fitted to the center of
gravity of the original colors;

40	 computing a set of codewords from the set of colors;
computing a set of computed colors using the set of

codewords; and
generating the bitmap table by mapping each original

4 5
	 color to one of the at least three different colors.

Exhibit B

BLOCK TYPE
MODULE

345

COLOR
OUANTIZER

335

CODEWORD
GENERATION
MODULE 360

CURVE SELECTION
MODULE 355

(12) United States Patent
Iourcha et al.

1111111111111110111111111119,111111111111111111111111110111111
(to) Patent No.:	 US 6,683,978 B1
(45) Date of Patent: 	 Jan. 27, 2004

(54)

(75)

(73)

(*)

(21)

(22)

(63)

(51)

(52)

(58)

(56)

FIXED-RATE BLOCK-BASED IMAGE
COMPRESSION WITH INFERRED PIXEL
VALUES

Inventors: Konstantine I. Iourcha, San Jose, CA
(US); Krishna S. Nayak, Stanford, CA
(US); Zhou Hong, San Jose, CA (US)

Assignee: S3 Graphics Co., Ltd., Grand Cayman
(KY)

Notice:	 Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 09/442,114

Filed:	 Nov. 17, 1999

Related U.S. Application Data

Continuation of application No. 09/351,930, filed on Jul. 12,
1999, which is a continuation of application No. 08/942,860,
filed on Oct. 2, 1997, now Pat. No. 5,956,431.

Int. C1.7 	 GO6K 9/00

U.S. Cl. 	 382/166; 382/232; 725/146

Field of Search 	 382/166, 239,
382/253, 232; 345/550; 725/146; 358/462,

1.15; 348/63

References Cited

U.S. PATENT DOCUMENTS

4,821,208 A * 4/1989 Ryan et al. 	 345/550
4,887,151 A	 12/1989 Wataya 	 358/539
5,734,744 A	 3/1998 Wittenstein et al. 	 382/166
5,742,892 A * 4/1998 Chaddha 	 725/146
5,748,904 A	 5/1998 Huang et al. 	 345/544
5,787,192 A	 7/1998 Takaichi et al. 	 382/166
5,822,465 A	 10/1998 Normile et al. 	 382/253
5,956,425 A	 9/1999 Yoshida 	 382/234
5,956,431 A	 9/1999 Iourcha et al. 	 382/253
6,075,619 A	 6/2000 fizuka 	 382/166

FOREIGN PATENT DOCUMENTS

JP
	

405216993	 8/1993 	 GO6F/15/70

OTHER PUBLICATIONS

A. Schilling et al., "Texram: A Smart Memory for Textur-
ing", IEEE Computer Graphics & Applications, May 1996,
16(3), pp. 9-19.
G. Knittel et al., "Hardware and Software for Superior
Texture Performance"In 10, Eurographics Hardware Work-
shop, Maastricht, NL, Aug. 28-29 1995, pp. 1-8.

(List continued on next page.)

Primary Examiner	 Anh Hong Do
(74) Attorney, Agent, or Firm—Carr & Ferrell LLP

(57)	 ABSTRACT

An image processing system includes an image encoder
system and a image decoder system that are coupled
together. The image encoder system includes a block decom-
poser and a block encoder that are coupled together. The
block encoder includes a color quantizer and a bitmap
construction module. The block decomposer breaks an origi-
nal image into blocks. Each block is then processed by the
block encoder. Specifically, the color quantizer selects some
number of base points, or codewords, that serve as reference
pixel values, such as colors, from which quantized pixel
values are derived. The bitmap construction module then
maps each pixel colors to one of the derived quantized
colors. The codewords and bitmap are output as encoded
image blocks. The decoder system includes a block decoder.
The block decoder includes a block type detector, one or
more decoder units, and an output selector. Using the
codewords of the encoded data blocks, the comparator and
the decoder units determine the quantized colors for the
encoded image block and map each pixel to one of the
quantized colors. The output selector outputs the appropriate
color, which is ordered in an image composer with the other
decoded blocks to output an image representative of the
original image. A method for encoding an original image and
for decoding the encoded image to generate a representation
of the original image is also disclosed.

29 Claims, 16 Drawing Sheets

BITMAP
CONSTRUCTION

MODULE 340	 1

318

US 6,683,978 B1
Page 2

OTHER PUBLICATIONS

G. Campbell et al., "Two Bit/Pixel Full Color Encoding",
Computer Graphics (Proc. SIGGRAPH '86), Aug. 18-22,
1986, vol. 20, No. 4, Dallas, TX, pp. 215-219.
Yang, Ching Yung et al., "Hybrid Adaptive Block Truncation
Coding for Image Compression," Optical Engineering, Soc.
of Photo-Optical Instrumentation Engineers, Apr. 1,1997,
p. 1021-1027, vol. 36, No. 4, Bellingham, WA, USA.
Kugler, A. "High-Performance Texture Decompression
Hardware," Visual Computer, Springer-Verlag, 1997, p.
51-63, vol. 13, No. 2, Berlin, Germany.
Nasiopoulos, Panos, et al., "Adaptive Compression Cod-
ing," IEEE Transactions on Communications, IEEE Inc.,
Aug. 1,1991, p. 1245-1254, vol. 39, No. 8, New York, USA.
Knittel, G. et al., "Hardware for Superior Texture Perfor-
mance," Eurographics Workshop on Graphics Hardware,
Jul. 28,1995, p 33-40.
Campbell, G. et al., "Two Bit/Pixel Full Color Encoding,"
Computer Graphics, Aug. 1986, p. 215-219, vol. 20, No. 4,
New York, New York, USA.
Delp E. J. et al., "Image Compression Using Block Trun-
cation Coding," IEEE Transactions on Communcations,
Sep. 1979, p. 1335-1342, vol. COM-27, No. 9, IEEE Inc.,
New York, USA.

Yang, Ching Yung et al., "Use of Radius Weighted Mean to
Cluster Two-Class Data," Electronics Letters, May 12,
1994, p. 757-759, vol. 30, No. 10, IEE Stevenage, Great
Britain.

Russ, J. C., "Optimal Grey Scale Images From Multiplane
Color Images," Journal of Computer-Assisted Microscopy,
Dec. 1995, p. 221-223, vol. 7, No. 4, Plenum, USA.

Knittel, G., et al., "Hardware and Software for Superior
Texture Performance," Eurographics Hardware Wokshop
'95, Aug. 28-29,1995, pp. 1-8, Masstricht, NL.

Schilling, A., et al., "Texram: A Smart Memory for Textur-
ing," IEEE Computer Graphics & Applications, May 1996,
pp. 9-19, vol. 16, No. 3.

Feng et al., "A Dynamic Address Vector Quantization Algo-
rithm Based on Inter-Block and Inter-Color Correction for
Color Image Coding," IEEE International conference on
Acoustics, Speech, and Signal Processing, May 1989, pp.
1755-1758, vol. 3.

* cited by examiner

PROCESSING
UNIT
110

INPUT DEVICE
125

U.S. Patent	 Jan. 27, 2004 Sheet 1 of 16	 US 6,683,978 B1

145

MEMORY
115

STORAGE
DEVICE

120

GRAPHICS
SUBSYSTEM

135

OUTPUT
DEVICE

130

FIG. 1 105

U.S. Patent	 Jan. 27, 2004 Sheet 2 of 16	 US 6,683,978 B1

205

FIG. 2A

W	 •

270 H

260 FIG. 2B

IMAGE
SOURCE

210

*
MEMORY 115 /

STORAGE DEVICE
120

OUTPUT
240

v

IMAGE
ENCODER

220

IMAGE
DECODER

230

4
IMAGE	 315

T

r% eY/E.

BLOCK
ENCODER

310

DECsOMPOSER

BLOCif
HEADER

CONVERTER

318n

318a

IMAGE

319

COMPOSER
ENCODED IMAGE 	

U.S. Patent	 Jan. 27, 2004 Sheet 3 of 16	 US 6,683,978 B1

310
IMAGE

_/315IMAGE
DECOMPOSER

318 321BLOCK HEADER
ENCODER CONVERTER

ENCODED IMAGE r 319

OUTPUT
	 (320

COMPOSER

220 FIG. 3A

4

OUTPUT
	 320

220

321

FIG. 3B

U.S. Patent	 Jan. 27, 2004 Sheet 4 of 16	 US 6,683,978 B1

COLOR
QUANTIZER

335

BLOCK TYPE
MODULE

345

CURVE SELECTION
MODULE 355

BITMAP
CONSTRUCTION

MODULE 340

CODEWORD
GENERATION
MODULE 360

FIG. 3C
	 318

IMAGE DATAORIG.
HEADER

,3800
f	 r 380b

U.S. Patent	 Jan. 27, 2004	 Sheet 5 of 16
	

US 6,683,978 B1

380
FIG. 3D

3850 I-•--- 390-1 — 390—R 	i
MOD.

HEADER 390 • • •

385
FIG. 3E

390o1,J 390b1 C)

CW0 • • • WJ

I

1

I I
BITMAP

I

• • •

390
FIG. 3F

410

Decompose
Image Into

Blocks

Ilv

Encode
Each Block

I
Compose

Header and
Encoded
Blocks

416

Result
FIG. 4A	 FIG. 4B

Start

' \ 418

408

420

422

424

Start

4

Input
Image

4'
406

412

4	

414
Write

Header and
Encoded
Blocks

Convert
Header Info

Result

Compute
Codewords

Quantize Colors
for Image Block

U.S. Patent	 Jan. 27, 2004
	

Sheet 6 of 16	 US 6,683,978 B1

438

STORE ERROR

440

STORE BLOCK
TYPE AND

CODEWORDS

YES
s 446

OUTPUT
BLOCK TYPE &
CODEWORDS
PRODUCING
MIN ERROR

U.S. Patent	 Jan. 27, 2004 Sheet 7 of 16	 US 6,683,978 B1

START) 426

428

SELECT
BLOCK TYPE

COMPUTE
OPTIMAL
ANALOG
CURVE

430

432

SELECT
PARTITION

434

NO—

COMPUTE
OPTIMAL

CODEWORDS
FOR

PARTITION

FIG. 4C

YES

	 447

C RESULT

436

COMPUTE
ERROR

1	

NO

C START) 448	C START) 456

COMPUTE
GRAVITY
CENTER

IDENTIFY
VECTOR IN

COLORSPACE
TO MINIMIZE

FIRST
MOMENT

(RESULT 454

460
ORDER

COLORS
ALONG

ANALOG
CURVE

SEARCH FOR 462
OPTIMAL

PARTITION

PROJECT
COLORS ONTO

CURVE

458

C END) 464

450

452

U.S. Patent	 Jan. 27, 2004
	

Sheet 8 of 16	 US 6,683,978 B1

FIG. 4D	 FIG. 4E

OUTPUT 240

U.S. Patent	 Jan. 27, 2004
	

Sheet 9 of 16	 US 6,683,978 B1

HEADER
CONVERTER

508

ENCODED IMAGE
DATA 385 FROM

OUTPUT 320

ENCODED IMAGE
DECOMPOSER

501

• • •

BLC
505m E

BLOCK DECODER
505a

IMAGE COMPOSER
504

FIG. 5A

U.S. Patent	 Jan. 27, 2004 Sheet 10 of 16	 US 6,683,978 B1

BLOCK TYPE
DETECTOR

520

n • •

FIRST	 SECOND
DECODER DECODER

UNIT	 UNIT
533a-1	 533a-2

kth
DECODER

UNIT
533a-k

OUTPUT SELECTOR
523

505

FIG. 5B

U.S. Patent	 Jan. 27, 2004 Sheet 11 of 16	 US 6,683,978 B1

BLOCK TYPE
DETECTOR

520

FIRST
DECODER

UNIT
(4-COLOR)

530

SECOND
DECODER UNIT

(3-COLOR +
TRANSPARENCY)

540

OUTPUT SELECTOR
523

505

4	

FIG. 5C

U.S. Patent	 Jan. 27, 2004 Sheet 12 of 16	 US 6,683,978 B1

1I	

550a

color 0 R
(or G, B)

550b

codeword
0(16)

codeword
1(16)

ID ID ID ID
(2) (2) (2) (2)
ID ID ID ID
(2) (2) (2) (2)
ID ID ID ID
(2) (2) (2) (2)
ID ID ID ID
(2) (2) (2) (2)

color 1 R
(or G, B)

390 --\

544,
546 --	 5510 --- 	 551b --L.

R(or G, B)	 R(or G, B)
channel of color 0	 channel of color 1

	t

390a

3906

L

546	 520

1	 i f
552a-1

t 554a

full odder _J

+

full odder
+

,i
full odder

+

	 554bd full odder --)
+

CLA odder
+

color 0 color 1
(16)	 (16)

1 522 1

comparator
> (16 bits)

y
558

1
odder

+

4
CLA adder

+

.556a

5526

j- 5566

2X1 MUX

525b
2X1 MUX

525a

4X1 MUX

texel color
R(or G,B) channel

t
FIG. 5D

ID

526

U.S. Patent	 Jan. 27, 2004
	

Sheet 13 of 16	 US 6,683,978 B1

I	 START) 600

RECEIVE
ENCODED

IMAGE DATA

DECOMPOSE
ENCODED

IMAGE DATA

605

610

615

620

DECODE
IMAGE

BLOCKS

•
COMPOSE

HEADER AND
DECODED
BLOCKS

612

CONVERT
HEADER

INFORMATION

C OUTPUT) 625 FIG. 6A

U.S. Patent	 Jan. 27, 2004
	

Sheet 14 of 16	 US 6,683,978 B1

(START
s\ 630

650v

635

RECEIVE
ENCODED

IMAGE BLOCK

640

DETECT
BLOCK TYPE

645

SELECT
DECODER

UNIT

CALCULATE
QUANTIZED

COLOR
LEVELS

655

READ BITMAP
VALUE FOR
EACH PIXEL

660

MAP EACH
PIXEL TO

CALCULATED
COLOR

665

(RESULT)

FIG. 6B

U.S. Patent
	

Jan. 27, 2004
	

Sheet 15 of 16	 US 6,683,978 B1

ENCODED IMAGE
DATA
385

1
HEADER INFO

385a

vt
ENCODED

IMAGE DATA
BLOCK PORTION

385b

BLOCK ADDRESS
COMPUTATION

MODULE
710

BLOCK FETCHING
MODULE

720

BLOCK DECODER
505

700

FIG. 7A

U.S. Patent	 Jan. 27, 2004 Sheet 16 of 16	 US 6,683,978 B1

START
	 740

COMPUTE
ENCODED

BLOCK
ADDRESS

FETCH
ENCODED

BLOCK

COMPUTE
QUANTIZED

COLOR
LEVELS

SELECT
COLOR OF

PIXEL

745

750

755

760

C OUTPUT
765

FIG. 7B

shifts in areas of the image. Neither artifact can be removed
with subsequent low-pass filtering.

A fourth problem with DCT and JPEG-type compression
is that such a decompressor is complex and has a significant

5 associated hardware cost. Further, the high latency of the
decompressor results in a large additional hardware cost for
buffering throughout the system to compensate for the
latency. Finally, a fifth problem with DCT and JPEG-type
compressors is that it is not clear whether a color keyed

10 image can be compressed with such a method and system.
Block truncation coding ("BTC") and color cell compres-

sion ("CCC") use a local one-bit quantizer on 4x4 pixel
blocks. The compressed data for such a block consists of
only two colors and 16-bits that indicate which one of the

15 two colors is assigned to each of the 16 pixels. Decoding a
BTC/CCC image consists of using a multiplexer with a
look-up table so that once a 16-texel-block (32-bits) is
retrieved from memory, the individual pixels are decoded by
looking up the two possible colors for that block and

20 selecting the color according to the associated bit from the
16 decision bits.

The BTC/CCC methods quantize each block to just two
color levels resulting in significant image degradation.
Further, a two-bit variation of CCC stores the two colors as
eight-bit indices into a 256-entry color lookup table. Thus,
such pixel blocks cannot be decoded without fetching addi-
tional information that can consume additional memory
bandwidth.

30	
The BTC/CCC methods and systems can use a three-bit

per pixel scheme which store the two colors as 16-bit values
(not indices into a table) resulting in pixel blocks of six
bytes. Fetching such units, however, decreases system per-
formance because of additional overhead due to memory

35
misalignment. Another problem with BTC/CCC is that when
it is used to compress images that use color keying to
indicate transparent pixels, there will be a high degradation
of image quality.

Therefore, there is a need for a method and system that
40 maximizes the accuracy of compressed images while mini-

mizing storage, memory bandwidth requirements, and
decoding hardware complexities, while also compressing
image data blocks into convenient sizes to maintain align-
ment for random access to any one or more pixels.

2 5

US 6,683,978 B1
21

FIXED-RATE BLOCK-BASED IMAGE
COMPRESSION WITH INFERRED PIXEL

VALUES

This application is a continuation of application Ser. No.
09/351,930 filed Jul. 12, 1999, which is a continuation of
application Ser. No. 08/942,860 filed Oct. 2, 1997, now U.S.
Pat. No. 5,956,431 issued Sep. 21, 1999.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to image processing

systems, and more specifically, to three-dimensional render-
ing systems using fixed-rate image compression for textures.

2. Description of the Related Art
The art of generating images, such as realistic or animated

graphics on a computer is known. To generate such images
requires tremendous memory bandwidth and processing
power on a graphics subsystem. To reduce the bandwidth
and processing power requirements, various compression
methods and systems were developed. These methods and
systems included Entropy or lossless encoders, discrete
cosine transform or JPEG type compressors, block trunca-
tion coding, color cell compression, and others. Each of
these methods and systems, however, have numerous draw-
backs.

Entropy or lossless encoders include Lempel-Ziv encod-
ers and are used for many different purposes. Entropy coding
relies on predictability. For data compression using Entropy
encoders, a few bits are used to encode the most commonly
occurring symbols. In stationary systems where the prob-
abilities are fixed, Entropy coding provides a lower bound
for the compression than can be achieved with a given
alphabet of symbols. A problem with Entropy coding is that
it does not allow random access to any given symbol. The
part of the compressed data preceding a symbol of interest
must be first fetched and decompressed to decode the
symbol which takes considerable processing time and
resources as well as decreasing memory throughput.
Another problem with existing Entropy methods and sys-
tems is that they do not provide any guaranteed compression
factor which makes this type of encoding scheme imprac-
tical where the memory size is fixed.

Discrete Cosine Transform ("DCT") or JPEG-type 45
compressors, allow users to select a level of image quality.
With DCT, uncorrelated coefficients are produced so that
each coefficient can be treated independently without loss of
compression efficiency. The DCT coefficients can be quan-
tized using visually-weighted quantization values which
selectively discard the least important information.

DCT, however, suffers from a number of shortcomings.
One problem with DCT and JPEG-type compressors is that
they require usually bigger blocks of pixels, typically 8x8 or
16x16 pixels, as a minimally accessible unit in order to
obtain a reasonable compression factor and quality. Access
to a very small area, or even a single pixel involves fetching
a large quantity of compressed data, thus requiring increased
processor power and memory bandwidth. A second problem
with DCT and JPEG-type compressors is that the compres-
sion factor is variable, therefore requiring a complicated
memory management system that, in turn, requires greater
processor resources. A third problem with DCT and JPEG-
type compression is that using a large compression factor
significantly degrades image quality. For example, the image
may be considerably distorted with a form of a ringing
around the edges in the image as well as noticeable color

SUMMARY OF THE INVENTION

An image processing system includes an image encoder
system and an image decoder system that are coupled
together. The image encoder system includes a block decom-

so poser and a block encoder that are coupled together. The
block encoder includes a color quantizer and a bitmap
construction module. The block decomposer breaks an origi-
nal image into image blocks, each having a plurality of pixel
values (e.g. colors) or equivalent color points. Each image

55 block is then processed by the block encoder. Specifically,
the color quantizer computes some number of base points, or
codewords, that serve as reference pixel values, such as
colors, from which computed or quantized pixel values are
derived. The bitmap construction module then maps at least

60 one pixel value in the image block to one of the computed
or quantized colors or one of the codewords. The codewords
and bitmap are output as encoded image blocks.

The decoder system includes a block decoder having one
or more decoder units and an output selector. The block

65 decoder may also include a block type detector for deter-
mining the block type of an image block. The block type
determines the number of computed colors to use for map-

FIG. 1 is a block diagram of a data processing system in
accordance with the present invention;

FIG. 2A is a block diagram of an image processing system
in accordance with the present invention; 	 35

FIG. 2B is a graphical representation of an image block in
accordance with the present invention;

FIG. 3A is a block diagram of a first embodiment an
image encoder system in accordance with the present inven-
tion; 40

FIG. 3B is a block diagram of a second embodiment of an
image encoder system in accordance with the present inven-
tion;

FIG. 3C is a block diagram of an image block encoder in 45
accordance with the present invention;

FIG. 3D is a data sequence diagram of an original image
in accordance with the present invention;

FIG. 3E is a data sequence diagram of encoded image data
of the original image output from the image encoder system so
in accordance with the present invention;

FIG. 3F is a data sequence diagram of an encoded image
block from the image block encoder in accordance with the
present invention;

FIGS. 4A-4E are flow diagrams illustrating an encoding
process in accordance with the present invention;

FIG. 5A is a block diagram of an image decoder system
in accordance with the present invention;

FIG. 5B is a block diagram of a first embodiment of a
block decoder in accordance with the present invention;

FIG. 5C is a block diagram of a second embodiment of a
block decoder in accordance with the present invention;

FIG. 5D is a logic diagram illustrating a first embodiment
of a decoder unit in accordance with the present invention;

FIGS. 6A-6B are flow diagrams illustrating a decoding
process in accordance with the present invention;

55

60

65

US 6,683,978 B1

30

3
ping each pixel color from an image block. Using the
codewords of the encoded data blocks, the comparator and
the decoder units determine the computed colors for the
encoded image block and map each pixel to one of the
computed colors. The output selector outputs the appropriate
color, which is ordered in an image composer with the other
decoded blocks to output an image representative of the
original image.

The present invention also includes a method of com-
pressing an original image block having a set of original
colors. The method includes: computing a set of codewords
from the set of original colors; computing a set of computed
colors using the set of codewords; and mapping each origi-
nal color to one of the computed colors or one of the
codewords to produce an index for each original color.

The compressed or encoded image block, which has a first
set of indices and a set of codewords, where a set is equal
to or greater than one, is decoded by: computing at least one
computed color using the set of codewords; and mapping an
index within the first set of indices to one of the computed
colors or one of the codewords.

Those of ordinary skill in the art will readily recognize
that the present invention may be practiced using any
general purpose computer system, such as the computer
system described below, or any "hardwired" device specifi-
cally designed to perform the method, such as but not
limited to devices implemented using ASIC or FPGA tech-
nology and the like.

BRIEF DESCRIPTION OF THE DRAWINGS

4
FIG. 7A is a block diagram of a subsystem for random

access to a pixel or an image block in accordance with the
present invention; and

FIG. 7B is a flow diagram illustrating random access to a
5 pixel or an image block in accordance with the present

invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

FIG. 1 is a block diagram of a data processing system 105
constructed in accordance with the present invention. The
data processing system 105 includes a processing unit 110,
a memory 115, a storage device 120, an input device 125, an
output device 130, and a graphics subsystem 135. In
addition, the data processing system 105 includes a data bus
145 that couples each of the other components 110, 115, 120,
125, 130, 135 of the data processing system 105.

The data bus 145 is a conventional data bus and while
shown as a single line it may be a combination of a processor
bus, a PCI bus, a graphical bus, and an ISA bus. The
processing unit 110 is a conventional processing unit such as
the Intel Pentium processor, Sun SPARC processor, or
Motorola PowerPC processor, for example. The processing

25
unit 110 processes data within the data processing system
105. The memory 115, the storage device 120, the input
device 125, and the output device 130 are also conventional
components as recognized by those skilled in the art. The
memory 115 and storage device 120 store data within the
data processing system 105. The input device 125 inputs
data into the system while the output device 130 receives
data from the data processing system 105.

FIG. 2A is a block diagram of an image processing system
205 constructed in accordance with the present invention. In
one embodiment, the image processing system 205 runs
within the data processing system 105. The image process-
ing system 205 includes an image encoder system 220 and
an image decoder system 230. The image processing system
205 may also include a unit for producing an image source
210 from which images are received, and an output 240 to
which processed images are forwarded for storage or further
processing. The image encoder system 220 is coupled to
receive an image from the image source 210. The image
decoder system 230 is coupled to output the image produced
by the image processing system 205. The image encoder
system 220 is coupled to the image decoder system 230
through a data line and may be coupled via a storage device
120 and/or a memory 115, for example.

Within the image encoder system 220, the image is broken
down into individual blocks and processed before being
forwarded to, e.g., the storage device 140, as compressed or
encoded image data. When the encoded image data is ready
for further data processing, the encoded image data is
forwarded to the image decoder system 230. The image
decoder system 230 receives the encoded image data and
decodes it to generate an output that is a representation of the
original image that was received from the image source 210.

FIGS. 3A and 3B are block diagrams illustrating two
separate embodiments of the image encoder system 220 of
the present invention. The image encoder system 220
includes an image decomposer 315, a header converter 321,
one or more block encoders 318 (318a-318n, where n is the
nth encoder, n being any positive integer), and an encoded
image composer 319. The image decomposer 315 is coupled
to receive an original image 310 from a source, such as the
image source 210. The image decomposer 315 is also
coupled to the one or more block encoders 318 and to the

10

15

20

US 6,683,978 B1
65

header converter 321. The header converter 321 is also
coupled to the encoded image composer 319. Each block
encoder 318 is also coupled to the encoded image composer
319. The encoded image composer 319 is coupled to the
output 320.

The image decomposer 315 receives the original image
310 and forwards information from a header of the original
image 310 to the header converter 321. The header converter
321 modifies the original header to generate a modified
header, as further described below. The image decomposer
315 also breaks, or decomposes, the original image 310 into
R number of image blocks, where R is some integer value.
The number of image blocks an original image 310 is broken
into may depend on the number of image pixels. For
example, in a preferred embodiment an image 310 com-
prised of A image pixels by B image pixels will typically be
(A/4)*(B/4) blocks, where A and B are integer values. For
example, where an image is 256 pixels by 256 pixels, there
will be 64x64 blocks. In other words, the image is decom-
posed such that each image block is 4 pixels by 4 pixels (16
pixels). Those skilled in the art will recognize that the
number of pixels or the image block size may be varied, for
example mxn pixels, where m and n are positive integer
values.

Briefly turning to FIG. 2B, there is illustrated an example
of a single image block 260 in accordance with the present
invention. The image block 260 is comprised of pixels 270.
The image block 260 may be defined as an image region W
pixels 270 in width by H pixels 270 in height, where W and
H are integer values. In a preferred embodiment, the image
block 260 is comprised of W=4 pixels 270 by H=4 pixels
270 (4x4).

Turning back to FIGS. 3A and 3B, each block encoder
318 receives an image block 260 from the image decom-
poser 315. Each block encoder 318 encodes or compresses
each image block 260 that it receives to generate an encoded
or compressed image block. Each encoded image block is
received by the encoded image composer 319 which orders
the encoded blocks in a data file. The data file from the
encoded image composer 319 is concatenated with a modi-
fied header from the header converter 321 to generate an
encoded image data file that is forwarded to the output 320.
Further, it is noted that having more than one block encoder
318a-318n allows for encoding multiple image blocks
simultaneously, one image block per block encoder
318a-318n, within the image encoder system 220 to
increase image processing efficiency and performance.

The modified header and the encoded image blocks
together form the encoded image data that represents the
original image 310. The function of each element of the
image encoder system 220, including the block encoder 318,
will be further described below with respect to FIGS.
4A-4E.

The original image 310 may be in any one of a variety of
formats including red-green-blue ("RGB"), YUV 420, YUV
422, or a proprietary color space. It may be useful in some
cases to convert to a different color space before encoding
the original image 310. It is noted that in one embodiment
of the present invention, each image block 260 is a 4x4 set
of pixels where each pixel 270 is 24-bits in size. For each
pixel 270 there are 8-bits for a Red(R)-channel, 8-bits for a
Green(G)-channel, and 8-bits for a Blue(B)-channel in a
red-green-blue ("RGB") implementation color space.
Further, each encoded image block is also a 4x4 set of
pixels, but, each pixel is only 2-bits in size and has an
aggregate size of 4-bits as will be further described below.

FIG. 3C is a block diagram illustrating a block encoder
318 of the present invention in greater detail. The block
encoder 318 includes a color quantizer 335 and a bitmap
construction module 340. The color quantizer 335 is coupled

5 to the bitmap construction module 340. Further, the color
quantizer 335 further emphasizes a block type module 345,
a selection module 355, and a codeword generation module
360. The block type module 345 is coupled to the selection
module 355. The selection module 355 is coupled to the

10 codeword generation module 360.
Each image block 260 of the decomposed original image

310 is received and initially processed by the color quantizer
335 before being forwarded to the bitmap construction
module 340 for further processing. The bitmap construction

15 module 340 outputs encoded image blocks for the encoded
image composer 319 to order. The bitmap construction
module 340 and the color quantizer 335, including the block
type module 345, the selection module 355, and the code-
word generation module 360, are further discussed below in

20 FIGS. 4A-4E.
Briefly, FIG. 3D is a diagram of a data sequence or string

380 representing the original image 310 that is received by
the block decomposer 315. The data string 380 of the
original image 310 includes an a-bit header 380a and a b-bit

25 image data 380b, where a and b are integer values. The
header 380a may include information such as the pixel
width of the image 310, the pixel height of the image 310,
and the format of the image 310, e.g., the number of bits to
the pixel in RGB or YUV format, for example, as well as

30 other information. The image data is the data 380b repre-
senting the original image 310 itself.

FIG. 3E is a diagram of a data sequence or string 385
representing encoded image data 385 that is generated and
output 320 by the image encoder system 220. The data string

35
for the encoded image data 385 includes a modified header
portion 385a and an encoded image block portion 390-
1-390-R. The modified header portion 385a is generated by
the header converter 321 from the original header 380a for

40
the original image 310. The modified header generated by
the header converter 321 includes information about file
type, a number of bits per pixel of the original image 310,
addressing into the original image 310, other miscellaneous
encoding parameters, as well as the width and height infor-

5
mation indicating the size of that original image 310. The
encoded image block portion 390-1-R includes the encoded
image blocks 390-1-390-R from the block encoders 318,
where R is an integer value that is the number of blocks
resulting from the decomposed original image 310.

50 FIG. 3F is a diagram of a data sequence or string 390
representing an encoded image block in accordance with the
present invention. It is understood that the data string 390
representing the encoded image block may be similar to any
one of the encoded image blocks 390-1-390-R shown in the

55 encoded image data string 385.
The data string 390 of the encoded image block includes

a codeword section 390a which includes J codewords,
where J is an integer value, and a bitmap section 390b. The
codeword section 390a includes J codewords 390a that are

60 used to compute the colors indexed by the bitmap 390b. A
codeword is a n-bit data string, where n is an integer value,
that identifies a pixel property, for example a color compo-
nent. In a preferred embodiment, there are two 16-bit
codewords 390a, CWO, CW1 (J=2). The bitmap is a Q-bit

65 data portion and is further discussed below in FIG. 4B.
Further, in a preferred embodiment, each encoded image

block is 64-bits, which includes two 16-bit codewords and

4

US 6,683,978 B1
87

a 32-bit (4x4x2 bit) bitmap 395. Encoding the image block
260 as described provides greater system flexibility and
increased data processing efficiency as will be further dis-
cussed below.

FIGS. 4A-4E describe the operation of the image encoder
system 220. FIG. 4A describes the general operation of the
image encoder system 220. At the start 402 of operation,
data string 380 of the original image 310, that includes the
a-bit header 380a and the b-bit image data 380b, is input 404
into the block decomposer 315 from the image source 210.
The block decomposer 315 decomposes 406 the original
image 310 to extract the a-bit header 380a and it to the
header converter 321. The block decomposer also 315
decomposes, 406 the original image 310 into image blocks.
Each image block 260 is independently compressed, or
encoded, 410 in the one or more block encoders 318.

The header converter 321 converts 408 the a-bit header to
generate a modified header 385a. The modified header 385a
is forwarded to the encoded image composer 319. Simulta-
neous with the header converter 321 converting 408 the a-bit
header, each image block is encoded 410 by the one or more
image encoders 318a-318n to generate the encoded image
blocks 390-1-390-R. Again, it is noted that each image
block 260 may be processed sequentially in one block
encoder 318a or multiple image blocks 260 may be pro-
cessed in parallel in multiple block encoders 318a-318n.

The encoded image blocks 390 are output from the block
encoders 318 and are placed into a predefined order by the
encoded image composer 319. In a preferred embodiment,
the encoded image blocks 390 are ordered in a file from left
to right and top to bottom in the same. order in which they
were broken down by the block decomposer 315. The image
encoder system 220 continues by composing 412 the modi-
fied header information 385a from the header converter 321
and the encoded image blocks 390. Specifically, the modi-
fied header 385a and the ordered encoded image blocks 390
are concatenated to generate the encoded image data file
385. The encoded image data file 385 is written 414 as
encoded output 320 to the memory 115, the storage device
120, or the output device 130, for example.

FIG. 4B shows the encoding process 410 for the encoder
system 220 described above in FIG. 2. At the start 418 of
operation, codewords are computed 420. As discussed above
in FIG. 3F, in a preferred embodiment there are two code-
words 390a, CWO, CW1. The process for computed code-
words is further described below in FIG. 4C.

Once the codewords are computed 420 pixel values or
properties, such as colors, for the image block 260 are
computed or quantized 422. Specifically, the codewords
390a provide points in a pixel space from which M quan-
tized pixel values may be inferred, where M is an integer
value. The M quantized pixel values are a limited subset of
pixels in a pixel space that are used to represent the current
image block. The process for quantizing pixel values, and
more specifically colors, will be described below in FIGS.
4D and 4E. Further, it is noted that the embodiments will
now be described with respect to colors of a pixel value
although one skilled in the art will recognize that in general
any pixel value may be used with respect to the present
invention.

In a preferred embodiment, each pixel is encoded with
two bits of data which can index one of M quantized colors
(M=4). Further, in a preferred embodiment the four quan-
tized colors are derived from the two codewords 390a where
two colors are the codewords themselves and the other two
colors are inferred from the codewords, as will be described

below. It is also possible to use the codewords 390a so that
there is one index to indicate a transparent color and three
indices to indicate colors, of which one color is inferred.

In a preferred embodiment, the bitmap 390b is a 32-bit
5 data string.

The bitmap 390b and codewords 390a are output 424 as
a 64-bit data string representing an encoded image block
390. Specifically, the encoded image block 390 includes the
two 16-bit codewords 390a (n=16) and a 32-bit bitmap

10 390b. Each codeword 390a CWO, CW1 that is a 16-bit data
string includes a 5-bit red-channel, 6-bit green-channel, and
5-bit blue-channel.

Each of the encoded image blocks 390 is placed together
390a1-390aR, and concatenated with header information
385a derived from the original header 380a of the original
image 310. The resulting 424 output is the encoded image
data 385 representing the original image 310.

FIG. 4C describes the process for computing the code-

20
words for the image blocks 260 in more detail. At the start
426 of the process, the color quantizer 335 uses the block
type module 345 to select 428 the first block type for the
image block 260 that is being processed. For example, one
block type selected 428 may be a four-color and another

25
block type selected 428 may be a three-color plus
transparency, where the colors within the particular block
type have equidistant spacing in a color space.

Those of ordinary skill in the art will readily recognize
that selecting a block type for each image is not intended to

30 be limiting in any way Instead, the present invention may be
limited to processing image blocks that are of a single block
type. This eliminates the need to distinguish between dif-
ferent block types, such as the three and four color block
types discussed above. Consequently, the block type module

3 5 345 in FIG. 3B and reference number 428 in FIG. 4C are
optional and are not intended to limit the present invention
in any way.

Once the block type is selected 428, the process computes
430 an optimal analog curve for the block type. Computation

40 430 of the optimal analog curve 430 will be further
described below in FIG. 4D. The analog curve is used to
simplify quantizing of the colors in the image block. After
computing 430 the optimal analog curve, the process selects
432 a partition of the points along the analog curve. A

45 partition may be defined as a grouping of indices {1 .. .
(WxH)} into M nonintersecting sets. In a preferred
embodiment, the indices (1 . . . 16) are divided into three or
four groups, or clusters, (M=3 or 4) depending on the block
type.

so	 Once a partition is selected 432, the optimal codewords
for that particular partition are computed 434. Computation
434 of the optimal codewords is further described below in
FIG. 4E. In addition to computing 434 the codewords, an
error value (squared error as describe below) for the code-

55 words is also computed 436. Computation 436 of the error
values is further described below with respect to FIG. 4E
also. If the computed 436 error value is the first error value
it is stored. Otherwise, the computed 436 error value is
stored 438 only if it is less than the previously stored error

60 value. For each stored 438 error value, the corresponding
block type and codewords are also stored 440. It is noted that
the process seeks to find the block type and codewords that
minimize the error function.

The process continues by determining 442 if the all the
65 possible partitions are complete. If there are more partitions

possible, the process selects 432 the next partition and once
again computes 434 the codewords, computes 436 the

1 5

US 6,683,978 B1
9

associated error value, and stores 438 the error value and
stores 440 associated block type and codewords only if the
error value is less than the previously stored error value.

After all the possible partitions are completed, the process
determines 444 whether all the block types have been
selected. If there are more block types, the process selects
428 the next block type. Once again, the process will
compute 430 the optimal analog curve, select 432, 442 all
the possible partitions, for each partition it will compute
434, 436 the codewords and associated error value, and store
438, 440 the error value and associated block type and
codeword only if the error value is less than the previously
stored error value. After the last block type is processed, the
process outputs 446 a result 447 of the block type and
codewords 390a having the minimum error.

In an alternative embodiment, the optimal analog curve
may be computed 430 before searching the block type. That
is, the process may compute 430 the optimal analog curve
before proceeding with selecting 428 the block type, select-
ing 432 the partition, computing 434 the codewords, com-
puting 436 the error, storing 438 the error, and storing 440
the block type and codeword. Computing 430 the optimal
analog curve first is useful if all the, block types use the same
analog curve and color space because the analog curve does
not need to be recomputed for each block type.

FIG. 4D further describes the process of identifying the
optimal analog curve. The selection module 355 starts 448
the process by computing a center of gravity 450 for pixel
270 colors of an image block 260. Computing 450 the center
of gravity includes averaging the pixel 270 colors of the
image block 260. Once the center of gravity is computed
450, the process identifies 452 a vector in color space to
minimize the first moment of the pixel 270 colors of the
image block 260.

Specifically, for identifying 452 the vector the process fits
a straight line to a set of data points, which are the original
pixel 270 colors of the image block 260. A straight line is
chosen passing through the center of gravity of the set of
points such that it minimizes the "moment of inertia" (the
means square error). For example, for three pixel properties,
to compute the direction of the line minimizing the moment
of inertia, tensor inertia, T, is calculated from the individual
colors as follows:

— CoiCli — COiC2i

T =	 +	 -CliC2

— COiC2; — C2iCli C(ji +

where Co, C1, and C2 represent pixel properties, for example
color components in RGB or YUV, relative to a center of
gravity. In a preferred embodiment of an RGB color space,
Co, is the value of red, C 1, is the value of green, and C„ is
the value of blue for each pixel, i, of the image block.
Further, i takes on integer values from 1 to WxH, so that if
W=4 and H=4, i ranges from 1 to 16.

The eigenvector of tensor, T, with the smallest eigenvalue
is calculated using conventional methods known to those
skilled in the art. The eigenvector direction along with the
calculated gravity center, defines the axis that minimizes the
moment of inertia. This axis is used as the optimal analog
curve, which in a preferred embodiment is a straight line.
Those of ordinary skill in the art will readily recognize that
the term optimal analog curve is not limited solely to a
straight line but may include a set of parameters, such as
pixel values or colors, that minimizes the moment of inertia

10
or means square error when fitted to the center of gravity of
the pixel colors in the image block. The set of parameters
may define any geometric element, such as but not limited
to a curve, a plane, a trapezoid, or the like.

5	 FIG. 4E illustrates the process undertaken by the code-
word generation module 360 for selecting 432 the partitions,
computing 434, 436 the codewords for the partitions and the
associated error, and storing 438, 440 the error value, block
type, and codeword if the error value is less than a previ-

10 ously stored error value. The process starts 456 with the
codeword generation module 360 projecting 458 the WxH
color values onto the previously constructed optimal analog
curve. The value of WxH is the size in number of pixels 270
of an image block 260. In a preferred embodiment, where W

15 and H are both 4 pixels, WxH is 16 pixels.
Once the colors are projected 458 onto the analog curve,

the colors are ordered 460 sequentially along that analog
curve based on the position of the color on the one-
dimensional analog curve. After the colors are ordered 460,

20 the codeword generation module 360 searches 462 for
optimal partitions. That is, the codeword generation module
360 takes the WxH colors (one color associated with each
pixel) that are ordered 460 along the analog curve and
partitions, or groups, them into a finite number of clusters

25 with a predefined relative spacing. In a preferred
embodiment, where W=4 and H=4, so that WxH is 16, the
16 colors are placed in three or four clusters (M=3 or 4).

In conducting the search 462 for the optimal partition, the
color selection module 360 finds the best M clusters for the

30 WxH points projected onto the optimal curve, so that the
error associated with the selection is minimized The best M
clusters are determined by minimizing the mean square error
with the constraint that the points associated with each
cluster are spaced to conform to the predefined spacing.

35 In a preferred embodiment, for a block type of four
equidistant colors, the error may be defined as a squared
error along the analog curve, such as

E2=/,/,,,,dxi-P0)2±Ich,,,,,i	 ((2/3)Po+ ((1/2)P 1))2±Ich,,,,,,,(xi-

((1/2)Po+ (2/3)P1))2±Id„t„3 (xi-P1)2

where E is the error for the particular grouping or clustering,
Po and p i are the coded colors, and x, are the projected points
on the optimal analog curve.

In instances where the block type indicates three equidis-
tant colors, the error may be defined as a squared error along
the analog curve, such as

E2=/,,„t„o(x,-p0)2+/,/„t„i(x,-((1/2)P0+(1/2)P1))2+/,/„t„Ax,-P02
50

where, again, E is the error for the particular grouping or
clustering, P o and pi are the coded colors, and x, are the
projected points on the optimal analog curve.

After the resulting 447 optimal codewords 390a are
55 identified, they are forwarded to the bitmap construction

module 340. The bitmap construction module 340 uses the
codewords 390a to identify the M colors that may be
specified or inferred from those codewords 390a. In a
preferred embodiment, the bitmap construction module 340

60 uses the codewords 390a, e.g., CWO, CW1, to identify the
three or four colors that may be specified or inferred from
those codewords 390a.

The bitmap construction module 340 constructs a block
bitmap 390b using the codewords 390a associated with the

65 image block 260. Colors in the image block 260 are mapped
to the closest color associated with one of the quantized
colors specified by, or inferred from, the codewords 390a.

40

45

US 6,683,978 B1
11

The result is a color index, referenced as ID, per pixel in the
block identifying the associated quantized color.

Information indicating the block type is implied by the
codewords 390a and the bitmap 390b. In a preferred
embodiment, the order of the codewords 390a CWO, CW1,
indicate the block type. If a numerical value of CWO is
greater than a numerical value of CW1, the image block is
a four color block. Otherwise, the block is a three color plus
transparency block.

As discussed above, in a preferred embodiment, there are
two image block types. One image block type has four
equidistant colors, while the other image block type has
three equidistant colors with the fourth color index used to
specify that a pixel is transparent. For both image block
types the color index is two bits.

The output of the bitmap construction module 340 is an
encoded image block 390 having the M codewords 390a
plus the bitmap 390b. Each encoded image block 390 is
received by the encoded image composer 319 that, in turn,
orders the encoded image blocks 390 in a file. In a preferred
embodiment, the encoded image blocks 390 are ordered
from left to right and from top to bottom in the same order
as the blocks were broken down by the block decomposer
315. The ordered file having the encoded image blocks 390
is concatenated with the header information 385a that is
derived from the header 380a of the original image 310 to
generate the encoded image data 385 that is the image
encoder system 220 output 320. The image encoder system
220 output 320 may be forwarded to the memory 115, the
storage device 120, or the output device 130, for example.

The image encoder system 220 of the present invention
advantageously reduces the effective data size of an image,
for example, from 24-bits per pixel to 4-bits per pixel.
Further, the present invention beneficially addresses trans-
parency issues by allowing for codewords to be used with a
transparency identifier.

FIG. 5A is a block diagram of an image decoder system
230 in accordance with the present invention. The image
decoder system 230 includes an encoded image decompos-
ing unit 501, a header converter 508, one or more block
decoders 505 (505a-505m, where m is any positive integer
value representing the last block decoder), and an image
composer 504. The encoded image decomposer 501 is
coupled to receive the encoded image data 385 that was
output 320 from the image encoder system 220. The
encoded image decomposer 501 is coupled to the one or
more block decoders 505a-505m. The one or more block
decoders 505a-505m are coupled to the image composer
504 that, in turn, is coupled to the output 240.

The encoded image decomposer 501 receives the encoded
image data 385 and decomposes, or breaks, it into its header
385a and the encoded image blocks 390-1-390-R. The
encoded image decomposer 501 reads the modified header
385a of the encoded image data 385 and forwards the
modified header 385a to the header converter 508. The
encoded image decomposer 501 also decomposes the
encoded image data 385 into the individual encoded image
blocks 390-1-390-R that are forwarded to the one or more
block decoders 505a-505m.

The header converter 508 converts the modified header
385a to an output header. Simultaneously, the encoded
image blocks 390-1-390-R are decompressed or decoded by
the one or more block decoders 505a-505m. It is noted that
the each encoded image block 390 may be processed
sequentially in one block decoder 505a or multiple encoded
image blocks 390-1-390-R may be processed in parallel
with one block decoder 505a-505m for each encoded image

12
block 390-1-390-R. Thus, multiple block decoders
505a-505m allows for parallel processing that increases the
processing performance and efficiency of the image decoder
system 230.

5	 The image composer 504 receives each decoded image
block from the one or more block decoders 505a-505m and
orders them in a file. Further, the image composer 504
receives the converted header from the header converter
508. The converted header and the decoded image blocks are

1 placed together to generate output 240 data representing the
original image 310.

FIG. 5B is a block diagram of a first embodiment of a
block decoder 505 in accordance with the present invention.
Each block decoder 505a-505m includes a block type
detector 520, one or more decoder units, e.g., 533a-1 to

is 533a-k (k is any integer value), and an output selector 523.
The block type detector 520 is coupled to the encoded image
decomposer 501, the output selector 523, and each of the one
or more decoder units, e.g., 533a-1-533a-k. Each of the
decoder units, e.g., 533a-1-533a-k, is coupled to the output

20 selector 523 that, in turn, is coupled to the image composer
504.

The block type detector 520 receives the encoded image
blocks 390 and determines the block type for each encoded
image block 390. Specifically, the block type detector 520

25 passes a selector signal to the output selector 523 that will
be used to select an output corresponding to the block type
detected. The block type is detected based on the codewords
390a. After the block type is determined, the encoded image
blocks 390 are passed to each of the decoder units, e.g.,

30 533a-1-533a-k The decoder units, e.g., 533a-1-533a-k,
decompress or decode each encoded image block 390 to
generate the colors for the particular encoded image block
390. The decoder units, e.g., 533a-1-533a-k, may be
c-channels wide (one channel for each color component (or

35 pixel property) being encoded), where c is any integer value.
Using the selector signal, the block type detector 520
enables the output selector 523 to output the color of the
encoded image block 390 from one of the decoder units, e.g.,
533a -1-533a -k that corresponds with the block type

40 detected by the block type detector 520. Alternatively, using
the selector signal, the appropriate decoder unit 533 could be
selected so the encoded block is processed through that
decoder unit only.

FIG. 5C is a block diagram of a second embodiment of a
45 block decoder 505 in accordance with the present invention.

In a second embodiment, the block decoder 505 includes a
block type detector 520, a first and a second decoder unit
530, 540, and the output selector 523. The block type
detector 520 is coupled to receive the encoded image blocks

so 390 and is coupled to the first and the second decoder units
530, 540 and the output selector 523.

The block type detector 520 receives the encoded image
blocks 390 and determines, by comparing the codewords
390a of the encoded image block 390, the block type for

55 each encoded image block 390. For example, in a preferred
embodiment, the block type is four quantized colors or three
quantized colors and a transparency. Once the block type is
selected and a selector signal is forwarded to the output
selector 523, the encoded image blocks 390 are decoded by

60 the first and the second decoder units 530, 540. The first and
the second decoder units 530, 540 decode the encoded image
block 390 to produce the pixel colors of each image block.
The output selector 523 is enabled by the block type detector
520 to output the colors from the decoder unit 530, 540 that

65 corresponds to the block type selected.
FIG. 5D is a logic diagram illustrating one embodiment of

a decoder unit through a red-channel of the that decoder unit

US 6,683,978 B1
14

65

13
in accordance with the present invention. Specifically, the
decoder unit is similar to the decoder units 530, 540 illus-
trated in FIG. 5C. Moreover, the functionality of each of
those decoder units 530, 540 is merged into the single logic
diagram illustrated in FIG. 5D. Further, those skilled in the
art will understand that although described with respect to
the red-channel of the decoder units 530, 540 the remaining
channels, e.g., the green-channel and the blue-channel, in
each decoder unit 530, 540 are similarly coupled and func-
tionally equivalent.

The logic diagram illustrating the decoder units 530, 540
is shown to include portions of the block type detector 520,
for example a comparator unit 522. The comparator unit 522
works with a first 2x1 multiplexer 525a and a second 2x1
multiplexer 525b. The comparator unit 522 is coupled to the
first and the second 2x1 multiplexers 525a, 525b. Both 2x1
multiplexers 525a, 525b are coupled to a 4x1 multiplexer
526 that serves to select the appropriate color to output.

The red-channel 544, 546 of the first decoder unit 530
includes a first and a second red-channel line 551a, 551b and
a first and a second red-color block 550a, 550b. Along the
path of each red-color block 550a, 550b is a first full adder
552a, 552b, a second full adder 554a, 554b, and a CLA
("carry-look ahead") adder 556a, 556b. The first and the
second red-channel lines 551a, 551b are coupled to the first
and the second red-color blocks 550a, 550b, respectively.
Each red-color block 550a, 550b is coupled to the first full
adder 552a, 552b associated with that red-color block 550a,
550b. Each first full adder 552a, 552b is coupled to the
respective second full adder 554a, 554b. Each second full
adder 554a, 554b is coupled to the respective CLA adder
556a, 556b.

The second decoder unit 540 comprises the first and the
second red-channel lines 551a, 551b and the respective first
and second red-color blocks 550a, 550b and an adder 558.
The first and the second channel lines 551a, 551b are
coupled to their respective red-color blocks 550a, 550b as
described above. Each red-color block 550a, 550b is
coupled to the adder 558.

The CLA adder 556a from the path of the first red-color
block 550a of the first decoder unit 530 is coupled to the first
2x1 multiplexer 525a and the CLA adder 556b from the path
of the second red-color block 550b of the first decoder unit
530 is coupled to the second 2x1 multiplexer 525b. The
adder 558 of the second decoder unit 540 is coupled to both
the first and the second 2x1 multiplexers 525a, 525b.

The 4x1 multiplexer 526 is coupled to the first and the
second red-channel lines 551a, 551b, as well as to the first
and the second 2x1 multiplexers 525a, 525b. The 4x1
multiplexer 526 is also coupled to receive a transparency
indicator signal that indicates whether or not a transparency
(no color) is being sent. The 4x1 multiplexer 526 selects a
color for output based on the value of the color index,
referenced as the ID signal, that references the associated
quantized color for an individual pixel of the encoded image
block 390.

FIG. 6A is a flow diagram illustrating operation of the
decoder system 230 in accordance with the present inven-
tion. For purposes of illustration only, the process for the
decoder system 230 will be described with a single block
encoder 505 having two decoding units, e.g., 530, 540.
Those skilled in the art will recognize that the process is
functionally equivalent for decoder systems having more
than one block decoder 505 and more than one decoder
units, e.g., 533a-1-533a-k.

The process starts 600 with the encoded image decom-
poser 501 receiving 605 the encoded, or compressed, image

data 385 from the encoder system 220, for example, through
the memory 115 or the storage device 120. The encoded
image decomposer 501 decomposes 610 the encoded image
data 385 by forwarding the modified header 385a to the

5 header converter 508. In addition, the encoded image
decomposer 501 also decomposes 610 the encoded image
data 385 into the individual encoded image blocks 390-
1-390-R.

The header converter 508 converts 612 the header infor-
10 mation to generate an output header that is forwarded to the

image composer 504. Simultaneously, the one or more block
decoders 505a-505m decodes 615 the pixel colors for each
encoded image block 390. It is again noted that each
encoded image block 390 may be decoded 615 sequentially

15 in one block decoder 505a or multiple encoded image blocks
390-1-390-R may be PATENT decoded 615 in parallel in
multiple block decoders 505a-505m, as described above.
The process for decoding the encoded image blocks 390 is
further described in FIG. 6B. Each decoded 615 image block

20 is then composed 620 into a data file with the converted 612
header information by the image composer 504. The image
composer 504 generates the data file as an output 625 that
represents the original image 310.

FIG. 6B is a flow diagram illustrating operation of the
25 block encoder 505 in accordance with the present invention.

Once the process is started 630, each encoded image block
390 is received by the block decoder 505 and the block type
for each encoded image block 390 is detected 640.
Specifically, for a preferred embodiment the first and the

30 second codewords 390a, CWO, CW1, respectively, are
received 635 by the block type detector 520 of the block
decoder 505. As discussed above, comparing the numerical
values of CWO and CW1 reveals the block type.

In addition, the first five bits of each codeword 390a, e.g.,
35 CWO, CW1, that represent the red-channel color are

received by the red-channel 545 of each of the first and the
second decoder units 530, 540, the second 6-bits of each
codeword 390a CWO, CW1 that represent the green-channel
color are received by the green-channel of each of the first

40 and the second decoder units 530, 540, and the last 5-bits of
each codeword 390a CWO, CW1 that represent the blue-
channel color are received by the blue-channel of each of the
first and the second decoder units 530, 540.

The block type detector 520 detects 640 the block type for
45 an encoded image block 390. Specifically, the comparator

522 compares the first and the second codewords 390a,
CWO, CW 1, and generates a flag signal to enable the first
2x1 multiplexers 525a or the second 2x1 multiplexers 525b
which, in turn, selects 645 either the first decoding unit 530

50 or the second decoding unit 540, respectively. The process
then calculates 650 the quantized color levels for the
decoder units 530, 540.

To calculate 650 the quantized color levels, the first
decoding unit 530 calculates the four colors associated with

55 the two codewords 390a, CWO, CW1, using the following
relationship:

CWO=first codeword=first color;

CW1=second codeword=second color;

60
CVV2=third color=(2/3)CWO+NCW1;

CW3=fourth color=('/3)CW0+(2/3)CW1.

In one embodiment, the first decoder unit 530 may
estimate the above equations for CW2 and CW3, for
example, as follows:

CW2=(%)CWO+(3/s)CW1; and

US 6,683,978 B1
1615

CW3=(3/s)CVVO+(%)CW1.

The red-color blocks 550a, 550b serve as a one-bit shift
register to get (2)CWO or (Y2)CW1 and each full adder
552a, 552b, 554a, 554b also serves to shift the signal left by
1-it. Thus, the signal from the first full adders 552a, 552b is
(1/4)CWO or (1/4)CW1, respectively, because of a two-bit
overall shift and the signal from the second full adders 554a,
554b is (1/8)CW0 or (1/8)CW1, respectively, because of a
three-bit overall shift. These values allow for the above
approximations for the color signals.

The second decoder unit 540 calculates 650 three colors
associated with the codewords 390a, CWO, CW1, and
includes a fourth signal that indicates a transparency is being
passed. The second decoder unit 540 calculates colors, for
example, as:

CWO=first codeword=first color;

CW1=second codeword=second color;

CW3=third color=(1/2)CVV0+(1/2)CW1; and

T=Transparency.

In one embodiment the second decoder unit 540 has no
approximation because the signals received from the red-
color blocks 550a, 550b is shifted left by one-bit so that the
color is already calculated to (2)CWO and (Y2)CW1, respec-
tively.

After the quantized color levels for the selected 645
decoder unit 530, 540 have been calculated 650, each bitmap
value for each pixel is read 655 from the encoded image data
block 385. As each index is read 655 it is mapped 660 to one
of the four calculated colors if the first decoder unit 530 is
selected 645 or one of the three colors and transparency if
the second decoder unit 540 is selected. The mapped 660
colors are selected by the 4x1 multiplexer 526 based on the
value of the ID signal from the bitmap 390b of the encoded
image block 390. As stated previously, a similar process
occurs for selection of colors in the green-channel and the
blue-channel.

As the colors are output from the red-, green-, and
blue-channels, the output is received by the image composer
504. The image composer 504 orders the output from the
block encoders 505 in the same order as the original image
310 was decomposed. The resulting 665 image that is output
from the image decoder system 230 is the original image that
is forwarded to an output source 240, e.g., a computer
screen, which displays that image.

The system and method of the present invention benefi-
cially allows for random access to any desired image block
260 within an image, and any pixel 270 within an image
block 260. FIG. 7A is a block diagram of a subsystem 700
that provides random access to a pixel 270 or an image block
260 in accordance with the present invention. PATENT The
random access subsystem 700 includes a block address
computation module 710, a block fetching module 720, and
the one or more block decoders 505. The block address
computation module 710 is coupled to receive the header
information 385a of the encoded image data 385. The block
address computation module 710 is also coupled to the block
fetching module 720. The block fetching module 720 is
coupled to receive the encoded image block portion 390-1-R
of the encoded image data 385. The block fetching module
720 is also coupled to the block decoders 505.

FIG. 7B is a flow diagram illustrating a process of random
access to a pixel 270 or an image block 260 using the
random access subsystem 700 in accordance with the

present invention. When particular pixels 270 have been
identified for decoding, the process starts 740 with the image
decoder system 230 receiving the encoded image data 385.
The modified header 385a of the encoded image data 385 is

5 forwarded to the block address computation module 710 and
the encoded image block portion 390-1-R of the encoded
image data 385 is forwarded to the block fetching module
720.

The block address computation module 710 reads the
10 modified header 385a to compute 745 the address of the

encoded image block portion 390-1-R having the desired
pixels 270. The address computed 745 is dependent upon the
pixel coordinates within an image. Using the computed 745
address, the block fetching module 720 identifies the

15 encoded image block 390 of the encoded image block
portion 390-1-R that has the desired pixels 270. Once the
encoded image block 390 having the desired pixels 270 has
been identified, only the identified encoded image block 390
is forwarded to the block decoders 505 for processing.

20 Similar to the process described above in FIG. 6B, the
block decoders 505 compute 755 the quantized color levels
for the identified encoded image blocks 390 having the
desired pixels. After the quantized color levels have been
computed 755, the color of the desired pixel is selected 760

25 and output 765 from the image decoder system 230.
Random access to pixels 270 of an image block 260

advantageously allows for selective decoding of only needed
portions or sections of an image. Random access also allows
the image to be decoded in any order the data is required. For

30 example, in three-dimensional texture mapping only por-
tions of the texture may be required and these portions will
generally be required in some non-sequential order. Thus,
the present invention increases processing efficiency and
performance when processing only a portion or section of an

35 image.
The present invention beneficially encodes, or

compresses, the size of an original image 310 from 24-bits
per pixel to an aggregate 4-bits per pixel and then decodes,
or decompresses the encoded image data 385 to get a

40 representation of the original image 310. Further, the
claimed invention uses, for example, two base points or
codewords from which additional colors are derived so that
extra bits are not necessary to identify a pixel 270 color.

Moreover, the present invention advantageously accom-
45 plishes the data compression on an individual block basis

with the same number of bits per block so that the com-
pression rate can remain fixed. Further, because the blocks
are of fixed size with a fixed number of pixels 270, the
present invention beneficially allows for random access to

50 any particular pixel 270 in the block. The present invention
provides for an efficient use of system resources because
entire blocks of data are not retrieved and decoded to display
data corresponding to only a few pixels 270.

In addition, the use of a fixed-rate 64-bit data blocks in the
55 present invention provides the advantage of having simpli-

fied header information that allows for faster processing of
individual data blocks. Also, a 64-bit data block allows for
data blocks to be processed rapidly, e.g., within one-clock
cycle, as the need to wait until a full data string is assembled

60 is eliminated. Further, the present invention also reduces the
microchip space necessary for a decoder system because the
decoder system only needs to decode each pixel to a set of
colors determined by, e.g., the two codewords.

While particular embodiments and applications of the
65 present invention have been illustrated and described, it is to

be understood that the invention is not limited to the precise
construction and components disclosed herein and that vari-

US 6,683,978 B1
17

15

ous modifications, changes and variations which will be
apparent to those skilled in the art may be made in the
arrangement, operation and details of the method and appa-
ratus of the present invention disclosed herein without
departing from the spirit and scope of the invention as
defined in the appended claims.

What is claimed is:
1.A data format for representing an original image block

having a pixel color set, comprising:
a codeword portion for storing at least two codewords;
a bitmap portion for storing a set of indices, the bitmap

portion constructed by a bitmap construction module
utilizing the codeword portion associated with the
bitmap portion; and

wherein said codewords define at least three colors that
approximate the pixel color set, and said indices map
the pixel color set to at least one of said at least three
colors.

2. The data format of claim 1, wherein said set of indices
includes a predefined index.

3. The data format of claim 2, wherein said predefined
index is for mapping a transparency identifier associated
with the original image block.

4. The data format of claim 2, wherein said predefined
index is for mapping an alpha value associated with the
original image block.

5. The data format of claim 2, wherein said predefined
index is for mapping a color key value associated with the
original image block.

6. The data format of claim 1, wherein said codeword
portion includes a first portion for storing a first codeword
and a second portion for storing a second codeword; and
wherein said first codeword and said second codeword are
used to indicate a block type for the original image block.

7. The data format of claim 1, wherein said codeword
portion includes a first portion for storing a first codeword
and a second portion for storing a second codeword; and
wherein said at least three colors includes at least two
computed colors if said first codeword is greater than said
second codeword.

8. The data format of claim 1, wherein said codeword
portion includes a first portion for storing a first codeword
and a second portion for storing a second codeword; and
wherein said at least three colors includes at least one
computed color and said set of indices includes a predefined
index if said first codeword is less than said second code-
word.

9. The data format of claim 1, wherein said at least three
colors are computed using a geometric element fitted to said
pixel color set so that said geometric element has a minimal
moment of inertia.

10. The data format of claim 1, wherein said at least three
colors includes one of said at least two codewords.

11.A data format for representing an original image block
having a pixel color set, comprising:

a codeword portion for storing at least one codeword;
a bitmap portion for storing a set of indices, said set of

indices includes an available index for representing a
transparency identifier, the bitmap portion constructed
by a bitmap construction module utilizing the code-
word portion associated with the bitmap portion; and

wherein said codeword defines a set of colors that
approximate the pixel color set, and said indices map
the pixel color set to at least one color in said set of
colors.

12.The data format of claim 11, wherein said set of colors
includes said at least one codeword and a computed color.

18
13. The data format of claim 11, wherein said set of colors

includes at least three colors.
14.A data format for representing an original image block

having a pixel color set, comprising:
a codeword portion for storing at least one codeword;
a bitmap portion for storing a set of indices;
wherein said at least one codeword defines a set of colors

that approximate the pixel color set, and said indices
10	 map the pixel color set to at least one color in said set

of colors; and
wherein said set of colors are computed using a geometric

element fitted to said pixel color set so that said
geometric element has a minimal moment of inertia.

15. An encoded image data format for representing an
original image partitioned into at least two image blocks,
said image blocks each having a corresponding pixel color
set, the data format comprising:

20 	at least two encoded image block portions, one of said
encoded image block portions having a codeword por-
tion for storing at least two codewords, and a bitmap
portion for storing a set of indices, the bitmap portion
constructed by a bitmap construction module utilizing

25	 the codeword portion associated with the bitmap por-
tion; and

wherein said at least two codewords define at least three
colors that approximate the pixel color set of one of the
original image blocks, and said indices map the pixel

30	 color set to at least one of said at least three colors.
16. The data format of claim 15, further including a

header portion.
17. The data format of claim 15, wherein said set of

indices includes a predefined index.
35	 18. The data format of claim 17, wherein said predefined

index is for mapping a transparency identifier associated
with the original image block.

19. The data format of claim 17, wherein said predefined
index is for mapping an alpha value associated with the

40 original image block.
20. The data format of claim 17, wherein said predefined

index is for mapping a color key value associated with the
original image block.

21. The data format of claim 15, wherein said set of colors
45 are computed using a geometric element fitted to said pixel

color set so that said geometric element has a minimal
moment of inertia.

22. The data format of claim 15, wherein said at least three
colors includes one of said at least two codewords.

50 23. An encoded image data format for representing an
original image partitioned into at least a first image block
having a first pixel color set and a second image block
having a second pixel color set, the data format comprising:

a first encoded image block having a first portion for
55	 storing a first codeword, a second codeword, and a first

bitmap portion for storing a first set of indices;
a second encoded image block having a second portion

for storing a third codeword, a fourth codeword, and a

60	
second bitmap portion for storing a second set of
indices;

wherein said first and second codewords define a first set
of colors that approximate the first pixel color set, and
said first set of indices map the first set of colors to the

65	 first pixel color set; and
wherein said third and fourth codewords define a second

set of colors that approximate the second pixel color

5

US 6,683,978 B1
19

set, and said second set of indices map the second set
of colors to the second pixel color set.

24. The encoded image data format of claim 23, wherein
said first set of colors includes at least three colors.

25. The data format of claim 23, wherein said first set of
colors includes at least said first codeword.

26. The data format of claim 23, wherein said first set of
colors includes said second codeword.

20
27. The data format of claim 23, wherein

of colors includes at least three colors.
28. The data format of claim 23, wherein

of colors includes said third codeword.
5	 29. The data format of claim 23, wherein

of colors includes said fourth codeword.

said second set

said second set

said second set

Exhibit C

Output

Image
Decomposer

Block Encoder
306

Header Converter
3_Q4

Encoded Image
Composer

202

Image
ai

(12) United States Patent
Hong et al.

1111111111111110111111111111111111111I11111 01011111111110111111
(to) Patent No.:	 US 6,775,417 B2
(45) Date of Patent: 	 Aug. 10, 2004

FIXED-RATE BLOCK-BASED IMAGE
COMPRESSION WITH INFERRED PIXEL
VALUES

Inventors: Zhou Hong, Cupertino, CA (US);
Konstantine I. Iourcha, San Jose, CA
(US); Krishna S. Nayak, Palo Alto, CA
(US)

Assignee: S3 Graphics Co., Ltd., Grand Cayman
(KN)

Notice:	 Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 165 days.

Appl. No.: 10/052,613

Filed:	 Jan. 17, 2002

Prior Publication Data

US 2003/0053706 Al Mar. 20, 2003

(Under 37 CFR 1.47)

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/351,930, filed on
Jul. 12, 1999, now Pat. No. 6,658,146, which is a continu-
ation of application No. 08/942,860, filed on Oct. 2, 1997,
now Pat. No. 5,956,431.

(51)
(52)
(58)

(56)

5,787,192 A 7/1998 Takaichi et al. 	 382/166
5,822,465 A 10/1998 Normile et al. 	 382/253
5,956,425 A 9/1999 Yoshida 	 382/234
5,956,431 A 9/1999 Iourcha et al. 	 382/253
6,075,619 A 6/2000 fizuka 	 382/166

FOREIGN PATENT DOCUMENTS

JP	 401284188 A * 11/1989 	 HO4N/7/137
JP	 405216993	 8/1993 	 GO6F/15/70

OTHER PUBLICATIONS

Feng et al., "A Dynamic Address Vector Quantization Based
on Inter–Block and Inter–Color Correction for Color Image
Coding,"IEEE International Conference on Acoustics,
Speech and Signal Processing, vol. 3, May 1989, pp.
1755-1758.
Schilling et al., "Texram: A Smart Memory for Texturing,"
IEEE Computer Graphics & Applications, May 1996, vol.
16, No. 3, pp. 9-19.

(List continued on next page.)

Primary Examiner	 Anh Hong Do
(74) Attorney, Agent, or Firm—Carr & Ferrell LLP

(57)	 ABSTRACT

An image processing system including an image encoder
and image decoding system is provided. The image encoder
system includes an image decomposer, a block encoder, and
an encoded image composer. The image decomposer
decomposes the image into blocks. The block encoder which
includes a selection module, a codeword generation module
and a construction module, processes the blocks.
Specifically, the selection module computes a set of param-
eters from image data values of a set of image elements in
the image block. The codeword generation module gener-
ates codewords which the construction module uses to
derive a set of quantized image data values. The construction
module then maps each of the image element's original
image data values to an index to one of the derived image
data values. The image decoding system reverses this pro-
cess to reorder decompressed image blocks in an output data
file.

30 Claims, 16 Drawing Sheets

(54)

(75)

(73)

(*)

(21)

(22)

(65)

Int. C1.7 	 GO6K 9/38
U.S. Cl. 	 382/253; 382/232; 725/146
Field of Search 	 382/166, 162,

382/232, 253; 725/146; 345/549, 550; 358/539

References Cited

U.S. PATENT DOCUMENTS

	4,821,208 A	 4/1989	 Ryan et al. 	 345/550

	

4,887,151 A	 12/1989 Wataya 	 358/539

	

5,734,744 A	 3/1998 Wittenstein et al. 	 382/166

	

5,742,892 A	 4/1998 Chaddha 	 725/146

	

5,748,904 A	 5/1998 Huang et al. 	 345/544

US 6,775,417 B2
Page 2

OTHER PUBLICATIONS

Knittel et al., "Hardware and Software for Superior Texture
Performance," In 10: Eurographics Hardware Workshop
1995, Maastricht, The Netherlands, Aug. 28-29, 1995, pp.
1-8.
Campbell et al., "Two Bit/Pixel Full Color Encoding,"
Computer Graphics (Proc. SIGPRAPH 1986), Aug. 18-22,
1986, vol. 20, No. 4, Dallas, TX, pp.215-219.
Yang et al., "Hybrid Adaptive Block Truncation Coding for
Image Compression," Optical Engineering, Soc. of Photo-
Optical Instrumentation Engineers, Bellingham, USA, Vo.
36, No. 4, Apr. 1, 1997, pp. 1021-1027.
Kugler, "High-Performance Texture Decompression Hard-
ware," Visual Computer, Springer, Berlin, Germany, vol. 13,
No. 2, 1997, pp. 51-63.
Panos Nasiopoulos et al., "Adaptive Compression Coding,"
IEEE Transactions on Communications, IEEE Inc., New
York, USA, vol. 39, No. 8, Aug. 1, 1991, pp. 1245-1254.

Delp E.J. et al., "Image Compression Using Block Trunca-
tion Coding," IEEE Inc., New York, USA, vol. COM-27,
No. 9, Sep. 1979, pp. 1335-1342.

Yang et al., "Use of Radius Weighted Mean to Cluster
Two-Class Data," Electronics Letters, IEE Stevenage, Great
Britain, vol. 30, No. 10, May 12, 1994, pp. 757-759.

Russ, J.C. et al., "Optimal Grey Scale Images from Multi-
plane Color Images," Journal of Computer-Assisted
Microscopy, Dec. 1995, Plenum, USA, vol. 7, No. 4, pp.
221-233.

Knittel et al., "Hardware for Superior Texture Performance,"
Eurographics Workshop on Graphics Hardware, Jul. 28,
1995, pp. 33-40.

* cited by examiner

a)U_
>a)

o
8
cn

0a)0
>
2 1

a
"5
0

0
C

9

U.S. Patent	 Aug. 10, 2004
	

Sheet 1 of 16	 US 6,775,417 B2

FIG. 2

200

Image Source
206

Image Encoder
Engine

202

Image Decoder
Engine

204

Output
208

Memory
104

Storage Device
106

U.S. Patent	 Aug. 10, 2004
	

Sheet 2 of 16	 US 6,775,417 B2

)

w

C
ccs
u
c
(

Fa

--0.
-).

-90

co

d
LL

<co
d
LL

U.S. Patent	 Aug. 10, 2004
	

Sheet 3 of 16	 US 6,775,417 B2

cc

c
co
0
CO

NICV

co
cD cp
cr) o_ CV
O E 0
E o co— oa)

0

--O.
-).

a)a)
CO ,--a)Ern
— o co
"0 a 0
a) E co-a

0c.)o C)C
w

__._),, 45

a 1S. c7)
0

U.S. Patent	 Aug. 10, 2004	 Sheet 4 of 16 US 6,775,417 B2

CO

I

coc\jcl

CO

LL

Quantizer
402

Block Type Module
406

Curve Selection
Module

408

Codeword
Generation Module

410

U.S. Patent	 Aug. 10, 2004
	

Sheet 5 of 16	 US 6,775,417 B2

Bitmap
-).

	 Construction
Module

404

Block Encod er
306

FIG. 4

• • • 516
Mod.

Header
512

516b 516a 516c

I	 I
Bitmap

• • •CW0 II • • CWT -1

U.S. Patent	 Aug. 10, 2004
	

Sheet 6 of 16	 US 6,775,417 B2

a-bit
Header

5(2 Image Data 504

500
	

FIG. 5A

514

510
	

FIG. 5B

520
	

522

518
	

FIG. 5C

U.S. Patent	 Aug. 10, 2004 Sheet 7 of 16	 US 6,775,417 B2

(Start (Start

Input Image
602 Compute

Codewords
622

Decompose Image
into Blocks

604
Quantize Colors for

Image Block
624

Convert
Header Info

606

Encode Each
Block
608

C End

/

Compose Header
and Encoded

Blocks
610 620

FIG. 6B

Write Header and
Encoded Blocks

612

/
(End)

600

FIG. 6A

V
Compute
Optimal

Codewords for
Partition

Compute Error
640

Output Block
Type &

Codewords
Producing Min.

Error
650

Store Error
642

Store Block
Type and

Codewords
644

Partitions
Complete?

Block Types
Complete?

630 C End

FIG. 6C

C Start

Select Block
Type
632

V
Compute

Optimal Analog
Curve
634

Select Partition
636

U.S. Patent	 Aug. 10, 2004	 Sheet 8 of 16
	

US 6,775,417 B2

(End)

FIG. 6D

\
660

Construct Block Bitmap
680

/
670

C End

FIG. 6E

C Start (Start)

V
Project WxH Color

Values
672

Calculate Eigenvector of
Tensor Inertia

666

Compute Center of Gravity
662

V
Identify Vector

664
V

Order Colors
674

Find Optimal Partitions
676

Identify m Colors
678

U.S. Patent	 Aug. 10, 2004 Sheet 9 of 16	 US 6,775,417 B2

U.S. Patent	 Aug. 10, 2004
	

Sheet 10 of 16	 US 6,775,417 B2

Encoded Image Data

Image
Decoder
Engine

204

Header Converter
704

Encoded Image
Decomposer

702

Block Recode

Block Decoder
706

Image Composer
708

L

Output

FIG. 7A

U.S. Patent	 Aug. 10, 2004
	

Sheet 11 of 16	 US 6,775,417 B2

Block Decoder
706

Block Type
Detector

710

V

First
	

Second
	

kth
Decoder
	

Decoder
	

Decoder
Unit
	

Unit
	 • • •	

Unit
712
	

712
	

712

Output Selector
714

FIG. 7B

Second
Decoder Unit

(3-color &
transparency)

724

U.S. Patent	 Aug. 10, 2004
	

Sheet 12 of 16	 US 6,775,417 B2

Block Decoder
706 V

Block Type
Detector

720

First
Decoder

Unit
(4-color)

722

Output Selector
726

FIG. 7C

742b

--0

• •
full adder

•
full adder 	

742a
full adder

•
full adder

A

1

•
522

546 510

1730

comparator
> (16 bits)

ID
(2)
ID
(2)
ID
(2)
ID
(2)

ID
(2)
ID
(2)
ID
(2)
ID
(2)

ID
(2)
ID
(2)
ID
(2)
ID
(2)

ID
(2)
ID
(2)
ID
(2)
ID
(2)

color 0
(16)

co or 1
(16)

U.S. Patent	 Aug. 10, 2004
	

Sheet 13 of 16	 US 6,775,417 B2

516

738b1736	
738a1

R (or G or B) channel of color 0

codeword 0(16) 1 520

codeword 0(16)

740a1
•

color 0 R
(or G or B)

R (or G or B) channel of color 1

740b-
 L- color 1 R

(or G or B)

1744a
	C)744b
	 •

CLA adder 1746a 746b CLA adder
	

adder

X748

2x1 MUX/
c)732b

2x1 MUX/
732a

4x1 MUX
	

ID

734

texel color R (or G or B) channel

FIG. 7D

U.S. Patent	 Aug. 10, 2004
	

Sheet 14 of 16	 US 6,775,417 B2

C Start)

Receive Encoded
Image Data

802

Decompose
Encoded Image

Data
804

Decode Image
	

Convert Header
Blocks
	

Information
808
	

806

Compose Header
and Decoded

Blocks
810

/
800

C End

FIG. 8A

820

U.S. Patent	 Aug. 10, 2004
	

Sheet 15 of 16	 US 6,775,417 B2

C Start

Receive Encoded
Image Block

822

Detect Block Type
824

Select Decoder
Unit
826

Calculate
Quantized Color

Levels
828

Read Bitmap Value
for Each Pixel

830

•
Map Each Pixel to
Calculated Color

832

(End

FIG. 8B

Block Address
Computation Module

902

Block Fetching Module
904

Block Decoder
706 900

U.S. Patent	 Aug. 10, 2004
	

Sheet 16 of 16	 US 6,775,417 B2

Header Data
	 Image Block

Portion Data

FIG. 9A

C Start
	 I)

v
Compute Address

912

Identify Encoded Image
Block
914

Compute Quantization
Color Levels

916

Select Color
918

/
910

C End)

FIG. 9B

US 6,775,417 B2
1

15

FIXED-RATE BLOCK-BASED IMAGE
COMPRESSION WITH INFERRED PIXEL

VALUES

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation-in-part application of
Ser. No. 09/351,930 filed Jul. 12, 1999 now U.S. Pat. No.
6,658,146, which is a continuation of Ser. No. 08/942,860
filed Oct. 2, 1997, now U.S. Pat. No. 5,956,431 issued Sep.
21, 1999.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates generally to image

processing, and more particularly to three-dimensional ren-
dering using fixed-rate image compression.

2. Description of Related Art
Conventionally, generating images, such as realistic and

animated graphics on a computing device, required tremen-
dous memory bandwidth and processing power on a graph-
ics system. Requirements for memory and processing power
are particularly true when dealing with three-dimensional
images. In order to reduce bandwidth and processing power
requirements, various compression methods and systems
have been developed including Entropy or lossless encoders,
Discrete Cosine Transform ("DCT") or JPEG type
compressors, block truncation coding, and color cell com-
pression. However, these methods and systems have numer-
ous disadvantages.

Entropy or lossless encoders include Lempel-Ziv encod-
ers which rely on predictability. For data compression using
entropy encoders, a few bits are used to encode most
commonly occurring symbols. In stationary systems where
probabilities are fixed, entropy coding provides a lower
bound for compression than can be achieved with a given
alphabet of symbols. However, coding does not allow ran-
dom access to any given symbol. Part of the compressed
data preceding a symbol of interest must be first fetched and
decompressed to decode the symbol, requiring considerable
processing time and resources, as well as decreasing
memory throughput. Another problem with existing Entropy
methods and systems is that no guaranteed compression
factor is provided. Thus, this type of encoding scheme is
impractical where memory size is fixed.

Discrete Cosine Transform or JPEG-type compressors
allow users to select a level of image quality. With DCT,
uncorrelated coefficients are produced so that each coeffi-
cient can be treated independently without loss of compres-
sion efficiency. The DCT coefficients can be quantized using
visually-weighted quantization values which selectively dis-
card least important information.

DCT, however, suffers from a number of shortcomings.
One problem with DCT and JPEG-type compressors is a
requirement of large blocks of pixels, typically, 8x8 or
16x16 pixels, as a minimally accessible unit in order to
obtain a reasonable compression factor and quality. Access
to a very small area, or even a single pixel involves fetching
a large quantity of compressed data; thus requiring increased
processor power and memory bandwidth. A second problem
is that the compression factor is variable, therefore requiring
a complicated memory management system that, in turn,
requires greater processor resources. A third problem with
DCT and JPEG-type compression is that using a large
compression factor significantly degrades image quality. For

2
example, an image may be considerably distorted with a
form of ringing around edges in the image as well as
noticeable color shifts in areas of the image. Neither artifact
can be removed with subsequent low-pass filtering.

5 A further disadvantage with DCT and JPEG-type com-
pression is the complexity and significant hardware cost for
a compressor and decompressor ("CODEC"). Furthermore,
high latency of a decompressor results in a large additional
hardware cost for buffering throughout the system to com-

10 pensate for the latency. Finally, DCT and JPEG-type com-
pressors may not be able to compress a color keyed image.

Block truncation coding ("BTC") and color cell compres-
sion ("CCC") use a local one-bit quantizer on 4x4 pixel
blocks. Compressed data for such a block consists of only
two colors and 16-bits that indicate which of the two colors
is assigned to each of 16 pixels. Decoding a BTC/CCC
image consists of using a multiplexer with a look-up table so
that once a 16-texel (or texture element, which is the
smallest addressable unit of a texture map) block (32-bits) is

20 retrieved from memory, the individual pixels are decoded by
looking up the two possible colors for that block and
selecting the color according to an associated bit from 16
decision bits.

25
Because the BTC/CCC methods quantize each block to

just two color levels, significant image degradation may
occur. Further, a two-bit variation of CCC stores the two
colors as 8-bit indices into a 256-entry color lookup table.
Thus, such pixel blocks cannot be decoded without fetching

30
additional information which may consume additional
memory bandwidth.

The BTC/CCC methods and systems can use a 3-bit per
pixel scheme which stores the two colors as 16-bit values
(not indices into a table) resulting in pixel blocks of six

35 bytes. Fetching such units, however, decreases system per-
formance because of additional overhead due to memory
misalignment. Another problem associated with BTC/CCC
methods is a high degradation of image quality when used
to compress images that use color keying to indicate trans-

40 parent pixels.
Therefore, there is a need for a system and method that

maximizes accuracy of compressed images while minimiz-
ing storage, memory bandwidth requirements, and decoding
hardware complexities. There is a further need for com-

45 pressing image data blocks into convenient sizes to maintain
alignment for random access to any one or more pixels.

SUMMARY OF THE INVENTION

The present invention provides for fixed-rate block based
50 image compression with inferred pixel values. An image

processing system includes an image encoder engine and an
image decoder engine. The image encoder engine includes
an image decomposer, at least one block encoder, and an
encoded image composer. The block decomposer decom-

55 poses an original image into a header and a plurality of
blocks which are composed of a plurality of image elements
or pixels. The block encoder subsequently processes each
block. The block encoder includes a selection module, a
codeword generation module, and a construction module.

60 Specifically, the selection module computes a set of param-
eters from image data values of each set of image elements.
The codeword generation module then generates codewords
which are reference image data values such as colors or
density values. Subsequently, the construction module uses

65 the codewords to derive a set of quantized image data
values. The construction module then maps each of the
image element's original image data values with an index to

US 6,775,417 B2
4

5

3
one of the derived image data values. Finally, the codewords
and indices are output as encoded image blocks.

Conversely, the image decoder engine includes an
encoded image decomposer, at least one block decoder, and
an image composer. The image decomposer takes the
encoded image and decomposes the encoded image into a
header and plurality of encoded image blocks. The block
decoder uses the codewords in the encoded image blocks to
generate a set of derived image data values. Subsequently,
the block decoder maps the index values for each image
element to one of the derived image data values. The image
composer then reorders the decompressed image blocks in
an output data file, which is forwarded to a display device.

line, alternatively, the data bus 114 may be a combination of
a processor bus, a PCI bus, a graphic bus, or an ISA bus.

FIG. 2 is a block diagram of an exemplary image pro-
cessing system 200. In one embodiment, the image process-
ing system 200 is contained within the graphics engine 112
(FIG. 1). The image processing system 200 includes an
image encoder engine 202 and an image decoder engine 204.
The image processing system 200 may also include, or be
coupled to, an image source unit 206 which provides images

10
to the image encoder engine 202. Further, the image pro-
cessing system 200 may include or be coupled to an output
unit 208 to which processed images are forwarded for
storage or further processing. Additionally, the image pro-
cessing system 200 may be coupled to the memory 104
(FIG. 1) and the storage device 106 (FIG. 1). In an alterna-
tive embodiment, the image encoder engine 202 and the
image decoder engine 204 are contained within different
computing devices, and the encoded images pass between
the two engines 202 and 204.

Within the image encoder engine 202, images are broken
down into individual blocks and processed before being
forwarded, for example, to the storage device 106 as com-
pressed or encoded image data. When the encoded image
data are ready for further processing, the encoded image data
are forwarded to the image decoder engine 204. The image
decoder engine 204 receives the encoded image data and
decodes the data to generate an output that is a representa-
tion of the original image that was received from the image
source unit 206.

FIGS. 3A and 3B are block diagrams illustrating two
exemplary embodiments of the image encoder engine 202 of
FIG. 2. The image encoder engine 202 includes an image
decomposer 302, a header converter 304, one or more block
encoders 306 in FIG. 3A (306a-306n, where n is the nth
encoder in FIG. 3B), and an encoded image composer 308.
The image decomposer 302 is coupled to receive an original
image 310 from a source, such as the image source unit 206
(FIG. 2), and forwards information from a header of the
original image 310 to the header converter 304.
Subsequently, the header converter 304 modifies the original
header to generate a modified header, as will be described
further in connection with FIG. 5B. The image decomposer
302 also breaks, or decomposes, the original image 310 into
R numbers of image blocks, where R is any integer value.
The number of image blocks the original image 310 is
broken into may depend on the number of image pixels. In
an exemplary embodiment, the image 310 having A image
pixels by B image pixels will, typically, be (A/4)x(B/4)
blocks. For example, an image that is 256 pixels by 256
pixels will be broken down into 64x64 blocks. In the present
embodiment, the image is decomposed such that each image
block is 4 pixels by 4 pixels (16 pixels). Those skilled in the
art will recognize that the number of pixels or the image
block size may be varied.

Briefly turning to FIG. 3C, an example of a single image
block 320 is illustrated. The image block 320 is composed
of image elements (pixels) 322. The image block 320 may
be defined as an image region W pixels in width by H pixels
in height. In the embodiment of FIG. 3C, the image block
320 is W=4 pixels by H=4 pixels (4x4).

In an alternative embodiment, the original image 310
(FIG. 3A or 3B) may be a three-dimensional volume data set
as shown in FIG. 3D. FIG. 3D illustrates an exemplary
three-dimensional image block 330 made up of sixteen
image elements (volume pixels or voxels) 332. Image block
330 is defined as an image region W voxels in width, H
voxels in height, and D voxels in depth.

BRIEF DESCRIPTION OF THE DRAWINGS	 15

FIG. 1 is a block diagram of a data processing system,
according to an embodiment of the present invention;

FIG. 2 is a block diagram of an image processing system;
FIG. 3A is a block diagram of one embodiment of an 20

image encoder system;
FIG. 3B is a block diagram of an alternative embodiment

of an image encoder system;
FIG. 3C is a graphical representation of an image block;
FIG. 3D is a graphical representation of a three-

25

dimensional image block;
FIG. 4 is a block diagram of an image block encoder of

FIG. 2A, 3A, or 3B;
FIG. 5A is a data sequence diagram of an original image; 30
FIG. 5B is a data sequence diagram of encoded image

data of an original image output from the image encoder
system;

FIG. 5C is a data sequence diagram of an encoded image
block from the image block encoder of FIG. 4;

	 35

FIGS. 6A-6E are flowcharts illustrating encoding
processes, according to the present invention;

FIG. 7A is a block diagram of an image decoder system;
FIG. 7B is a block diagram of one embodiment of a block 40

decoder of FIG. 7A;
FIG. 7C is a block diagram of an alternative embodiment

of a block decoder of FIG. 7A;
FIG. 7D is a logic diagram illustrating an exemplary

decoder unit, according to the present invention;
	 45

FIG. 8A is a flowchart illustrating a decoding process of
the image decoder of FIG. 2;

FIG. 8B is a flowchart illustrating operations of the block
encoder of FIG. 7A; 	

50
FIG. 9A is a block diagram of a subsystem for random

access to a pixel or an image block; and
FIG. 9B is a flowchart illustrating random access to a

pixel or an image block.
55

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 is a block diagram of a data processing system 100
for implementing the present invention. The data processing
system 100 includes a CPU 102, a memory 104, a storage 60

device 106, input devices 108, output devices 110, and a
graphics engine 112 all of which are coupled to a system bus
114. The memory 104 and storage device 106 store data
within the data processing system 100. The input device 108
inputs data into the data processing system 100, while the 65

output device 110 receives data from the data processing
system 100. Although the data bus 114 is shown as a single

US 6,775,417 B2
65

The three-dimensional volume data set may be divided
into image blocks of any size or shape. For example, the
image may be divided along a z-axis into a plurality of
xxyxz sized images, where z=1. Each of these xxyxl images
may be treated similarly with two-dimensional images,
where each xxyxl image is divided into two-dimensional
image blocks, as described above with respect to FIG. 3C.
However, decomposing the three-dimensional image into
two-dimensional "slices" for compression does not fully
utilize the graphical similarities that may exist in the z
(depth) direction in a three-dimensional image. To utilize
such similarities, the volume data may be decomposed into
a plurality of three-dimensional image blocks. It will be
understood that in alternative embodiments, other combina-
tions of WxHxD are possible, and may be more desirable,
depending on the data being compressed.

This type of three-dimensional image data is used, for
example, in medical imaging applications such as ultrasound
or magnetic resonance imaging ("MRI"). In such an
application, a body part is scanned to produce a three-
dimensional matrix of image elements (i.e., image block
comprised of voxels 320). The image is x voxels wide by y
voxels high by z voxels deep. In this example, each voxel
provides density data regarding characteristics of body tis-
sue. In ultrasound applications, each voxel may be provided
with a brightness level indicating the strength of echoes
received during scanning.

In the embodiment of FIG. 3D, the original image 310 is
a three-dimensional data volume where the image data are
density values. In alternative embodiments, other scalar data
types may be represented in the original image 310, such as
transparency or elevation data. In further embodiments,
vector data, such as the data used for "bump maps", may be
represented.

Referring back to FIGS. 3A and 3B, each block encoder
306 receives an image block 320 from the image decom-
poser 302, and encodes or compresses each image block
320. Subsequently, each encoded image block is forwarded
to the encoded image composer 308 which orders the
encoded image blocks in a data file. Next, the data file from
the encoded image composer 308 is concatenated with the
modified header from the header converter 304 to generate
an encoded image data file that is forwarded to an output
312. Thus, the modified header and the encoded image
blocks together form the encoded image data that represent
the original image 310. Alternatively, having more than one
block encoder 306a-306n, as shown in FIG. 3B, allows for
encoding multiple image blocks simultaneously, one image
block per block encoder 306a-306n, within the image
encoder engine 202. Advantageously, simultaneous encod-
ing increases image processing efficiency and performance.

The image data associated with the original image 310
may be in any one of a variety of formats including
red-green-blue ("RGB"), YUV 420 (YUV are color models
representing luminosity and color difference signals), YUV
422, or a propriety color space. In some cases, conversion to
a different color space before encoding the original image
310 may be useful. In one embodiment, each image block
320 is a 4x4 set of pixels where each pixel 322 is 24-bits in
size. For each pixel 322, there are 8-bits for a Red("R")-
channel, 8-bits for a Green("G")-channel, and 8-bits for a
Blue("B")-channel in an RGB implementation color space.
Alternatively, each encoded image block is also a 4x4 set of
pixels with each pixel being only 2-bits in size and having
an aggregate size of 4-bits as will be described further below.

FIG. 4 is a block diagram illustrating an exemplary block
encoder 306 of FIGS. 3A and 3B. The block encoder 306

includes a quantizer 402 and a bitmap construction module
404. Further, the quantizer 402 includes a block type module
406, a curve selection module 408, and a codeword genera-
tion module 410.

5	 Each image block 320 (FIG. 3C) of the decomposed
original image 310 (FIGS. 3A and 3B) is received and
initially processed by the quantizer 402 before being for-
warded to the bitmap construction module 404. The bitmap
construction module 404 outputs encoded image blocks for

10 the encoded image composer 308 (FIGS. 3A and 3B) to
order. The bitmap construction module 404 and the modules
of the quantizer 402 are described in more detail below.

Briefly, FIG. 5A is a diagram of a data sequencer or string
500 representing the original image 310 (FIGS. 3A and 3B)

is that is received by the block decomposer 302 (FIGS. 3A and
3B). The data string 500 includes an a-bit header 502 and a
I3-bit image data 504. The header 502 may include infor-
mation such as pixel width, pixel height, format of the
original image 310 (e.g., number of bits to the pixel in RGB

20 or YUV format), as well as other information. The image
data 504 are data representing the original image 310, itself.

FIG. 5B is a diagram of a data sequence or string 510
representing encoded image data that are generated by the
image encoder engine 202 (FIG. 2). The encoded image data
string 510 includes a modified header portion 512 and an
encoded image block portion 514. The modified header
portion 512 is generated by the header converter 304 (FIGS.
3A and 3B) from the original a-bit header 502 (FIG. 5A) and

30
includes information about file type, number of bits per pixel
of the original image 310 (FIGS. 3A and 3B), addressing in
the original image 310, other miscellaneous encoding
parameters, as well as the width and height information
indicating size of the original image 310. The encoded
image block portion 514 includes encoded image blocks

35 516a—q from the block encoders 306 (FIGS. 3A and 3B)
where q is the number of blocks resulting from the decom-
posed original image 310.

FIG. 5C is a diagram of a data sequence or string 518

40
representing an encoded image block. The data string 518
may be similar to any one of the encoded image blocks
516a—q (FIG. 5B) shown in the encoded image data string
510 of FIG. 5B.

The encoded image block data string 518 includes a
45 codeword section 520 and a bitmap section 522. The code-

word section 520 includes j codewords, where j is an integer
value, that are used to compute colors of other image data
indexed by the bitmap section 522. A codeword is an n-bit
data string that identifies a pixel property, such as color

so component, density, transparency, or other image data val-
ues. In one embodiment, there are two 16-bit codewords
CW, and CW 1 (j =2). The bitmap section 522 is a Q-bit data
portion and is described in more detail in connection with
FIG. 6B.

55	 In an alternative embodiment, each encoded image block
is 64-bits, which includes two 16-bit codewords and a 32-bit
(4x4x2 bit) bitmap 522. Encoding the image block 320
(FIG. 3C) as described above provides greater system flex-
ibility and increased data processing efficiency. In a further

60 exemplary embodiment, each 32-bit bitmap section 522 may
be a three-dimensional 32-bit bitmap.

FIGS. 6A-6E describe operations of the image encoder
engine 202 (FIG. 2). In flowchart 600, a general operation of
the image encoder engine 202 is shown. In block 602, a data

65 string 500 (FIG. 5A) of the original image 310 (FIGS. 3A
and 3B), which includes the a-bit header 502 (FIG. 5A) and
the I3-bit image data 504 (FIG. 5A), is input into the image

2 5

US 6,775,417 B2
87

decomposer 302 (FIGS. 3A and 3B). The image decomposer
302 decomposes the image 310 into the a-bit header and a
plurality of blocks in block 604. The a-bit header 502 is then
forwarded to the header converter 304 (FIGS. 3A and 3B).
Subsequently, the header converter 304 generates a modified
header 512 (FIG. 5B) from the a-bit header 502 in block
606. The modified header 512 is then forwarded to the
encoded image composer 308 (FIGS. 3A and 3B).

Simultaneous with the header conversion process, each
image block 320 is encoded in block 608 by one or more of
the block encoders 306a-306n (FIGS. 3A and 3B) to gen-
erate the encoded image blocks 516 (FIG. 5B). Each image
block 320 may be processed sequentially in one block
encoder 306, or multiple image blocks 320 may be pro-
cessed in parallel in multiple block encoders 306a-306n.

The encoded image blocks 516 are output from the block
encoders 306, and are placed into a predefined order by the
encoded image composer 308. In one embodiment, the
encoded image blocks 516 are arranged in a file from left to
right and top to bottom in the same order in which the
encoded image blocks 516 were broken down by the image
decomposer 302 (FIGS. 3A and 3B). The image encoder
engine 202 subsequently composes the modified header
information 512 from the header converter 304 and the
encoded image blocks 516a-516q in block 610. Specifically,
the modified header 512 and the ordered encoded image
blocks 516 are concatenated to generate the encoded image
data file 510 (FIG. 5B), which may be written as encoded
output 312 (FIGS. 3A and 3B) to the memory 104, storage
device 106, or any output device 110 (FIG. 1) in block 612.

FIG. 6B is a flowchart 620 showing the encoding process
of block 608 (FIG. 6A) in more detail. In block 622,
codewords 520 (FIG. 5C) are computed by the codeword
generation module 410 (FIG. 4). The process for computing
these codewords 520 is described in more detail in connec-
tion with FIG. 6C.

Once the codewords 520 have been computed, pixel
values or properties, such as colors, for the image block 320
(FIG. 3C) are computed or quantized in block 624.
Specifically, the codewords 520 provide points in a pixel
space from which m quantized pixel values may be inferred.
The m quantized pixel values are a limited subset of pixels
in a pixel space that are used to represent the current image
block. The process for quantizing pixel values, and more
specifically colors, will be described infra in connection
with FIGS. 8A and 8B. Further, the embodiments will now
be described with respect to colors of a pixel value although
one skilled in the art will recognize that, in general, any pixel
value may be used with respect to the present invention.
Therefore, the image data which is quantized may be any
form of scalar or vector data, such as density values,
transparency values, and "bump map" vectors.

In an exemplary embodiment, each pixel is encoded with
two bits of data which can index one or m quantized colors,
where m=4 in this embodiment. Further, four quantized
colors are derived from the two codewords 520 where two
colors are the codewords 520, themselves, and the other two
colors are inferred from the codewords 520, as will be
described below. It is also possible to use the codewords 520
so that there is one index to indicate a transparent color and
three indices to indicate colors, of which one color is
inferred.

In another embodiment, the bitmap 522 (FIG. 5C) is a
32-bit data string. The bitmap 522 and codewords 520 are
output in block 624 as a 64-bit data string representing an
encoded image block 518. Specifically, the encoded image

block 514 (FIG. 5B) includes two 16-bit codewords 520
(n=16) and a 32-bit bitmap 522. Every codeword 520 that is
a 16-bit data string includes a 5-bit red-channel, 6-bit
green-channel, and 5-bit blue-channel.

5	 Each of the encoded image blocks 516 is placed together
and concatenated with modified header information 512
derived from the original a-bit header 502 of the original
image 310 (FIGS. 3A and 3B). A resulting output is the
encoded image data 510 representing the original image

10 310 .

FIG. 6C is a flowchart 630 illustrating a process for
computing codewords for the image blocks 320 (FIG. 3C),
and relates to color quantizing using quantizer 402 (FIG. 4).
The process for computing codewords can be applied to all

15 scalar and vector image data types. In select block type 632,
the quantizer 402 uses the block type module 406 (FIG. 4)
to select a first block type for the image block 320 that is
being processed. For example, a selected block type may be
a four-color or a three-color plus transparency block type,

20 where the colors within the particular block type have
equidistant spacing in a color space. Those of ordinary skill
in the art will readily recognize that selecting a block type
for each image is not intended to be limiting in any way.
Instead, the present invention processes image blocks that

25 are of a single block type, which eliminates the need to
distinguish between different block types, such as the three-
and four-color block types discussed above. Consequently,
the block type module 406 and select block type 632 are
optional.

Once the block type is selected, the quantizer 402 com-
putes an optimal analog curve for the block type in block
634. Computation of the optimal analog curve will be further
described in connection with FIG. 6D. The analog curve is
used to simplify quantizing of the colors in the image block.

35
Subsequently in block 636, the quantizer 402 selects a
partition of points along the analog curve, which is used to
simplify quantizing of the colors in the image block. A
partition may be defined as a grouping of indices {1 .. .

40
(WxH)} into m nonintersecting sets. In one embodiment, the
indices (1 . . . 16) are divided into three or four groups or
clusters (i.e., m=3 or 4) depending on the block type.

Once a partition is selected, optimal codewords for the
particular partition are computed in block 638. In addition to

45 computing the codewords, an error value (square error as
described infra) for the codeword is also computed in block
640. Both computations will be described in more detail in
connection with FIG. 6E. If the computed error value is the
first error value, the error value is stored in block 642.

50 Alternatively, the computed error value is stored if it is less
than the previously stored error value. For each stored error
value, corresponding block type and codewords are also
stored in block 644. The process of flowchart 630 seeks to
find the block type and codewords that minimize the error
function.

Next in block 646, the code generation module 410 (FIG.
4) determines if all possible partitions are completed. If there
are more partitions, the code generation module 410 selects
the next partition, computes the codewords and associated

60 error values, and stores the error values, associated block
types, and codewords if the error value is less than the
previously stored error value.

After all the possible partitions are completed, the code-
word generation module 410 determines, in block 648,

65 whether all block types have been selected. If there are more
block types, the codeword generation module 410 selects the
next block type and computes the codeword and various

3 0

5 5

on a one-dimensional analog curve. After the colors are
ordered, the codeword generation module 410 searches, in
block 676, for optimal partitions. Thus, the codeword gen-
eration module 410 takes the WxH colors (one color asso-

5 ciated with each pixel) that are ordered along the analog
curve and partitions and groups the colors into a finite
number of clusters with a predefined relative spacing. In one
embodiment where W=4 and H=4 (i.e., WxH is 16), the 16
colors are placed in three and four clusters (i.e., m=3 or 4).

In conducting the search for the optimal partition, a color
selection module within the codeword generation module
410 finds the best m clusters from the WxH points projected
onto the optimal curve, so that the error associated with the
selection is minimized The best m clusters are determined
by minimizing the mean-square-error with the constraint

is that the points associated with each cluster are spaced to
conform to the predefined spacing.

In one embodiment for a block type of four equidistant
colors, the error may be defined as a square error along the
analog curve, such as

20

10

where E is the error for the particular grouping or clustering,
po and pi are the coded colors, and x, are the projected points

30 on the optimal analog curve.
In instances where the block type indicates three equidis-

tant colors, the error may be defined as a squared error along
the analog curve, such as

35
E2 =	 fix; — p0) 2

cluster° cluster
[

(1	 1)12

xi — (-2 po + —2 pi)] +	 (xi — Pi)2
cluster 2

US 6,775,417 B2
109

values as previously described. After the last block type has
been processed, the codeword generation module 410 out-
puts a result of the block type and codewords 520 (FIG. 5C)
having the minimum error in block 650.

In an alternative embodiment, the optimal analog curve
may be computed before selecting the block type. That is,
the optimal analog curve is computed before the selection of
the block type and partition, computation of the codewords
and error values, and storage of the error value, block type,
and codeword. Computing the optimal analog curve first is
useful if all block types use the same analog curve and color
space because the analog curve does not need to be recom-
puted for each block type.

FIG. 6D is a flowchart 660 describing a process of
identifying the optimal analog curve. The curve selection
module 408 (FIG. 4) first computes a center of gravity for
pixel colors of an image block 320 (FIG. 3C) in block 662.
The center of gravity computation includes averaging the
pixel colors. Once the center of gravity is computed, a vector
in color space is identified in block 664 to minimize the first
moment of the pixel colors of the image block 320. Spe-
cifically for identifying a vector, a straight line is fit to a set
of data points, which are the original pixel colors of the
image block 320. The straight line is chosen passing through
the center of gravity of the set of data points such that it
minimizes a "moment of inertia" (i.e., square error). For 25
example, to compute a direction of a line minimizing the
moment of inertia for three pixel properties, tensor inertia, T,
is calculated from individual colors as follows:

— CmCli — COiC2i

T= — CNC C(ji + — CliC2i

— COiC2; — C2iCli Co; +

E2	 x /1 (02 +	 [xi — GPo + Th.)[2 +
cluster°	 clusterl

[Xi — GP 0 +	 (Xi — P 1) 2

cluster 2	 cluster 3

where Co, C1, and C2 represent pixel properties (e.g., color
components in RGB or YUV) relative to a center of gravity.
In one embodiment of an RGB color space, C„ is a value of
red, C1 is a value of green, and C2, is a value of blue for
each pixel, i, of the image block. Further, i takes on integer
values from 1 to WxH, so that if W=4 and H=4, i ranges
from 1 to 16.

An eigenvector of tensor inertia, T, with the smallest
eigenvalue is calculated in block 666 using conventional
methods. An eigenvector direction along with the calculated
gravity center, defines an axis that minimizes the moment of
inertia. This axis is used as the optimal analog curve, which
in one embodiment, is a straight line. Those of ordinary skill
in the art will readily recognize that the optimal analog curve
is not limited to a straight line, but may include a set of
parameters, such as pixel values or colors, that minimizes
the moment of inertia or mean-square-error when fit to the
center of gravity of the pixel colors in the image block. The
set of parameters may define any geometric element, such as
a curve, plate, trapezoid, or the like.

FIG. 6E is a flowchart 670 describing the process under-
taken by the codeword generation module 410 (FIG. 4) for
selecting the partitions, computing the codewords and asso-
ciated error for the partitions, and storing the error value,
block type, and codeword if the error value is less than a
previously stored error value. In block 672, the codeword
generation module 410 projects the WxH color values onto
the previously constructed optimal analog curve. The value
of WxH is the size in number of pixels of an image block
320 (FIG. 3C). In one embodiment where W and H are both
four pixels, WxH is 16 pixels.

Subsequently in block 674, the colors are ordered sequen-
tially along the analog curve based on a position of the color

After the resulting optimal codewords 520 are identified,
40 the codewords 520 are forwarded to the bitmap construction

module 404 (FIG. 4). The bitmap construction module 404
uses the codewords 520 to identify the m colors that may be
specified or inferred from those codewords 520 in block 678.
In one embodiment, the bitmap construction module 404

45 uses the codewords 520 (e.g., CW, and CW1) to identify the
three or four colors that may be specified or inferred from
those codewords 520.

Next in block 680, the bitmap construction module 404
constructs a block bitmap 522 (FIG. 5C) using the code-

50 words 520 associated with the image block 320 (FIG. 3C).
Colors in the image block 320 are mapped to the closest
color associated with one of the quantized colors specified
by, or inferred from, the codewords 520. The result is a color
index, referenced as ID, per pixel in the block identifying the

55 associated quantized color.
Information indicating the block type is implied by the

codewords 520 and the bitmap 522. In one embodiment, the
order of the codewords 520 indicate the block type. If a
numerical value of CW, is greater than a numerical value of

60 CW1 , the image block is a four-color block. Otherwise, the
block is a three-color plus transparency block.

In one embodiment discussed above, there are two-color
image block types. One color image block type has four
equidistant colors, while the other color image block type

65 has three equidistant colors with the fourth color index used
to specify that a pixel is transparent. For both color image
block types, the color index is two bits. In an embodiment

US 6,775,417 B2
11

with density values in place of color values, each density
image block type has four equidistant density values.

The output of the bitmap construction module 404 is an
encoded image block 514 (FIG. 5B) having the m code-
words 520 plus the bitmap 522. Each encoded image block
516 is received by the encoded image composer 308 (FIGS.
3A and 3B) that, in turn, orders the encoded image blocks
516 in a file. In one embodiment, the encoded image blocks
516 are arranged from left to right and from top to bottom
in the same order as the blocks were broken down by the
image decomposer 302. The ordered file having the encoded
image blocks 516 is concatenated with the modified header
information 512 that is derived from the a-bit header 502 of
the original image 310 (FIGS. 3A and 3B) to generate the
encoded image data 510 that is the output of the image
encoder engine 202 (FIG. 2). The output may then be
forwarded to the memory 104, the storage device 106, or the
output device 110 (FIG. 1).

The exemplary embodiment of the image encoder engine
202 advantageously reduces the effective data size of an
image from 24-bits per pixel to 4-bits per pixel. Further, the
exemplary embodiment beneficially addresses transparency
issues by allowing codewords to be used with a transparency
identifier.

FIG. 7A is a block diagram of an exemplary image
decoder engine 204 (FIG. 2). The image decoder engine 204
includes an encoded image decomposer 702, a header con-
verter 704, one or more block decoders 706 (706a-706p,
where p represents the last block decoder), and an image
composer 708. The encoded image decomposer 702 is
coupled to received the encoded image data 514 (FIG. 5B)
output from the image encoder engine 202 (FIG. 2). The
encoded image decomposer 702 receives the encoded image
data string 510 and decomposes, or breaks, the encoded
image data string 510 into the header 512 (FIG. 5B) and the
encoded image blocks 514 (FIG. 5B). Next, the encoded
image decomposer 702 reads the modified header 512, and
forwards the modified header 512 to the header converter
704. The encoded image decomposer 702 also decomposes
the encoded image data string 510 into the individual
encoded image blocks 516 (FIG. 5B) that are forwarded to
the one or more block decoders 706.

The header converter 704 converts the modified header
512 into an output header. Simultaneously, the encoded
image blocks 516 are decompressed or decoded by the one
or more block decoders 706. Each encoded image block 516
may be processed sequentially in one block decoder 706, or
multiple encoded image blocks 514 may be processed in
parallel with one block decoder 706 for each encoded image
block 516. Thus, multiple block decoders 706 allow for
parallel processing that increases the processing perfor-
mance and efficiency of the image decoder engine 204 (FIG.
2).

The image composer 708 receives each decoded image
blocks from the one or more block decoders 706 and orders
the decoded image block in a file. Further, the image
composer 708 receives the converted header from the header
converter 704. The converted header and the decoded image
blocks are placed together to generate output data represent-
ing the original image 310.

FIG. 7B is a block diagram of an exemplary embodiment
of a block decoder 706. Each block decoder 706 includes a
block type detector 710, one or more decoder units 712, and
an output selector 714. The block type detector 710 is
coupled to the encoded image decomposer 702 (FIG. 7A),
the output selector 714, and each of the one or more decoder
units 712.

12
The block type detector 710 receives the encoded image

blocks 514 and determines the block type for each encoded
image block 516 (FIG. 5B). The block type is detected based
on the codewords 520 (FIG. 5C). After the block type is

5 determined, the encoded image blocks 514 are passed to
each of the decoder units 712, which decompress or decode
each encoded image block 516 to generate colors for each
particular encoded image block 516. The decoder units 712
may be c-channels wide (e.g., one channel for each color

10 component or pixel property being encoded), where c is any
integer value. Using the selector signal, the block type
detector 710 enables the output selector 714 to output the
color of each encoded image block 516 from one of the
decoder units 712 that corresponds with the block type

15 detected by the block type detector 710. Specifically, the
block type detector 710 passes a selector signal to the output
selector 714 that is used to select an output corresponding to
the block type detected. Alternatively, using the selector
signal, the appropriate decoder unit 712 could be selected so

20 that the encoded block is only processed through the
selected decoder unit.

FIG. 7C is a block diagram of an alternative embodiment
of a block decoder 706. In this embodiment, the block
decoder 706 includes a block type detector 720, a first

25 decoder unit 722, a second decoder unit 724, and an output
selector 726. The block type detector 720 is coupled to
receive each encoded image block 516 (FIG. 5B), and
determine by comparing the codewords 520 (FIG. 5C) of the
encoded image block, the block type for each encoded image

30 block 516. For example, the block type may be four quan-
tized colors or three quanitized colors and a transparency.
Once the block type is selected and a selector signal is
forwarded to the output selector 726, the encoded image
blocks 516 are decoded by the first and second decoder units

35 722 and 724, respectively, to produce the pixel colors of
each image block. The output selector 726 is enabled by the
block type detector 720 to output the colors from the first
and second decoder units 722 and 724 that correspond to the
block type selected.

40	 FIG. 7D is a logic diagram illustrating an exemplary
embodiment of a decoder unit similar to the decoder units
722 and 724 of FIG. 7C. For simplicity, the functionality of
each of the first and second decoder units 722 and 724 is
merged into the single logic diagram of FIG. 7D. Those

45 skilled in the art will recognize that although the diagram is
described with respect to a red-channel of the decoder units,
the remaining channels (i.e., the green-channel and the
blue-channel) are similarly coupled and functionally equiva-
lent.

50	 The logic diagram illustrating the first and second decoder
units 722 and 724 is shown including portions of the block
type detector 710, 720 (FIGS. 7B and 7C, respectively) such
as a comparator unit 730. The comparator unit 730 is
coupled to and works with a first 2x1 multiplexer 732a and

55 a second 2x1 multiplexer 732b. Both 2x1 multiplexers 732a
and 732b are coupled to a 4x1 multiplexer 734 that serves
to select an appropriate color to output. The 4x1 multiplexer
734 is coupled to receive a transparency indicator signal that
indicates whether or not a transparency (e.g., no color) is

60 being sent. The 4x1 multiplexer 734 selects a color for
output based on the value of the color index, referenced as
the ID signal, that references the associated quantized color
for an individual pixel of the encoded image block 514 (FIG.
5B).

65	 A red-channel 736 of the first decoder unit 722 includes
a first and a second red-channel line 738a and 738b and a
first and a second red-color block 740a and 740b. Along the

US 6,775,417 B2
1413

Next in block 824, the block type detector 710 detects the
block type for an encoded image block 514. Specifically, the
comparator 730 (FIG. 7D) compares the first and the second
codewords 520 (e.g., CW, and CIA/ i) and generates a flag
signal to enable the first 2x1 multiplexer 732a or the second
2x1 multiplexer 732b. In block 826, either the first decoder
unit 722 or the second decoder unit 724 is selected.

Subsequently quantized color levels for the decoder units
722 and 724 are calculated in block 828. The calculation of
the quantized color levels will now be discussed in more

10 detail. Initially, the first decoder unit 722 calculates the four
colors associated with the two codewords 520 (e.g., CW,
and CIA/l) using the following exemplary relationship:

CW0=first codeword=first color;
CIVi=second codeword=second color;

path of each red-color block 740a and 740b is a first full
adder 742a and 742b, a second full adder 744a and 744b,
and carry-look ahead ("CLA") adders 746a and 746b. The
second decoder unit 724 contains similar components as the
first decoder unit 722. 5

The CLA adder 746a of the first red-color block 740a path
of the first decoder unit 722 is coupled to the first 2x1
multiplexer 732a, while the CLA adder 746b of the second
red-color block 740b path of the first decoder unit 722 is
coupled to the second 2x1 multiplexer 732b. Further, adder
748 of the second decoder unit 724 is coupled to both the
first and the second 2x1 multiplexers 732a and 732b.

FIG. 8A is a flowchart 800 illustrating an operation of the
decoder engine 204 (FIG. 2) in accordance with an exem-
plary embodiment of the present invention. For purposes of
illustration, the process for the decoder engine 204 will be
described with a single block decoder 706 (FIG. 7A) having
two decoder units 722 and 724 as described earlier in
connection with FIG. 7C. Those skilled in the art will
recognize that the process is functionally equivalent for
decoder systems having more than one block decoder 706
and more than two decoder units 712, as discussed in
connection with FIG. 7B.

In block 802, the encoded image decomposer 702 (FIG.
7A) receives the encoded or compressed image data 510
(FIG. 5B) from the image encoder engine 202 (FIG. 2),
through the memory 104 (FIG. 1) or the storage device 106
(FIG. 1). Next, the encoded image decomposer 702 decom-
poses the encoded image data 510 by forwarding the modi-
fied header 512 (FIG. 5B) to the header converter 704 (FIG.
7A) in block 804.

Subsequently in block 806, the header converter 704
converts the header information to generate an output header
that is forwarded to the image composer 708 (FIG. 7A).
Simultaneously, the one or more block decoders 706 (FIG.
7A) decode pixel colors for each encoded image block 516
(FIG. 5B) in block 808. Each encoded image block 516 may
be decoded sequentially in one block decoder 706 or mul-
tiple encoded image blocks 514 (FIG. 5B) may be decoded
in parallel in multiple block decoders 706 in block 808. The
process for decoding each encoded image block 516 is
further described in connection with FIG. 8B. Each decoded
image block is then composed into a data file with the
converted header information by the image composer 708 in
block 810. The image composer 708 then generates the data
file as an output that represents the original image 310
(FIGS. 3A and 3B).

FIG. 8B is a flowchart 820 illustrating an operation of the
block decoder 706 (FIG. 7A) in accordance with an exem- 5 0

plary embodiment of the present invention. Initially, each
encoded image block 516 (FIG. 5B) is received by the block
decoder 706 in block 822. Specifically, for one embodiment
the first and the second codewords 520 (e.g., CW, and CIV,
of FIG. 5C) are received by the block type detector 710, 720
(FIGS. 7B and 7C, respectively) of the block decoder 706.
As discussed above, comparing the numerical values of
CW, and CIV, reveals the block type. The first five bits of
each codeword 520 that represent the red-channel color are
received by the red-channel of each of the first and second 60

decoder units 722 and 724 (FIG. 7C). Furthermore, the
second 6-bits of each codeword 520 that represent the
green-channel color are received by the green-channel of
each of the first and the second decoder units 722 and 724,
while the last 5-bits of each codeword 520 that represent the
blue-channel color are received by the blue-channel of each
of the first and second decoder units 722 and 724.

2	 1
CW2 = third color = —

3
CW0 + —

3
CW1 ; and

	

1	 2
CW3 = fourth color = —

3
CW0 + —

3
CW1.

In one embodiment, the first decoder unit 722 may
estimate the above equations for CW 2 and CW3 as follows:

	5 	 3

	

CW2 = —
8	 8

CW0 + — CW1 ; and

	

3	 5
CW3 = —

8
CW0 + —

8
CM.

The red-color blocks 740a and 740b (FIG. 7D) serve as
one-bit shift registers to obtain

	1 	 1
—
2

CW0 or —
2

CW1.

Further, each full adder 742a, 742b, 744a, and 744b (FIG.
7D) also serves to shift the signal left by 1-bit. Thus, the
signal from the first full adders 742a and 742b is

1

4
-
1

CW0 or
4
— CW1,

respectively, because of a 2-bit overall shift, while the signal
from the second full adders 744a and 744b is

	1 	 1
-CW0 or -CW1,

15

2 0

25

30

35

40

45

respectively due to a 3-bit overall shift. These values allow
for the above approximations for the color signals.

The second decoder unit 724 (FIG. 7C) calculates three
colors associated with the codewords 520 (e.g., CVV0 and
CW1), and includes a fourth signal that indicates a trans-

55 parency is being passed. The second decoder unit 724
calculates colors using the following exemplary relation-
ship:

CW0=first codeword=first color;
CIVi=second codeword=second color;

1	 1
CW3 = third color = —

2
CW0 + —

2
CW

1'
• and

65	 T=Transparency.
In one embodiment, the second decoder unit 724 has no
approximation because the signals received from the red-

US 6,775,417 B2
15 16

color blocks 740a and 740b are shifted left by 1-bit so that
the color is already calculated to

1	 1
—
2

CW0 or —
2

CW1,

respectively.
After the quantized color levels for the decoder units 722

and 724 selected in block 826 have been calculated in block
828, each bitmap value for each pixel is read from the
encoded image data block 510 (FIG. 5A) in block 830. As
each index is read, it is mapped in block 832 to one of the
four calculated colors if the first decoder unit 722 is selected.
Alternatively, one of the three colors and transparency is
mapped in block 832 if the second decoder unit 724 is
selected. The mapped colors are selected by the 4x1 multi-
plexer 734 based on the value of the ID signal from the
bitmap 522 (FIG. 5C) of the encoded image block 514. As
stated previously, a similar process occurs for selection of
colors in the green-channel and the blue-channel.

As the color data are output from the red-channel, green-
channel and blue-channel, the output is received by the
image composer 708 (FIG. 7A). Subsequently, the image
composer 708 arranges the output from the block encoders
706 in the same order as the original image 310 was
decomposed. The resulting image is the original image 310,
which is then forwarded to an output unit 208 (FIG. 2; e.g.,
a computer screen) which displays the image.

This exemplary embodiment beneficially allows for ran-
dom access to any desired image block 320 (FIG. 3C) within
an image, and any pixel 322 (FIG. 3C) within an image
block 320. FIG. 9A is a block diagram of a subsystem 900
that provides random access to a pixel 322 or an image block
320 in accordance with one embodiment of the present
invention.

The random access subsystem 900 includes a block
address computation module 902, a block fetching module
904, and one or more block decoders 706 coupled to the
block address computation module 902 and the block fetch-
ing module 904. The block address computation module 902
receives the header information 512 (FIG. 5B) of the
encoded image data string 510 (FIG. 5B), while the block
fetching module 904 receives the encoded image block
portion 514 (FIG. 5B) of the encoded image data string 510.

FIG. 9B is a flowchart 910 of a process for random access
to a pixel 322 (FIG. 3C) or an image block 320 (FIG. 3C)
using the random access subsystem 900 of FIG. 9A. When
particular pixels 322 have been identified for decoding, the
image decoder engine 204 (FIG. 2) receives the encoded
image data string 510 (FIG. 5B). The modified header 512
(FIG. 5B) of the encoded image data string 510 is forwarded
to the block address computation module 902 (FIG. 9A), and
the encoded image block portion 514 (FIG. 5B) of the
encoded image data string 510 is forwarded to the block
fetching module 904 (FIG. 9A).

In block 912, the block address computation module 902
reads the modified header 512 to compute an address of the
encoded image block portion 514 having the desired pixels
322. The address computed is dependent upon the pixel
coordinates within an image. Using the computed address,
the block fetching module 904 identifies each encoded
image block 516 (FIG. 5B) of the encoded image block
portion 514 that contains the desired pixels 322 in block 914.
Once each encoded image block 516 having the desired
pixels 322 has been identified, only the identified encoded
image block 516 is forwarded to the block decoders 706
(FIG. 9A) for processing.

FIG. 9B is similar to the process described above in FIG.
8B, wherein the block decoders 706 compute quantized
color levels for each identified encoded image blocks 516
having the desired pixels in block 916. After the quantized

5 color levels have been computed, the color of the desired
pixel is selected in block 918 and output from the image
decoder engine 204.

Random access to pixels 322 of an image block 320 (FIG.
3C) advantageously allows for selective decoding of only
needed portions or sections of an image. Random access also
allows the image to be decoded in any order the data is
required. For example, in three-dimensional texture map-
ping only portions of the texture may be required and these
portions will generally be required in some non-sequential
order. Thus, this embodiment of the present invention

is increases processing efficiency and performance when pro-
cessing only a portion or section of an image. Further, the
present invention beneficially encodes or compresses the
size of an original image 310 (FIGS. 3A and 3B) from
24-bits per pixel to an aggregate 4-bits per pixel, and then

20 decodes or decompresses the encoded image data string 510
(FIG. 5B) to get a representation of the original image 310.
Additionally, the exemplary embodiment uses two base
points or codewords from which additional colors are
derived so that extra bits are not necessary to identify a pixel

2 5 322 color.
Moreover, the exemplary embodiment advantageously

accomplishes the data compression on an individual block
basis with the same number of bits per block so that the
compression rate can remain fixed. Further, because the

30 blocks are of fixed size with a fixed number of pixels 322,
random access to any particular pixel 322 in the block is
allowed. Additionally, an efficient use of system resources is
provided because entire blocks of data are not retrieved and
decoded to display data corresponding to only a few pixels

3 5 322.
Finally, the use of fixed-rate 64-bit data blocks provides

the advantage of having simplified header information that
allows for faster processing of individual data blocks. A
64-bit data block allows for faster processing as the need to

40 wait until a full data string is assembled is eliminated.
Further, an imaging system in accordance with the present
invention may also reduce the microchip space necessary for
a decoder system because the decoder system only needs to
decode each pixel 322 to a set of colors determined by, for

45 example, the two codewords 520 (FIG. 5C).
The present invention has been described above with

reference to specific embodiments. It will be apparent to
those skilled in the art that various modifications may be
made and other embodiments can be used without departing

50 from the broader scope of the invention. Therefore, these
and other variations upon the specific embodiments are
intended to be covered by the present invention.

What is claimed is:
1. An image encoder engine for encoding an image,

55 comprising:
an image decomposer for decomposing the image into a

header and at least one image block, each image block
having a set of image elements and each image element
having an original image data value;

60	 at least one block encoder for receiving each image block
and for compressing each image block into an encoded
image block by associating each original image data
value of the image element with an index to a derived
image data value in a set of quantized image date

65	 values; and
an encoded image composer coupled to the block encoder

for ordering the encoded image blocks into a data file.

1 0

US 6,775,417 B2
17 18

2. The image encoder engine of claim 1 further compris-
ing a header converter coupled to the image decomposer for
converting the header into a modified header.

3. The image encoder engine of claim 2 wherein the
encoded image composer orders the encoded image block
and the modified header into a data file.

4. The image encoder engine of claim 1 wherein the block
encoder further comprises a selection module for computing
a set of parameters from the image data values of the set of
image elements.

5. The image encoder engine of claim 1 wherein the block
encoder further comprises a codeword generation module
for generating at least one codeword.

6.The image encoder engine of claim 1 wherein the block
encoder further comprises a construction module for gener-
ating the set of quantized image data values including at
least one codeword and at least one derived image data
value.

7. The image encoder engine of claim 1 wherein the block
encoder further comprises a block type module for selecting
an identifiable block type for the image block.

8. An image decoder engine for decoding an encoded
image data file, comprising:

an encoded image decomposer for decomposing the
encoded image data file into a modified header and at
least one compressed image block, each image block
having at least one associated codeword and a plurality
of image elements associated with an index value;

at least one block decoder coupled to the encoded image
decomposer for decompressing the at least one com-
pressed image block into at least one decompressed
image block by generating a set of quantized image
data values and mapping the index value to a quantized
image data value from the set of quantized image data
values; and

an image composer for ordering the at least one decom-
pressed image blocks in an output data file.

9.The image decoder engine of claim 8 wherein the set of
quanitized image data values include the at least one code-
word and at least one image data value derived from the at
least one codeword.

10. The image decoder engine of claim 8 further com-
prising a header converter coupled to the encoded image
decomposer for converting the modified header into an
output header.

11. The image decoder engine of claim 10 wherein the
image composer orders the at least one decompressed image
block and the output header into a data file.

12. The image decoder engine of claim 8 wherein the at
least one block decoder further comprises a block type
detector for selecting a block type for each of the at least one
compressed image block.

13. The image decoder engine of claim 8 wherein the at
least one block decoder further comprises a decoder for
decompressing each of the at least one compressed image
block based on a block type.

14. The image decoder engine of claim 8 wherein the at
least one block decoder further comprises an output selector
for outputting the at least one decompressed image block.

15. A method for fixed-rate block-based image compres-
sion of an original image, comprising the steps of:

decomposing the original image into a header and a
plurality of image blocks each having a set of image
elements with an original image data value;

computing at least one codeword from the original image
data value for the set of image elements;

generating a set of quantized image data values including
the at least one codeword and at least one image value
derived from the at least one codeword; and

mapping the original image data value to one of the
5	 quantized image data values to produce an index value

for each image element.
16. The method of claim 15 further comprising outputting

an encoded image data file.
17. The method of claim 15 further comprising the step of

10 converting the header into a modified header.
18. The method of claim 17 further comprising the step of

composing the modified header and encoded image blocks
into the encoded image data file.

19.A machine readable medium having embodied thereon
15 a program being executable by a machine to perform method

steps for fixed-rate block-based image compression of an
original image, the method steps comprising:

decomposing the original image into a header and a
plurality of image blocks each having a set of image

20	 elements with an original image data value;
computing at least one codeword from the original image

data value for the set of image elements;
generating a set of quantized image data values including

25	 the at least one codeword and at least one image value
derived from the at least one codeword; and

mapping the original image data value to one of the
quantized image data values to produce an index value
for each image element.

30	 20. The machine readable medium of claim 19 further
comprising the method of outputting an encoded image data
file.

21. An image encoder system for encoding an original
image, comprising:

35	 means for decomposing the original image into a header
and a plurality of image blocks each having a set of
image elements with an original image data value;

means for computing at least one codeword from the
original image data value for the set of image elements;

40 means for generating a set of quantized image data values
including the at least one codeword and at least one
image value derived from the at least one codeword;
and

means for mapping the original image data value to one
of the quantized image data values to produce an index
value for each image element.

22. The image encoder system of claim 21 further com-
prising means for outputting an encoded image data file.

23. A method for fixed-rate block-based image decom-
pression of an encoded image, comprising the steps of:

decomposing the encoded image of into a modified header
and a plurality of encoded image blocks having at least
one codeword and a plurality of image elements asso-

55	 ciated with an index value;
generating a set of quanitized image data values including

the at least one codeword and at least one image value
derived from the at least one codeword; and

mapping the index value for each image element to one of
60	 the quantized image data values.

24. The method of claim 23 further comprising outputting
a decoded image data file.

25. The method of claim 23 further comprising the step of
converting the modified header into an output header.

65 26. The method of claim 25 further comprising the step of
composing the output header and decoded image blocks into
the decoded image data file.

4 5

5

US 6,775,417 B2
19 20

27.A machine readable medium having embodied thereon
a program being executable by a machine to perform method
steps for fixed-rate block-based image decompression of an
encoded image, the method steps comprising:

decomposing the encoded image data file into a modified
header and a plurality of encoded image blocks having
at least one codeword and a plurality of image elements
associated with an index value;

generating a set of quanitized image data values including
the at least one codeword and at least one image value
derived from the at least one codeword; and

mapping the index value for each image element to one of
the quantized image data values.

28. The machine readable medium of claim 27 further
comprising the method of outputting a decoded image data
file.

29. An image decoder engine for decoding an encoded
image data file, comprising means for decomposing the
encoded image data file into a modified header and a
plurality of encoded image blocks having at least one

5 codeword and a plurality of image elements associated with
an index value;

means for generating a set of quanitized image data values
including the at least one codeword and at least one
image value derived from the at least one codeword;
and

means for mapping the index value for each image
element to one of the quantized image data values.

30. The image decoder engine of claim 29 further com-
prising means for outputting a decoded image data file.

10

15

Exhibit D

Image
Decoder
Engine
294

Encoded Image
Decomposer

ata

Header Converter

Block Decoder
Zfla

	 mega Corn

111111111111111111111111111!!10 1111111111111111111111111111111

(12) United States Patent	 (10) Patent No.: 	 US 7,043,087 B2
Hong et al.	 (45) Date of Patent: 	 May 9, 2006

IMAGE PROCESSING SYSTEM

Inventors: Zhou Hong, Cupertino, CA (US);
Konstantine I. Iourcha, San Jose, CA
(US); Krishna S. Nayak, Palo Alto, CA
(US)

Assignee:	 S3 Graphics Co., Ltd., Grand Cayman
(KY)

Notice:	 Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

JP

	

4,887,151 A	 12/1989	 Wataya 	

	

5,734,744 A	 3/1998	 Wittenstein et al. 	

	

5,742,892 A	 4/1998	 Chaddha 	

	

5,748,904 A	 5/1998	 Huang et al. 	

	

5,768,535 A *	 6/1998	 Chaddha et al. 	

	

5,787,192 A	 7/1998	 Takaichi et al. 	

	

5,822,465 A	 10/1998	 Normile et al. 	

	

5,956,425 A	 9/1999	 Yoshida 	

(Continued)

FOREIGN PATENT DOCUMENTS

401 284 188	 11/1989

(Continued)

358/539
382/166
725/146
345/544
709/247
382/166
382/253
382/234

Appl. No.: 10/893,084	 OTHER PUBLICATIONS

Filed:	 Jul. 16, 2004
	

A. Schilling, et al.; "Texram: A Smart Memory for Textur-

(Under 37 CFR 1.47)
	

ing"; IEEE Computer Graphics & Applications; May 1996;
16(3) pp. 9-19.

(65)	 Prior Publication Data	 (Continued)
US 2004/0258321 Al 	 Dec. 23, 2004	

Primary Examiner Anh Hong Do

(54)

(75)

(73)

*)

(21)

(22)

Related U.S. Application Data

(63) Continuation of application No. 10/052,613, filed on
Jan. 17, 2002, now Pat. No. 6,775,417, which is a
continuation-in-part of application No. 09/351,930,
filed on Jul. 12, 1999, now Pat. No. 6,658,146, which
is a continuation of application No. 08/942,860, filed
on Oct. 2, 1997, now Pat. No. 5,956,431.

(51) Int. Cl.
GO6K 9/36	 (2006.01)

(52) U.S. Cl. 	 382/233; 382/166; 382/232;
382/253

(58) Field of Classification Search 	 382/253,
382/232, 233, 166, 162; 375/240.03, 240.16;

709/247; 370/394
See application file for complete search history.

(56)
	

References Cited

U.S. PATENT DOCUMENTS

(74) Attorney, Agent, or Firm 	 Carr & Ferrell LLP

(57)	 ABSTRACT

An image processing system including an image encoder
and image decoding system is provided. The image encoder
system includes an image decomposer, a block encoder, and
an encoded image composer. The image decomposer
decomposes the image into blocks. The block encoder,
which includes a selection module, a codeword generation
module and a construction module, processes the blocks.
Specifically, the selection module computes a set of param-
eters from image data values of a set of image elements in
the image block. The codeword generation module gener-
ates codewords, which the construction module uses to
derive a set of quantized image data values. The construction
module then maps each of the image element's original
image data values to an index to one of the derived image
data values. The image decoding system reverses this pro-
cess to reorder decompressed image blocks in an output data
file.

4,821,208 A	 4/1989 Ryan et al. 	 345/550	 8 Claims, 16 Drawing Sheets

Encoded image Data

Output

US 7,043,087 B2
Page 2

U.S. PATENT DOCUMENTS

5,956,431 A	 9/1999 Iourcha et al. 	 382/253

6,075,619 A	 6/2000 Iizuka 	 382/166

6,088,392 A * 7/2000 Rosenberg 	 375/240.03

6,658,146 B1	 12/2003 Iourcha et al. 	 382/166

6,775,417 Bl* 8/2004 Hong et al. 	 382/253
2004/0258322 Al	 12/2004 Hong et al. 	 382/253

FOREIGN PATENT DOCUMENTS

JP
	

405 216 993	 8/1993

OTHER PUBLICATIONS

G. Knittel, et al.; "Hardware and Software for Superior
Texture Performance": In 10; Eurographics Hardware Work-
shop '95; Maastricht, NL; Aug. 28-29, 1995; pp. 1-8.
G. Campbell, et al.; "Two Bit/Pixel Full Color Encoding";
Computer Graphics, (Proc. Siggraph '86); Aug. 18-22,
1986; vol. 20, No. 4, Dallas TX; pp. 215-219.
Feng et al., "A Dynamic Address Vector Quantization Algo-
rithm ... ", IEEE Int'l Conf. on Acoustics, Speech & Signal
Proc., vol. 3, May 1989, pp. 1755-1758.

Yang et al., "Hybrid Adaptive Block Truncation Coding for
Image Compression," Optical Eng., Soc. of Photo-Optical
Instr. Eng., vol. 36, No. 4, Apr. 1, 1997 pp. 1021-1027.
Kugler, "High-Performance Texture Decompression Hard-
ware," Visual Computer, Springer, Berlin, Germany, vol. 13,
No. 2, 1997, pp. 51-63.
Panos Nasiopoulos et al., "Adaptive Compression Coding,"
IEEE Transactions on Communications, IEEE Inc., New
York, USA, vol. 39, No. 8, Aug. 1, 1991, pp. 1245-1254.
Delp E.J. et al., "Image Compression Using Block Trunca-
tion Coding," IEEE Inc., New York, USA, vol. COM-27,
No. 9, Sep. 1979, pp. 1335-1342.
Yang et al., "Use of Radius Weighted Mean to Cluster
Two-Class Data," Electronics Letters, IEE Stevenage, Great
Britain, vol. 30, No. 10, May 12, 1994, pp. 757-759.
Russ, J.C. et al., "Optimal Grey Scale Images from
Multiplane Color Images," Journal of Computer-Assisted
Microscopy, Dec. 1995, Plenum, USA, vol. 7, No. 4, pp.
221-233.
Knittel et al., "Hardware for Superior Texture Performance,"
Eurographics Workshop on Graphics Hardware, Jul. 28,
1995, pp. 33-40.

* cited by examiner

U.S. Patent US 7,043,087 B2May 9, 2006	 Sheet 1 of 16

NI
(1 0
U T

U)
a)U

81

4111••=1

CD
U-

Cl)
a)U

Q
c

U.S. Patent	 May 9, 2006	 Sheet 2 of 16	 US 7,043,087 B2

Image Source
206

200

Image Encoder
Engine

202

Image Decoder
Engine

204

Memory
104

Storage Device
106

Output
208FIG. 2

45
cp 0

0. c‘j
• EE o co— a

a)

CO

CO
O

ir)
ta)
C

00
a)
a)
-a
U)

CC/C\I

Jcpc

a)
0) 01
CCS

co

co

U.S. Patent	 May 9, 2006
	

Sheet 3 of 16	 US 7,043,087 B2

• X

N

U.S. Patent	 May 9, 2006 Sheet 4 of 16	 US 7,043,087 B2

a
Co

d
U-

0
Cr)
Cl) 2

Block Type Module
406

Curve Selection
Module

408

Codeword
Generation Module

410

Ti

er

Quantizer
402

Bitmap
Construction

Module
404

Block Encod
306

FIG. 4

U.S. Patent	 May 9, 2006
	

Sheet 5 of 16	 US 7,043,087 B2

• •
Mod.

Header
512

516a 516b 516c 516q

I	 I
Bitmap

CW0 • • •

U.S. Patent
	

May 9, 2006	 Sheet 6 of 16
	

US 7,043,087 B2

a—bit
Header

502

Is-bit
Image Data 504

500
	

FIG. 5A

514

510
	

FIG. 5B

520
	

522

518
	

FIG. 5C

Input Image
602

C Start

Decompose Image
into Blocks

604

Convert
Header Info

606

Encode Each
Block
608

Compose Header
and Encoded

Blocks
610

600

U.S. Patent	 May 9, 2006
	

Sheet 7 of 16	 US 7,043,087 B2

Start

Compute
Codewords

622

Quantize Colors for
Image Block

624

608

(End)

620

FIG. 6B

Write Header and
Encoded Blocks

612

(End)

FIG. 6A

U.S. Patent US 7,043,087 B2May 9, 2006	 Sheet 8 of 16

(Start

Select Block
Type
632

Store Error
642

Compute
Optimal Analog

Curve
634 Store Block

Type and
Codewords

644
Select Partition

636

Compute
Optimal

Codewords for
Partition

638

Partitions
Complete?

Block Types
Complete?

Compute Error
640

Output Block
Type &

Codewords
Producing Min.

Error
650

630 (End

FIG. 6C

U.S. Patent	 May 9, 2006 Sheet 9 of 16	 US 7,043,087 B2

C Start Start

Compute Center of Gravity
662

Project WxH Color
Values

672

Identify Vector
664 Order Colors

674

Calculate Eigenvector of
Tensor Inertia

666
Find Optimal Partitions

676

End Identify m Colors
678

660

FIG. 6D
Construct Block Bitmap

680

End

670

FIG. 6E

U.S. Patent	 May 9, 2006
	

Sheet 10 of 16	 US 7,043,087 B2

Encoded Image Data

Image
Decoder
Engine

204

Header Converter
704

Encoded Image
Decomposer

702

Block Decoder

r '
Block Decoder

706

Image Composer
708

,

Output

FIG. 7A

U.S. Patent	 May 9, 2006
	

Sheet 11 of 16	 US 7,043,087 B2

Block Decoder
706

Block Type
Detector

710

7

n n •

kth
Decoder

Unit
712

First
Decoder

Unit
712

Second
Decoder

Unit
712

Output Selector
714

FIG. 7B

U.S. Patent	 May 9, 2006
	

Sheet 12 of 16	 US 7,043,087 B2

Block Decoder
706

Block Type
Detector

720

First
Decoder

Unit
(4-color)

722

Second
Decoder Unit

(3-color &
transparency)

724

Output Selector
726

FIG. 7C

U.S. Patent	 May 9, 2006 Sheet 13 of 16	 US 7,043,087 B2

740a1

742a

y
color 0 R

(or G or B)

R (or G or B) channel of color 1

740b-/
color 1 R

(or G or B)

738b1

full adder

codeword 0(16)
A

520

codeword 0(16)

ID
(2)

ID
(2)

ID
(2)

ID
(2)

522

ID
(2)

ID
(2)

ID
(2)

ID
(2)

ID
(2)

ID
(2)

ID
(2)

ID
(2)

ID ID ID ID
(2) (2) (2) (2)

546

color 0
(16)

comparator
> (16 bits)

7361 738a1

R (or G or B) channel of color 0

co or 1
(16)

510

730

742b
full adder

V
full adderfull adder

1-744a

CLA adder
c)744b V

adder

C2748

2x1 MUX 	

732b

2x1 MUX/

732a

CLA adder 746b

1746a

4x1 MUX
	

ID

734

texel color R (or G or B) channel

FIG. 7D

Compose Header
and Decoded

Blocks
810

Decode Image
Blocks

808

Decompose
Encoded Image

Data
804

•	

Convert Header
Information

806

Receive Encoded
Image Data

802

U.S. Patent	 May 9, 2006

/
800

C Start

(End

Sheet 14 of 16	 US 7,043,087 B2

FIG. 8A

U.S. Patent	 May 9, 2006
	

Sheet 15 of 16	 US 7,043,087 B2

(Start

Receive Encoded
Image Block

822

Detect Block Type
824 Read Bitmap Value

for Each Pixel
830

Select Decoder
Unit
826 Map Each Pixel to

Calculated Color
832

Calculate
Quantized Color

Levels
828

End

FIG. 8B 820

Block Address
Computation Module

902

Block Fetching Module
904

Block Decoder
706 900

U.S. Patent	 May 9, 2006
	

Sheet 16 of 16	 US 7,043,087 B2

Header Data
	

Image Block
Portion Data

FIG. 9A

(Start)

Compute Address
912

Identify Encoded Image
Block
914

Compute Quantization
Color Levels

916

Select Color
918

/	 (End

910	 FIG. 9B

US 7,043,087 B2
21

1. Field of the Invention
The present invention relates generally to image process-

ing, and more particularly to three-dimensional rendering
using fixed-rate image compression.

2. Description of Related Art
Conventionally, generating images, such as realistic and

animated graphics on a computing device, required tremen-
dous memory bandwidth and processing power on a graph-
ics system. Requirements for memory and processing power
are particularly true when dealing with three-dimensional
images. In order to reduce bandwidth and processing power
requirements, various compression methods and systems
have been developed including Entropy or lossless encoders,
Discrete Cosine Transform (DCT) or JPEG type compres-
sors, block truncation coding, and color cell compression.
However, these methods and systems have numerous dis-
advantages.

Entropy or lossless encoders include Lempel-Ziv encod-
ers, which rely on predictability. For data compression using
entropy encoders, a few bits are used to encode most
commonly occurring symbols. In stationary systems where
probabilities are fixed, entropy coding provides a lower
bound for compression than can be achieved with a given
alphabet of symbols. However, coding does not allow ran-
dom access to any given symbol. Part of the compressed
data preceding a symbol of interest must be first fetched and
decompressed to decode the symbol, requiring considerable
processing time and resources, as well as decreasing
memory throughput. Another problem with existing entropy
methods and systems is that no guaranteed compression
factor is provided. Thus, this type of encoding scheme is
impractical where memory size is fixed.

Discrete Cosine Transform (DCT) or JPEG-type com- 55
pressors allow users to select a level of image quality. With
DCT, uncorrelated coefficients are produced so that each
coefficient can be treated independently without loss of
compression efficiency. The DCT coefficients can be quan-
tized using visually-weighted quantization values which 6o
selectively discard least important information.

DCT, however, suffers from a number of shortcomings.
One problem with DCT and JPEG-type compressors is a
requirement of large blocks of pixels, typically, 8x8 or
16x16 pixels, as a minimally accessible unit in order to 65

obtain a reasonable compression factor and quality. Access
to a very small area, or even a single pixel involves fetching

45

25

30

35

50

a large quantity of compressed data; thus requiring increased
processor power and memory bandwidth. A second problem
is that the compression factor is variable, therefore requiring
a complicated memory management system that, in turn,
requires greater processor resources. A third problem with
DCT and JPEG-type compression is that using a large
compression factor significantly degrades image quality. For
example, an image may be considerably distorted with a
form of ringing around edges in the image as well as
noticeable color shifts in areas of the image. Neither artifact
can be removed with subsequent low-pass filtering.

A further disadvantage with DCT and JPEG-type com-
pression is the complexity and significant hardware cost for
a compressor and decompressor (CODEC). Furthermore,
high latency of a decompressor results in a large additional
hardware cost for buffering throughout the system to com-
pensate for the latency. Finally, DCT and JPEG-type com-
pressors may not be able to compress a color-keyed image.

Block truncation coding (BTC) and color cell compres-
sion (CCC) use a local one-bit quantizer on 4x4 pixel
blocks. Compressed data for such a block consists of only
two colors and 16-bits that indicate which of the two colors
is assigned to each of 16 pixels. Decoding a BTC/CCC
image consists of using a multiplexer with a look-up table so
that once a 16-texel (or texture element, which is the
smallest addressable unit of a texture map) block (32-bits) is
retrieved from memory, the individual pixels are decoded by
looking up the two possible colors for that block and
selecting the color according to an associated bit from 16
decision bits.

Because the BTC/CCC methods quantize each block to
just two color levels, significant image degradation may
occur. Further, a two-bit variation of CCC stores the two
colors as 8-bit indices into a 256-entry color lookup table.
Thus, such pixel blocks cannot be decoded without fetching
additional information, which may consume additional
memory bandwidth.

The BTC/CCC methods and systems can use a 3-bit per

40
pixel scheme, which stores the two colors as 16-bit values
(not indices into a table) resulting in pixel blocks of six
bytes. Fetching such units, however, decreases system per-
formance because of additional overhead due to memory
misalignment Another problem associated with BTC/CCC
methods is a high degradation of image quality when used
to compress images that use color keying to indicate trans-
parent pixels.

Therefore, there is a need for a system and method that
maximizes accuracy of compressed images while minimiz-
ing storage, memory bandwidth requirements, and decoding
hardware complexities. There is a further need for com-
pressing image data blocks into convenient sizes to maintain
alignment for random access to any one or more pixels.

IMAGE PROCESSING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

5

This application is a continuation of and claims the
priority benefit of U.S. patent application Ser. No. 10/052,
613 entitled "Fixed-Rate Block-Based Image Compression
with Inferred Pixel Values" filed Jan. 17, 2002 and now U.S.
Pat. No. 6,775,417, which is a continuation-in-part of U.S. 10
patent application Ser. No. 09/351,930 entitled "Fixed-Rate
Block-Based Image Compression with Inferred Pixel Val-
ues" filed Jul. 12, 1999 and now U.S. Pat. No. 6,658,146
which is a continuation of U.S. patent application Ser. No.
08/942,860 entitled "System and Method for Fixed-Rate 15
Block-Based Image Compression with Inferred Pixel Val-
ues" filed Oct. 2, 1997 and now U.S. Pat. No. 5,956,431. The
disclosure of the above-referenced applications and patents
are incorporated herein by reference.

20

BACKGROUND OF THE INVENTION

SUMMARY OF THE INVENTION

The present invention provides for fixed-rate block based
image compression with inferred pixel values. An image
processing system includes an image encoder engine and an
image decoder engine. The image encoder engine includes
an image decomposer, at least one block encoder, and an
encoded image composer. The block decomposer decom-
poses an original image into a header and a plurality of
blocks, which are composed of a plurality of image elements
or pixels. The block encoder subsequently processes each
block. The block encoder includes a selection module, a
codeword generation module, and a construction module.

US 7,043,087 B2
43

Specifically, the selection module computes a set of param-
eters from image data values of each set of image elements.
The codeword generation module then generates codewords,
which are reference image data values such as colors or
density values. Subsequently, the construction module uses 5

the codewords to derive a set of quantized image data
values. The construction module then maps each of the
image element's original image data values with an index to
one of the derived image data values. Finally, the codewords
and indices are output as encoded image blocks. 10

Conversely, the image decoder engine includes an
encoded image decomposer, at least one block decoder, and
an image composer. The image decomposer takes the
encoded image and decomposes the encoded image into a
header and plurality of encoded image blocks. The block 15
decoder uses the codewords in the encoded image blocks to
generate a set of derived image data values. Subsequently,
the block decoder maps the index values for each image
element to one of the derived image data values. The image
composer then reorders the decompressed image blocks in 20
an output data file, which is forwarded to a display device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data processing system, 25

according to an embodiment of the present invention;
FIG. 2 is a block diagram of an image processing system;
FIG. 3A is a block diagram of one embodiment of an

image encoder system;
FIG. 3B is a block diagram of an alternative embodiment 30

of an image encoder system;
FIG. 3C is a graphical representation of an image block;
FIG. 3D is a graphical representation of a three-dimen-

sional image block;
FIG. 4 is a block diagram of an image block encoder of 35

FIG. 2A, 3A, or 3B;
FIG. 5A is a data sequence diagram of an original image;
FIG. 5B is a data sequence diagram of encoded image

data of an original image output from the image encoder
system; 40

FIG. 5C is a data sequence diagram of an encoded image
block from the image block encoder of FIG. 4;

FIG. 6A-6E are flowcharts illustrating encoding pro-
cesses, according to the present invention;

FIG. 7A is a block diagram of an image decoder system; 45

FIG. 7B is a block diagram of one embodiment of a block
decoder of FIG. 7A;

FIG. 7C is a block diagram of an alternative embodiment
of a block decoder of FIG. 7A;

FIG. 7D is a logic diagram illustrating an exemplary 50

decoder unit, according to the present invention;
FIG. 8A is a flowchart illustrating a decoding process of

the image decoder of FIG. 2;
FIG. 8B is a flowchart illustrating operations of the block

encoder of FIG. 7A;	 55

FIG. 9A is a block diagram of a subsystem for random
access to a pixel or an image block; and

FIG. 9B is a flowchart illustrating random access to a
pixel or an image block.

60

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 is a block diagram of an exemplary data processing
system 100 for implementing the present invention. The data 65

processing system 100 comprises a CPU 102, a memory
104, a storage device 106, input devices 108, output devices

110, and a graphics engine 112 all of which are coupled to
a system bus 114. The memory 104 and storage device 106
store data within the data processing system 100. The input
device 108 inputs data into the data processing system 100,
while the output device 110 receives data from the data
processing system 100. Although the data bus 114 is shown
as a single line, alternatively, the data bus 114 may be a
combination of a processor bus, a PCI bus, a graphic bus, or
an ISA bus.

FIG. 2 is a block diagram of an exemplary image pro-
cessing system 200. In one embodiment, the image process-
ing system 200 is contained within the graphics engine 112
(FIG. 1). The image processing system 200 includes an
image encoder engine 202 and an image decoder engine 204.
The image processing system 200 may also include, or be
coupled to, an image source unit 206, which provides
images to the image encoder engine 202. Further, the image
processing system 200 may include or be coupled to an
output unit 208 to which processed images are forwarded for
storage or further processing. Additionally, the image pro-
cessing system 200 may be coupled to the memory 104
(FIG. 1) and the storage device 106 (FIG. 1). In an alterna-
tive embodiment, the image encoder engine 202 and the
image decoder engine 204 are contained within different
computing devices, and the encoded images pass between
the two engines 202 and 204.

Within the image encoder engine 202, images are broken
down into individual blocks and processed before being
forwarded, for example, to the storage device 106 as com-
pressed or encoded image data. When the encoded image
data are ready for further processing, the encoded image data
are forwarded to the image decoder engine 204. The image
decoder engine 204 receives the encoded image data and
decodes the data to generate an output that is a representa-
tion of the original image that was received from the image
source unit 206.

FIGS. 3A and 3B are block diagrams illustrating two
exemplary embodiments of the image encoder engine 202 of
FIG. 2. The image encoder engine 202 comprises an image
decomposer 302, a header converter 304, one or more block
encoders 306 in FIG. 3A (306a-306n, where n is the nth
encoder in FIG. 3B), and an encoded image composer 308.
The image decomposer 302 is coupled to receive an original
image 310 from a source, such as the image source unit 206
(FIG. 2), and forwards information from a header of the
original image 310 to the header converter 304. Subse-
quently, the header converter 304 modifies the original
header to generate a modified header, as will be described
further in connection with FIG. 5B. The image decomposer
302 also breaks, or decomposes, the original image 310 into
R numbers of image blocks, where R is any integer value.
The number of image blocks the original image 310 is
broken into may depend on the number of image pixels. In
an exemplary embodiment, the image 310 having A image
pixels by B image pixels will, typically, be (A/4)x(B/4)
blocks. For example, an image that is 256 pixels by 256
pixels will be broken down into 64x64 blocks. In the present
embodiment, the image is decomposed such that each image
block is 4 pixels by 4 pixels (16 pixels). Those skilled in the
art will recognize that the number of pixels or the image
block size may be varied.

Briefly turning to FIG. 3C, an example of a single image
block 320 is illustrated. The image block 320 is composed
of image elements (pixels) 322. The image block 320 may
be defined as an image region, W pixels in width by H pixels
in height. In the embodiment of FIG. 3C, the image block
320 is W=4 pixels by H=4 pixels (4x4).

US 7,043,087 B2
5
	

6
In an alternative embodiment, the original image 310

	
channel, 8-bits for a Green ("G")-channel, and 8-bits for a

(FIG. 3A or 3B) may be a three-dimensional volume data set
	

Blue ("B")-channel in an RGB implementation color space.
as shown in FIG. 3D. FIG. 3D illustrates an exemplary

	
Alternatively, each encoded image block is also a 4x4 set of

three-dimensional image block 330 made up of sixteen	 pixels with each pixel being only 2-bits in size and having
image elements (volume pixels or voxels) 332. Image block 5 an aggregate size of 4-bits as will be described further below.
330 is defined as an image region W voxels in width, H

	
FIG. 4 is a block diagram illustrating an exemplary block

voxels in height, and D voxels in depth. 	 encoder 306 of FIGS. 3A and 3B. The block encoder 306
The three-dimensional volume data set may be divided

	
includes a quantizer 402 and a bitmap construction module

into image blocks of any size or shape. For example, the
	

404. Further, the quantizer 402 includes a block type module
image may be divided along a z-axis into a plurality of o 406, a curve selection module 408, and a codeword genera-
xxyxz sized images, where z=1. Each of these xxyxl images

	
tion module 410.

may be treated similarly with two-dimensional images, 	 Each image block 320 (FIG. 3C) of the decomposed
where each xxyxl image is divided into two-dimensional

	
original image 310 (FIGS. 3A and 3B) is received and

image blocks, as described above with respect to FIG. 3C. 	 initially processed by the quantizer 402 before being for-
However, decomposing the three-dimensional image into 15 warded to the bitmap construction module 404. The bitmap
two-dimensional "slices" for compression does not fully 	 construction module 404 outputs encoded image blocks for
utilize the graphical similarities that may exist in the z

	
the encoded image composer 308 (FIGS. 3A and 3B) to

(depth) direction in a three-dimensional image. To utilize 	 order. The bitmap construction module 404 and the modules
such similarities, the volume data may be decomposed into	 of the quantizer 402 are described in more detail below.
a plurality of three-dimensional image blocks. It will be 20 	 Briefly, FIG. 5A is a diagram of a data sequencer or string
understood that in alternative embodiments, other combina- 	 500 representing the original image 310 (FIGS. 3A and 3B)
tions of WxHxD are possible, and may be more desirable, 	 that is received by the block decomposer 302 (FIGS. 3A and
depending on the data being compressed. 	 3B). The data string 500 includes an a-bit header 502 and a

This type of three-dimensional image data is used, for
	

13-bit image data 504. The header 502 may include infor-
example, in medical imaging applications such as ultrasound 25 mation such as pixel width, pixel height, format of the
or magnetic resonance imaging ("MRI"). In such an appli- 	 original image 310 (e.g., number of bits to the pixel in RGB
cation, a body part is scanned to produce a three-dimen-	 or YUV format), as well as other information. The image
sional matrix of image elements (i.e., image block com- 	 data 504 are data representing the original image 310, itself.
prised of voxels 320). The image is x voxels wide by y

	
FIG. 5B is a diagram of a data sequence or string 510

voxels high by z voxels deep. In this example, each voxel 30 representing encoded image data that are generated by the
provides density data regarding characteristics of body tis-	 image encoder engine 202 (FIG. 2). The encoded image data
sue. In ultrasound applications, each voxel may be provided

	
string 510 includes a modified header portion 512 and an

with a brightness level indicating the strength of echoes	 encoded image block portion 514. The modified header
received during scanning. 	 portion 512 is generated by the header converter 304 (FIGS.

In the embodiment of FIG. 3D, the original image 310 is 35 3A and 3B) from the original a-bit header 502 (FIG. 5A) and
a three-dimensional data volume where the image data are

	
includes information about file type, number of bits per pixel

density values. In alternative embodiments, other scalar data 	 of the original image 310 (FIGS. 3A and 3B), addressing in
types may be represented in the original image 310, such as

	
the original image 310, other miscellaneous encoding

transparency or elevation data. In further embodiments,	 parameters, as well as the width and height information
vector data, such as the data used for "bump maps", may be 40 indicating size of the original image 310. The encoded
represented.	 image block portion 514 includes encoded image blocks

Referring back to FIGS. 3A and 3B, each block encoder
	

516a—q from the block encoders 306 (FIGS. 3A and 3B)
306 receives an image block 320 from the image decom- 	 where q is the number of blocks resulting from the decom-
poser 302, and encodes or compresses each image block

	
posed original image 310.

320. Subsequently, each encoded image block is forwarded 45	 FIG. 5C is a diagram of a data sequence or string 518
to the encoded image composer 308, which orders the	 representing an encoded image block. The data string 518
encoded image blocks in a data file. Next, the data file from 	 may be similar to any one of the encoded image blocks
the encoded image composer 308 is concatenated with the

	
516a—q (FIG. 5B) shown in the encoded image data string

modified header from the header converter 304 to generate
	

510 of FIG. 5B.
an encoded image data file that is forwarded to an output so	 The encoded image block data string 518 includes a
312. Thus, the modified header and the encoded image	 codeword section 520 and a bitmap section 522. The code-
blocks together form the encoded image data that represent

	
word section 520 includes j codewords, where j is an integer

the original image 310. Alternatively, having more than one 	 value, that are used to compute colors of other image data
block encoder 306a-306n, as shown in FIG. 3B, allows for

	
indexed by the bitmap section 522. A codeword is an n-bit

encoding multiple image blocks simultaneously, one image 55 data string that identifies a pixel property, such as color
block per block encoder 306a-306n, within the image 	 component, density, transparency, or other image data val-
encoder engine 202. Advantageously, simultaneous encod- 	 ues. In one embodiment, there are two 16-bit codewords
ing increases image processing efficiency and performance. 	 CW and CW, (j=2). The bitmap section 522 is a Q-bit data

The image data associated with the original image 310
	

portion and is described in more detail in connection with
may be in any one of a variety of formats including 60 FIG. 6B.
red-green-blue ("RGB"), YUV 420 (YUV are color models

	
In an alternative embodiment, each encoded image block

representing luminosity and color difference signals), YUV
	

is 64-bits, which includes two 16-bit codewords and a 32-bit
422, or a propriety color space. In some cases, conversion to

	
(4x4x2 bit) bitmap 522. Encoding the image block 320

a different color space before encoding the original image
	

(FIG. 3C) as described above provides greater system flex-
310 may be useful. In one embodiment, each image block 65 ibility and increased data processing efficiency. In a further
320 is a 4x4 set of pixels where each pixel 322 is 24-bits in 	 exemplary embodiment, each 32-bit bitmap section 522 may
size. For each pixel 322, there are 8-bits for a Red ("R")- 	 be a three-dimensional 32-bit bitmap.

US 7,043,087 B2
87

FIGS. 6A-6E describe operations of the image encoder
engine 202 (FIG. 2). In flowchart 600, a general operation of
the image encoder engine 202 is shown. In block 602, a data
string 500 (FIG. 5A) of the original image 310 (FIGS. 3A
and 3B), which includes the a-bit header 502 (FIG. 5A) and
the 13-bit image data 504 (FIG. 5A), is input into the image
decomposer 302 (FIGS. 3A and 3B). The image decomposer
302 decomposes the image 310 into the a-bit header and a
plurality of blocks in block 604. The a-bit header 502 is then
forwarded to the header converter 304 (FIGS. 3A and 3B).
Subsequently, the header converter 304 generates a modified
header 512 (FIG. 5B) from the a-bit header 502 in block
606. The modified header 512 is then forwarded to the
encoded image composer 308 (FIGS. 3A and 3B).

Simultaneous with the header conversion process, each
image block 320 is encoded in block 608 by one or more of
the block encoders 306a-306n (FIGS. 3A and 3B) to gen-
erate the encoded image blocks 516 (FIG. 5B). Each image
block 320 may be processed sequentially in one block
encoder 306, or multiple image blocks 320 may be pro-
cessed in parallel in multiple block encoders 306a-306n.

The encoded image blocks 516 are output from the block
encoders 306, and are placed into a predefined order by the
encoded image composer 308. In one embodiment, the
encoded image blocks 516 are arranged in a file from left to
right and top to bottom and in the same order in which the
encoded image blocks 516 were broken down by the image
decomposer 302 (FIGS. 3A and 3B). The image encoder
engine 202 subsequently composes the modified header
information 512 from the header converter 304 and the
encoded image blocks 516a-516q in block 610. Specifically,
the modified header 512 and the ordered encoded image
blocks 516 are concatenated to generate the encoded image
data file 510 (FIG. 5B), which may be written as encoded
output 312 (FIGS. 3A and 3B) to the memory 104, storage
device 106, or any output device 110 (FIG. 1) in block 612.

FIG. 6B is a flowchart 620 showing the encoding process
of block 608 (FIG. 6A) in more detail. In block 622,
codewords 520 (FIG. 5C) are computed by the codeword
generation module 410 (FIG. 4). The process for computing
these codewords 520 is described in more detail in connec-
tion with FIG. 6C.

Once the codewords 520 have been computed, pixel
values or properties, such as colors, for the image block 320
(FIG. 3C) are computed or quantized in block 624. Specifi-
cally, the codewords 520 provide points in a pixel space
from which m quantized pixel values may be inferred. The
m quantized pixel values are a limited subset of pixels in a
pixel space that are used to represent the current image
block. The process for quantizing pixel values, and more
specifically colors, will be described infra in connection
with FIGS. 8A and 8B. Further, the embodiments will now
be described with respect to colors of a pixel value although
one skilled in the art will recognize that, in general, any pixel
value may be used with respect to the present invention.
Therefore, the image data, which is quantized may be any
form of scalar or vector data, such as density values,
transparency values, and "bump map" vectors.

In an exemplary embodiment, each pixel is encoded with
two bits of data which can index one or m quantized colors,
where m=4 in this embodiment. Further, four quantized
colors are derived from the two codewords 520 where two
colors are the codewords 520, themselves, and the other two
colors are inferred from the codewords 520, as will be
described below. It is also possible to use the codewords 520

so that there is one index to indicate a transparent color and
three indices to indicate colors, of which one color is
inferred.

In another embodiment, the bitmap 522 (FIG. 5C) is a
5 32-bit data string. The bitmap 522 and codewords 520 are

output in block 624 as a 64-bit data string representing an
encoded image block 518. Specifically, the encoded image
block 514 (FIG. 5B) includes two 16-bit codewords 520
(n=16) and a 32-bit bitmap 522. Every codeword 520 that is

10 a 16-bit data string includes a 5-bit red-channel, 6-bit
green-channel, and 5-bit blue-channel

Each of the encoded image blocks 516 is placed together
and concatenated with modified header information 512
derived from the original a-bit header 502 of the original

15 image 310 (FIGS. 3A and 3B). A resulting output is the
encoded image data 510 representing the original image
310.

FIG. 6C is a flowchart 630 illustrating a process for
computing codewords for the image blocks 320 (FIG. 3C),
and relates to color quantizing using quantizer 402 (FIG. 4).
The process for computing codewords can be applied to all
scalar and vector image data types. In select block type 632,
the quantizer 402 uses the block type module 406 (FIG. 4)
to select a first block type for the image block 320 that is
being processed. For example, a selected block type may be
a four-color or a three-color plus transparency block type,
where the colors within the particular block type have
equidistant spacing in a color space. Those of ordinary skill
in the art will readily recognize that selecting a block type
for each image is not intended to be limiting in any way.
Instead, the present invention processes image blocks that
are of a single block type, which eliminates the need to
distinguish between different block types, such as the three-
and four-color block types discussed above. Consequently,
the block type module 406 and select block type 632 are
optional.

Once the block type is selected, the quantizer 402 com-
putes an optimal analog curve for the block type in block

40
634. Computation of the optimal analog curve will be further
described in connection with FIG. 6D. The analog curve is
used to simplify quantizing of the colors in the image block.
Subsequently in block 636, the quantizer 402 selects a
partition of points along the analog curve, which is used to

45
simplify quantizing of the colors in the image block. A
partition may be defined as a grouping of indices {1 .. .
(WxH)} into m nonintersecting sets. In one embodiment, the
indices (1 . . . 16) are divided into three or four groups or
clusters (i.e., m=3 or 4) depending on the block type.

so	 Once a partition is selected, optimal codewords for the
particular partition are computed in block 638. In addition to
computing the codewords, an error value (square error as
described infra) for the codeword is also computed in block
640. Both computations will be described in more detail in

55 connection with FIG. 6E. If the computed error value is the
first error value, the error value is stored in block 642.
Alternatively, the computed error value is stored if it is less
than the previously stored error value. For each stored error
value, corresponding block type and codewords are also

60 stored in block 644. The process of flowchart 630 seeks to
find the block type and codewords that minimize the error
function.

Next in block 646, the code generation module 410 (FIG.
4) determines if all possible partitions are completed. If there

65 are more partitions, the code generation module 410 selects
the next partition, computes the codewords and associated
error values, and stores the error values, associated block

2 0

2 5

3 0

3 5

US 7,043,087 B2
10

ciated error for the partitions, and storing the error value,
block type, and codeword if the error value is less than a
previously stored error value. In block 672, the codeword
generation module 410 projects the WxH color values onto

5 the previously constructed optimal analog curve. The value
of WxH is the size in number of pixels of an image block
320 (FIG. 3C). In one embodiment where W and H are both
four pixels, WxH is 16 pixels.

Subsequently in block 674, the colors are ordered sequen-
10 tially along the analog curve based on a position of the color

on a one-dimensional analog curve. After the colors are
ordered, the codeword generation module 410 searches, in
block 676, for optimal partitions. Thus, the codeword gen-
eration module 410 takes the WxH colors (one color asso-

15 ciated with each pixel) that are ordered along the analog
curve and partitions and groups the colors into a finite
number of clusters with a predefined relative spacing. In one
embodiment where W=4 and H=4 (i.e., WxH is 16), the 16
colors are placed in three and four clusters (i.e., m=3 or 4).

20 In conducting the search for the optimal partition, a color
selection module within the codeword generation module
410 finds the best m clusters from the WxH points projected
onto the optimal curve, so that the error associated with the
selection is minimized The best m clusters are determined

5 by minimizing the mean-square-error with the constraint

9
types, and codewords if the error value is less than the
previously stored error value.

After all the possible partitions are completed, the code-
word generation module 410 determines, in block 648,
whether all block types have been selected. If there are more
block types, the codeword generation module 410 selects the
next block type and computes the codeword and various
values as previously described. After the last block type has
been processed, the codeword generation module 410 out-
puts a result of the block type and codewords 520 (FIG. 5C)
having the minimum error in block 650.

In an alternative embodiment, the optimal analog curve
may be computed before selecting the block type. That is,
the optimal analog curve is computed before the selection of
the block type and partition, computation of the codewords
and error values, and storage of the error value, block type,
and codeword. Computing the optimal analog curve first is
useful if all block types use the same analog curve and color
space because the analog curve does not need to be recom-
puted for each block type.

FIG. 6D is a flowchart 660 describing a process of
identifying the optimal analog curve. The curve selection
module 408 (FIG. 4) first computes a center of gravity for
pixel colors of an image block 320 (FIG. 3C) in block 662.
The center of gravity computation includes averaging the 2

pixel colors. Once the center of gravity is computed, a vector
in color space is identified in block 664 to minimize the first
moment of the pixel colors of the image block 320. Spe-
cifically for identifying a vector, a straight line is fit to a set
of data points, which are the original pixel colors of the 30

image block 320. The straight line is chosen passing through
the center of gravity of the set of data points such that it
minimizes a "moment of inertia" (i.e., square error). For
example, to compute a direction of a line minimizing the
moment of inertia for three pixel properties, tensor inertia, T, 35

is calculated from individual colors as follows:

where Co, C i , and C2 represent pixel properties (e.g., color
components in RGB or YUV) relative to a center of gravity.
In one embodiment of an RGB color space, CO, is a value of
red, C, is a value of green, and C2 is a value of blue for each
pixel, i, of the image block. Further, i takes on integer values
from 1 to WxH, so that if W=4 and H=4, i ranges from 1 to 50

16.
An eigenvector of tensor inertia, T, with the smallest

eigenvalue is calculated in block 666 using conventional
methods. An eigenvector direction along with the calculated
gravity center, defines an axis that minimizes the moment of
inertia. This axis is used as the optimal analog curve, which,
in one embodiment, is a straight line. Those of ordinary skill
in the art will readily recognize that the optimal analog curve
is not limited to a straight line, but may include a set of
parameters, such as pixel values or colors, that minimizes
the moment of inertia or mean-square-error when fit to the
center of gravity of the pixel colors in the image block. The
set of parameters may define any geometric element, such as
a curve, plate, trapezoid, or the like.

FIG. 6E is a flowchart 670 describing the process under-
taken by the codeword generation module 410 (FIG. 4) for
selecting the partitions, computing the codewords and asso-

that the points associated with each cluster are spaced to
conform to the predefined spacing.

In one embodiment for a block type of four equidistant
colors, the error may be defined as a square error along the
analog curve, such as

[xi — GPo	 /:),.)[2 +

cluster

1	 2	 2

kPO	 + (x'	 P1) 2

cluster2	 cluster3

E2 =	 (xi — po)2 +
cluster°

2

2[Xi GPO + Pi]] +	 Xi P1)
clusterl	 cluster2

T=
— CO; Cli

— C2iCli

E2 =	 (xi P0)2 +
cluster°

40

where E is the error for the particular grouping or clustering,
po and p i are the coded colors, and x, are the projected points
on the optimal analog curve.

In instances where the block type indicates three equidis-
45 taut colors, the error may be defined as a squared error along

the analog curve, such as

55
After the resulting optimal codewords 520 are identified,

the codewords 520 are forwarded to the bitmap construction
module 404 (FIG. 4). The bitmap construction module 404
uses the codewords 520 to identify the m colors that may be

60 specified or inferred from those codewords 520 in block 678.
In one embodiment, the bitmap construction module 404
uses the codewords 520 (e.g., CW, and CW 1) to identify the
three or four colors that may be specified or inferred from
those codewords 520.

65	 Next in block 680, the bitmap construction module 404
constructs a block bitmap 522 (FIG. 5C) using the code-
words 520 associated with the image block 320 (FIG. 3C).

US 7,043,087 B2
11

Colors in the image block 320 are mapped to the closest
color associated with one of the quantized colors specified
by, or inferred from, the codewords 520. The result is a color
index, referenced as ID, per pixel in the block identifying the
associated quantized color.

Information indicating the block type is implied by the
codewords 520 and the bitmap 522. In one embodiment, the
order of the codewords 520 indicates the block type. If a
numerical value of CW, is greater than a numerical value of
CW 1 , the image block is a four-color block. Otherwise, the
block is a three-color plus transparency block.

In one embodiment discussed above, there are two-color
image block types. One color image block type has four
equidistant colors, while the other color image block type
has three equidistant colors with the fourth color index used
to specify that a pixel is transparent. For both color image
block types, the color index is two bits. In an embodiment
with density values in place of color values, each density
image block type has four equidistant density values.

The output of the bitmap construction module 404 is an
encoded image block 514 (FIG. 5B) having the m code-
words 520 plus the bitmap 522. Each encoded image block
516 is received by the encoded image composer 308 (FIGS.
3A and 3B) that, in turn, orders the encoded image blocks
516 in a file. In one embodiment, the encoded image blocks
516 are arranged from left to right and from top to bottom
and in the same order as the blocks were broken down by the
image decomposer 302. The ordered file having the encoded
image blocks 516 is concatenated with the modified header
information 512 that is derived from the a-bit header 502 of
the original image 310 (FIGS. 3A and 3B) to generate the
encoded image data 510 that is the output of the image
encoder engine 202 (FIG. 2). The output may then be
forwarded to the memory 104, the storage device 106, or the
output device 110 (FIG. 1).

The exemplary embodiment of the image encoder engine
202 advantageously reduces the effective data size of an
image from 24-bits per pixel to 4-bits per pixel. Further, the
exemplary embodiment beneficially addresses transparency
issues by allowing codewords to be used with a transparency
identifier.

FIG. 7A is a block diagram of an exemplary image
decoder engine 204 (FIG. 2). The image decoder engine 204
includes an encoded image decomposer 702, a header con-
verter 704, one or more block decoders 706 (706a-706p,
where p represents the last block decoder), and an image
composer 708. The encoded image decomposer 702 is
coupled to receive the encoded image data 514 (FIG. 5B)
output from the image encoder engine 202 (FIG. 2). The
encoded image decomposer 702 receives the encoded image
data string 510 and decomposes, or breaks, the encoded
image data string 510 into the header 512 (FIG. 5B) and the
encoded image blocks 514 (FIG. 5B). Next, the encoded
image decomposer 702 reads the modified header 512, and
forwards the modified header 512 to the header converter
704. The encoded image decomposer 702 also decomposes
the encoded image data string 510 into the individual
encoded image blocks 516 (FIG. 5B) that are forwarded to
the one or more block decoders 706.

The header converter 704 converts the modified header
512 into an output header. Simultaneously, the encoded
image blocks 516 are decompressed or decoded by the one
or more block decoders 706. Each encoded image block 516
may be processed sequentially in one block decoder 706, or
multiple encoded image blocks 514 may be processed in
parallel with one block decoder 706 for each encoded image
block 516. Thus, multiple block decoders 706 allow for

12
parallel processing that increases the processing perfor-
mance and efficiency of the image decoder engine 204 (FIG.
2).

The image composer 708 receives each decoded image
5 blocks from the one or more block decoders 706 and orders

the decoded image block in a file. Further, the image
composer 708 receives the converted header from the header
converter 704. The converted header and the decoded image
blocks are placed together to generate output data represent-

10 ing the original image 310.

FIG. 7B is a block diagram of an exemplary embodiment
of a block decoder 706. Each block decoder 706 includes a
block type detector 710, one or more decoder units 712, and
an output selector 714. The block type detector 710 is

15 coupled to the encoded image decomposer 702 (FIG. 7A),
the output selector 714, and each of the one or more decoder
units 712.

The block type detector 710 receives the encoded image

20
blocks 514 and determines the block type for each encoded
image block 516 (FIG. 5B). The block type is detected based
on the codewords 520 (FIG. 5C). After the block type is
determined, the encoded image blocks 514 are passed to
each of the decoder units 712, which decompress or decode

25
each encoded image block 516 to generate colors for each
particular encoded image block 516. The decoder units 712
may be c-channels wide (e.g., one channel for each color
component or pixel property being encoded), where c is any
integer value. Using the selector signal, the block type

30
detector 710 enables the output selector 714 to output the
color of each encoded image block 516 from one of the
decoder units 712 that corresponds with the block type
detected by the block type detector 710. Specifically, the
block type detector 710 passes a selector signal to the output

35
selector 714 that is used to select an output corresponding to
the block type detected. Alternatively, using the selector
signal, the appropriate decoder unit 712 could be selected so
that the encoded block is only processed through the
selected decoder unit.

40	 FIG. 7C is a block diagram of an alternative embodiment
of a block decoder 706. In this embodiment, the block
decoder 706 includes a block type detector 720, a first
decoder unit 722, a second decoder unit 724, and an output
selector 726. The block type detector 720 is coupled to

45 receive each encoded image block 516 (FIG. 5B), and
determine by comparing the codewords 520 (FIG. 5C) of the
encoded image block, the block type for each encoded image
block 516. For example, the block type may be four quan-
tized colors or three quanitized colors and a transparency.

50 Once the block type is selected and a selector signal is
forwarded to the output selector 726, the encoded image
blocks 516 are decoded by the first and second decoder units
722 and 724, respectively, to produce the pixel colors of
each image block. The output selector 726 is enabled by the

55 block type detector 720 to output the colors from the first
and second decoder units 722 and 724 that correspond to the
block type selected.

FIG. 7D is a logic diagram illustrating an exemplary
embodiment of a decoder unit similar to the decoder units

60 722 and 724 of FIG. 7C. For simplicity, the functionality of
each of the first and second decoder units 722 and 724 is
merged into the single logic diagram of FIG. 7D. Those
skilled in the art will recognize that although the diagram is
described with respect to a red-channel of the decoder units,

65 the remaining channels (i.e., the green-channel and the
blue-channel) are similarly coupled and functionally equiva-
lent.

US 7,043,087 B2
14

plary embodiment of the present invention. Initially, each
encoded image block 516 (FIG. 5B) is received by the block
decoder 706 in block 822. Specifically, for one embodiment,
the first and the second codewords 520 (e.g., CW, and CW,

5 of FIG. 5C) are received by the block type detector 710, 720
(FIGS. 7B and 7C, respectively) of the block decoder 706.
As discussed above, comparing the numerical values of
CWo and CW, reveals the block type. The first five bits of
each codeword 520 that represent the red-channel color are

io received by the red-channel of each of the first and second
decoder units 722 and 724 (FIG. 7C). Furthermore, the
second 6-bits of each codeword 520 that represent the
green-channel color are received by the green-channel of
each of the first and the second decoder units 722 and 724,

15 while the last 5-bits of each codeword 520 that represent the
blue-channel color are received by the blue-channel of each
of the first and second decoder units 722 and 724.

Next in block 824, the block type detector 710 detects the
block type for an encoded image block 514. Specifically, the

0 comparator 730 (FIG. 7D) compares the first and the second
codewords 520 (e.g., CW, and CW,) and generates a flag
signal to enable the first 2x1 multiplexer 732a or the second
2x1 multiplexer 732b. In block 826, either the first decoder
unit 722 or the second decoder unit 724 is selected.

25 Subsequently quantized color levels for the decoder units
722 and 724 are calculated in block 828. The calculation of
the quantized color levels will now be discussed in more
detail. Initially, the first decoder unit 722 calculates the four
colors associated with the two codewords 520 (e.g., CW,

0 and CW,) using the following exemplary relationship:

13
The logic diagram illustrating the first and second decoder

units 722 and 724 is shown including portions of the block
type detector 710, 720 (FIGS. 7B and 7C, respectively) such
as a comparator unit 730. The comparator unit 730 is
coupled to and works with a first 2x1 multiplexer 732a and
a second 2x1 multiplexer 732b. Both 2x1 multiplexers 732a
and 732b are coupled to a 4x1 multiplexer 734 that serves
to select an appropriate color to output. The 4x1 multiplexer
734 is coupled to receive a transparency indicator signal that
indicates whether or not a transparency (e.g., no color) is
being sent. The 4x1 multiplexer 734 selects a color for
output based on the value of the color index, referenced as
the ID signal, that references the associated quantized color
for an individual pixel of the encoded image block 514 (FIG.
5B).

A red-channel 736 of the first decoder unit 722 includes
a first and a second red-channel line 738a and 738b and a
first and a second red-color block 740a and 740b. Along the
path of each red-color block 740a and 740b is a first full
adder 742a and 742b, a second full adder 744a and 744b, 2
and carry-look ahead (CLA) adders 746a and 746b. The
second decoder unit 724 contains similar components as the
first decoder unit 722.

The CLA adder 746a of the first red-color block 740a path
of the first decoder unit 722 is coupled to the first 2x1
multiplexer 732a, while the CLA adder 746b of the second
red-color block 740b path of the first decoder unit 722 is
coupled to the second 2x1 multiplexer 732b. Further, adder
748 of the second decoder unit 724 is coupled to both the
first and the second 2x1 multiplexers 732a and 732b. 3

FIG. 8A is a flowchart 800 illustrating an operation of the
decoder engine 204 (FIG. 2) in accordance with an exem-
plary embodiment of the present invention. For purposes of
illustration, the process for the decoder engine 204 will be
described with a single block decoder 706 (FIG. 7A) having
two decoder units 722 and 724 as described earlier in
connection with FIG. 7C. Those skilled in the art will
recognize that the process is functionally equivalent for
decoder systems having more than one block decoder 706
and more than two decoder units 712, as discussed in 40

connection with FIG. 7B.
In block 802, the encoded image decomposer 702 (FIG.

7A) receives the encoded or compressed image data 510
(FIG. 5B) from the image encoder engine 202 (FIG. 2),
through the memory 104 (FIG. 1) or the storage device 106 45

(FIG. 1). Next, the encoded image decomposer 702 decom-
poses the encoded image data 510 by forwarding the modi-
fied header 512 (FIG. 5B) to the header converter 704 (FIG.
7A) in block 804.

Subsequently in block 806, the header converter 704 so
converts the header information to generate an output header
that is forwarded to the image composer 708 (FIG. 7A).
Simultaneously, the one or more block decoders 706 (FIG.
7A) decode pixel colors for each encoded image block 516
(FIG. 5B) in block 808. Each encoded image block 516 may 55
be decoded sequentially in one block decoder 706 or mul-
tiple encoded image blocks 514 (FIG. 5B) may be decoded
in parallel in multiple block decoders 706 in block 808. The
process for decoding each encoded image block 516 is
further described in connection with FIG. 8B. Each decoded
image block is then composed into a data file with the
converted header information by the image composer 708 in
block 810. The image composer 708 then generates the data
file as an output that represents the original image 310
(FIGS. 3A and 3B).

FIG. 8B is a flowchart 820 illustrating an operation of the
block decoder 706 (FIG. 7A) in accordance with an exem-

2	 1
CW2 = third color = 3—	

3
CW0 + — CW1 ; and

1	 2
CW3 = fourth color = —

3
CW0 + —

3
CW1.

In one embodiment, the first decoder unit 722 may
estimate the above equations for CW2 and CW3 as follows:

5	 3
CW2 = 8— CW0 + — CW1 ; and

3	 5
CW3 = 8
	 8

—CW0 + — CIVI •

The red-color blocks 740a and 740b (FIG. 7D) serve as
one-bit shift registers to obtain

1	 1

2
— CW0 or —

2
CW1.

CW0 = first codeword = first color,

35	 CW1 = second codeword = second color,

Further, each full adder 742a, 742b, 744a, and 744b (FIG.
60 7D) also serves to shift the signal left by 1-bit. Thus, the

signal from the first full adders 742a and 742b is

65	
—
1	 1

CW0 or
4
— CW1,

4

US 7,043,087 B2
1615

respectively, because of a 2-bit overall shift, while the signal
from the second full adders 744a and 744b is

1	 1
—
8

CW0 or -CW1 ,

respectively due to a 3-bit overall shift. These values allow
for the above approximations for the color signals.

The second decoder unit 724 (FIG. 7C) calculates three
colors associated with the codewords 520 (e.g., CW, and
CW 1), and includes a fourth signal that indicates a trans-
parency is being passed. The second decoder unit 724
calculates colors using the following exemplary relation-
ship:

CW0 = first codeword = first color;

CW1 = second codeword = second color;

1	 1
CW3 = third color = —

2
CW0 + —

2
CW1

'
• and

T = Transparency.

In one embodiment, the second decoder unit 724 has no
approximation because the signals received from the red-
color blocks 740a and 740b are shifted left by 1-bit so that
the color is already calculated to

1	 1

2
CW0 and —

2
CW1,

respectively.
After the quantized color levels for the decoder units 722

and 724 selected in block 826 have been calculated in block
828, each bitmap value for each pixel is read from the
encoded image data block 510 (FIG. 5A) in block 830. As
each index is read, it is mapped in block 832 to one of the
four calculated colors if the first decoder unit 722 is selected.
Alternatively, one of the three colors and transparency is
mapped in block 832 if the second decoder unit 724 is
selected. The mapped colors are selected by the 4x1 multi-
plexer 734 based on the value of the ID signal from the
bitmap 522 (FIG. 5C) of the encoded image block 514. As
stated previously, a similar process occurs for selection of
colors in the green-channel and the blue-channel.

As the color data are output from the red-channel, green-
channel and blue-channel, the output are received by the
image composer 708 (FIG. 7A). Subsequently, the image
composer 708 arranges the output from the block encoders
706 in the same order as the original image 310 was
decomposed. The resulting image is the original image 310,
which is then forwarded to an output unit 208 (FIG. 2; e.g.,
a computer screen), which displays the image.

This exemplary embodiment beneficially allows for ran-
dom access to any desired image block 320 (FIG. 3C) within
an image, and any pixel 322 (FIG. 3C) within an image
block 320. FIG. 9A is a block diagram of a subsystem 900
that provides random access to a pixel 322 or an image block
320 in accordance with one embodiment of the present
invention.

The random access subsystem 900 includes a block
address computation module 902, a block fetching module

904, and one or more block decoders 706 coupled to the
block address computation module 902 and the block fetch-
ing module 904. The block address computation module 902
receives the header information 512 (FIG. 5B) of the

5 encoded image data string 510 (FIG. 5B), while the block-
fetching module 904 receives the encoded image block
portion 514 (FIG. 5B) of the encoded image data string 510.

FIG. 9B is a flowchart 910 of a process for random access
to a pixel 322 (FIG. 3C) or an image block 320 (FIG. 3C)

10 using the random access subsystem 900 of FIG. 9A. When
particular pixels 322 have been identified for decoding, the
image decoder engine 204 (FIG. 2) receives the encoded
image data string 510 (FIG. 5B). The modified header 512
(FIG. 5B) of the encoded image data string 510 is forwarded

15 to the block address computation module 902 (FIG. 9A), and
the encoded image block portion 514 (FIG. 5B) of the
encoded image data string 510 is forwarded to the block-
fetching module 904 (FIG. 9A).

In block 912, the block address computation module 902
20 reads the modified header 512 to compute an address of the

encoded image block portion 514 having the desired pixels
322. The address computed is dependent upon the pixel
coordinates within an image. Using the computed address,
the block-fetching module 904 identifies each encoded

25 image block 516 (FIG. 5B) of the encoded image block
portion 514 that contains the desired pixels 322 in block 914.
Once each encoded image block 516 having the desired
pixels 322 has been identified, only the identified encoded
image block 516 is forwarded to the block decoders 706

30 (FIG. 9A) for processing.

FIG. 9B is similar to the process described above in FIG.
8B, wherein the block decoders 706 compute quantized
color levels for each identified encoded image blocks 516

35
having the desired pixels in block 916. After the quantized
color levels have been computed, the color of the desired
pixel is selected in block 918 and output from the image
decoder engine 204.

Random access to pixels 322 of an image block 320 (FIG.
40 3C) advantageously allows for selective decoding of only

needed portions or sections of an image. Random access also
allows the image to be decoded in any order the data is
required. For example, in three-dimensional texture map-
ping only portions of the texture may be required and these

45 portions will generally be required in some non-sequential
order. Thus, this embodiment of the present invention
increases processing efficiency and performance when pro-
cessing only a portion or section of an image. Further, the
present invention beneficially encodes or compresses the

50 size of an original image 310 (FIGS. 3A and 3B) from
24-bits per pixel to an aggregate 4-bits per pixel, and then
decodes or decompresses the encoded image data string 510
(FIG. 5B) to get a representation of the original image 310.
Additionally, the exemplary embodiment uses two base

55 points or codewords from which additional colors are
derived so that extra bits are not necessary to identify a pixel
322 color.

Moreover, the exemplary embodiment advantageously
accomplishes the data compression on an individual block

60 basis with the same number of bits per block so that the
compression rate can remain fixed. Further, because the
blocks are of fixed size with a fixed number of pixels 322,
random access to any particular pixel 322 in the block is
allowed. Additionally, an efficient use of system resources is

65 provided because entire blocks of data are not retrieved and
decoded to display data corresponding to only a few pixels
322.

US 7,043,087 B2
17

Finally, the use of fixed-rate 64-bit data blocks provides
the advantage of having simplified header information that
allows for faster processing of individual data blocks. A
64-bit data block allows for faster processing as the need to
wait until a full data string is assembled is eliminated.
Further, an imaging system in accordance with the present
invention may also reduce the microchip space necessary for
a decoder system because the decoder system only needs to
decode each pixel 322 to a set of colors determined by, for
example, the two codewords 520 (FIG. 5C).

The present invention has been described above with
reference to specific embodiments. It will be apparent to
those skilled in the art that various modifications may be
made and other embodiments can be used without departing
from the broader scope of the invention. These and other
variations of the specific embodiments are intended to be
covered by the present invention.

What is claimed is:
1. An image decoder engine for decoding an encoded

image data file, comprising:
an encoded image decomposer for decomposing the

encoded image data file into a modified header and at
least one compressed image block, each image block
having at least one associated codeword and a plurality
of image elements associated with an index value; and

at least one block decoder coupled to the encoded image
decomposer for decompressing the at least one com-
pressed image block into at least one decompressed
image block by generating a set of quantized image
data values and mapping the index value to a quantized
image data value from the set of quantized image data
values, the at least one block decoder further compris-
ing,

18
at least one decoder configured for decompressing each

of the at least one compressed image block to
generate colors for each of the at least one com-
pressed image block.

5	 2. The image decoder engine of claim 1 further compris-
ing an image composer configured for ordering the at least
one decompressed image blocks in an output data file.

3. The image decoder engine of claim 1 wherein the set of
10 quantized image data values comprise the at least one

associated codeword and at least one image data value
derived from the at least one associated codeword.

4. The image decoder engine of claim 1 further compris-
ing a header converter coupled to the encoded image decom-

15 poser and configured for converting the modified header into
an output header.

5. The image decoder engine of claim 4 wherein the image
composer orders the at least one decompressed image block
and the output header into a data file.

20	 6. The image decoder engine of claim 1 wherein the at
least one block decoder further comprises a block type
detector configured for determining a block type for each of
the at least one compressed image block based on the at least
one associated codeword.

2 5	
7. The image decoder engine of claim 1 wherein the

decoder is configured to decompress each of the at least one
compressed image block based on a block type.

8. The image decoder engine of claim 1 wherein the at
30 least one block decoder further comprises an output selector

for outputting the at least one decompressed image block.

Exhibit E

UNITED STATES INTERNATIONAL TRADE COMMISSION
WASHINGTON, D.C.

In the Matter of

CERTAIN ELECTRONIC DEVICES
WITH IMAGE PROCESSING
SYSTEMS, COMPONENTS
THEREOF, AND ASSOCIATED
SOFTWARE

Investigation No. 337-TA-__

COMPLAINT OF S3 GRAPIDCS CO., LTD. AND S3 GRAPHICS, INC.
UNDER SECTION 337 OF THE TARIFF ACT OF 1930, AS AMENDED

COMPLAINANT

S3 Graphics Co., Ltd.
2nd Fl., Zephyr House
Mary St., P.O. Box 709
Grand Cayman
Grand Cayman Islands
British West Indies
Telephone: (510) 683-3300

S3 Graphics, Inc.
1025 Mission Court
Fremont, CA 94539
Telephone: (510) 683-3300

Counsel for Complainant:

Thomas L. Jarvis
Thomas W. Winland
John R. Alison
Paul C. Goulet
John M. Williamson
FINNEGAN, HENDERSON, FARABOW,
GARRETT & DUNNER, LLP
901 New York Avenue, N.W.
Washington, D.C. 20001-4413
Telephone: (202) 408-4000
Facsimile:' '(202) 408-4400

PROPOSED RESPONDENT

Apple Inc., a1k/a Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
Telephone: (408) 996-1010

TABLE OF CONTENTS

I. INTRODUCTION 1

II. COMPLAINANTS 2

III. PROPOSED RESPONDENT 4

IV. THE TECHNOLOGY AND PRODUCTS AT ISSUE 4

V. THE ASSERTED PATENTS AND NON-TECHNICAL DESCRIPTION OF
THE INVENTIONS 6

A. Four Patents from a Single Original Application 6

B. U.S. Patent No. 7,043,087 6

1. Identification and Ownership of the '087 Patent.. 6

2. Non-Technical Description of the Invention Claimed in the '087
Patent. 7

3. Foreign Counterparts 7

4. Licenses 8

C. U.S. Patent No. 6,775,417 8

1. Identification and Ownership of the '417 Patent.. 8

2. Non-Technical Description of the Invention of the '417 Patent.. 8

3. Foreign Counterparts 10

4. Licenses 10

D. U.S. Patent No. 6,683,978 10

1. Identification and Ownership of the '978 Patent.. 10

2. Non-Technical Description of the Invention of the '978 Patent 11

3. Foreign Counterparts 11

4. Licenses 12

E. u.s. Patent No. 6,658,146 12

1. Identification and Ownership of the' 146 Patent 12

2. Non-Technical Description of the Invention of the' 146 Patent.. 13

3. Foreign Counterparts 13

4. Licenses 14

VI. UNLAWFUL AND UNFAIR ACTS OF RESPONDENTS-PATENT
INFRINGEMENT 14

A. Infringement of the '087 Patent 14

1. Direct Infringement of the '087 Patent 14

2. Contributory Infringement ofthe '087 Patent 15

3. Inducement ofInfringement of the' 087 Patent.. 15

B. Infringement of the'417 Patent 17

1. Direct Infringement of the'417 Patent 17

2. Contributory Infringement of the'417 Patent 17

3. Inducement ofInfringement of the'417 Patent.. 18

C. Infringement of the '978 Patent 20

1. Direct Infringement of the '978 Patent.. 20

2. Inducement ofInfringement of the '978 Patent.. 20

D. Infringement of the' 146 Patent 21

1. Direct Infringement of the' 146 Patent.. 21

2. Inducement ofInfringement of the' 146 Patent.. 22

VII. SPECIFIC INSTANCES OF UNFAIR IMPORTATION AND SALE 23

VIII. HARMONIZED TARIFF SCHEDULE ITEM NUMBERS 24

IX. RELATED LITIGATION 24

X. THE DOMESTIC INDUSTRY 24

A. S3G's Investments in the Domestic Industry 24

B. S3G',s Practice of the Asserted Patents 25

C. S3G's Licensees' Practice of the Asserted Patents 25

11

D. S3G's Licensing Business 26

XI. RELIEF REQUESTED 26

111

Exh.

Exh. 1

Exh.2

Exh.3

Exh.4

Exh.5

Exh.6

Exh. 7

Exh.8

Exh. 9

Exh. 10

Exh. 11

Exh. 12

Exh.13

Exh. 14

Exh. 15

Exh. 16

Exh.17

Exh.18(A)

Exh. 18(B)

Exh. 18(C)

Exh.18(D)

Exh. 18(E)

Exh. 18(F)'

TABLE OF EXHIBITS

Document

Certified copy of U.S. Patent No. 7,043,087

Certified copy of U.S. Patent No. 6,775,417

Certified copy of US. Patent No. 6,683,978

Copy of U.S. Patent No. 6,658,146

Certified copies of recorded assignments for the Asserted Patents

Apple Inc., Form 10-K for the Fiscal Year Ended September 26, 2009

Foreign patents and patent applications related to the Asserted Patents

Infringement claim charts for US. Patent No. 7,043,087

Infringement claim charts for U.S. Patent No. 6,775,417

Infringement claim charts for US. Patent No. 6,683,978

Infringement claim charts for U.S. Patent No. 6,658,146

Documents detailing purchase of Apple iPhone 3GS product in the
United States, including photographs

Documents detailing purchase of Apple iPad product in the United
States, including photographs

Documents detailing purchase of Apple iPod Touch product in the
United States, including photographs

Documents detailing purchase of Apple MacBook Pro product in the
United States, including photographs

Documents detailing purchase of three Apple iPhone software
applications in the United States, including screenshots

Photographs ofS3G's Chrome 440 GTX and Chrome 430 ULP
Graphics Chips

Apple document entitled, "OpenGL ES Programming Guide for
iPhone OS"

Apple document entitled, "iPad Programming Guide"

Apple document entitled, "GLES2 Sample"

Imagination document entitled, "PowerVR MBX Technology
Overview"

Imagination document entitled, "PowerVR SGX Open ES 2.0
Application Development Recommendation"

Imagination document entitled, "PowerVR 3D Application
Development Recommendation"

IV

Exh.

Exh.18(G)

Exh.18(H)

Exh. 18(1)

Exh. 18(J)

Exh.18(K)

Exh. 18(L)

Exh.18(M)

Exh.18(N)

Exh.18(0)

Exh. 18(P)

Confidential
Exhs.

Exh.19C

Exh.20C

Exh.21C

Exh.22C

Exh.23C

Exh.24C

Exh.25C

Exh.26C

Exh.27C

Exh.28C

Exh.29C

Exh.30C

Document

Fenney, "Texture Compression using Low-Frequency Signal
Modulation"

3D graphics decompression source code, "PVRTDecompress.cpp"

Apple document entitled, "iPhone Development Guide"

Apple webpage containing technical specifications ofMacBook
models

Technical specifications of iMac

Technical specifications of Mac Pro

Technical specifications of Mac mini

Apple document entitled, "Image I/O Programming Guide"

The TIFF standard, revision 6.0

Apple webpage entitled "iPhone OS Overview"

Document

Identification of Licensees

S3G Domestic Industry claim chart for U.S. Patent No. 7,043,087

S3G Domestic Industry claim chart for U.S. Patent No. 6,775,417

S3G Domestic Industry claim chart for U.S. Patent No. 6,683,978

S3G Domestic Industry claim chart for U.S. Patent No. 6,658,146

Exemplary S3G licensee Domestic Industry claim chart for U.S. Patent
No. 7,043,087

Exemplary S3G licensee Domestic Industry claim chart for U.S. Patent
No. 6,775,417

Exemplary S3G licensee Domestic Industry claim chart for U.S. Patent
No. 6,683,978

Exemplary S3G licensee Domestic Industry claim chart for U.S. Patent
No. 6,658,146

S3G investments in engineering, research, and development

S3G investments in labor and capital

S3G investments in plant and equipment

v

Exh.31C

Exh.32C

Exh. 32C (A)

Exh. 33C (A)

Exh. 33C (B)

Exh. 33C (C)

Exh. 33C (D)

Exh. 33C (E)

Exh. 33C (F)

Exh. 33C (G)

Exh. 33C (H)

Exh. 33C (I)

Exh. 33C (J)

Exh. 33C (K)

Exh. 33C (L)

Exh. 33C (M)

Exh.34C

Physical
Exhs.

Physical
Exh.l

Physical
Exh.2

Physical
Exh. 3

Physical
Exh.4

Physical
Exh.5

S3G investment in licensing

Domestic Industry Investments of licensees

Exemplary S3G licensee's Form 10-K for the Fiscal Year Ended June
30,2009

Developer documentation related to compression technology

Developer documentation related to compression technology

Developer documentation related to compression technology

Developer documentation related to compression technology

Developer documentation related to compression technology

Developer documentation related to compression technology

Developer documentation related to compression technology

Developer documentation related to compression technology

Confidential S3 architecture specification

Confidential S3 source code

Confidential S3 source code

Confidential S3 product overview

Confidential S3 source code

Photograph of Confidential Physical Exhibit 7C and screenshot of
exemplary S3G license's software development kit ("SDK") and
sample texture file

Apple iPhone (in box with packaging)

Apple iPad (in box with packaging)

Apple iPod Touch (in box with packaging)

Apple MacBook Pro (in box with packaging)

Domestic Industry Exhibit (S3G Chrome)

VI

Physical
Exhs.

Physical
Exh. 6

Confidential
Physical
Exhs.

Physical
Exh.7C

Compact disc containing three software applications for the Apple
iPhone

Compact disc containing exemplary S3G licensee's Software
Development Kit and texture file

Vll

Appendix

App.A

App.B

App.C

App.D

App.E

App. F

App.G

App.H

Confidential
Appendix

Conf.
App. I

APPENDICES

Document

Certified copy of the prosecution history of U.S. Patent No. 7,043,087
and three copies thereof

Certified copy of the prosecution history of U.S. Patent No. 6,775,417
and three copies thereof

Certified copy of the prosecution history ofD.S. Patent No. 6,683,978
and three copies thereof

Copy of the prosecution history of U.S. Patent No. 6,658,146 and three
copies thereof

Four copies of each technical reference identified in the prosecution
history ofD.S. Patent No. 7,043,087

Four copies of each technical reference identified in the prosecution
history of U.S. Patent No. 6,775,417

Four copies of each technical reference identified in the prosecution
history of U.S. Patent No. 6,683,978

Four copies of each technical reference identified in the prosecution
history ofD.S. Patent No. 6,658,146

Document

Three copies of each known current license involving the Asserted
Patents

Vlll

I. INTRODUCTION

1. This Complaint is filed by S3 Graphics, Inc. and S3 Graphics Co, Ltd. (collectively,

"S3G") under Section 337 of the Tariff Act of 1930, as amended, 19 U.S.C. § 1337, based on the

unlawful importation into the United States, the sale for importation, and the sale within the

United States after importation, by proposed Respondent Apple Inc., ("Apple") of certain

electronic devices with image processing systems, and components thereof, and associated

software that infringe one or more of claims 1,6, or 7 of United States Patent No. 7,043,087

("the '087 patent"); one or more of claims 1, 7, 8, 12, 13, 15 or 23 of United States Patent No.

6,775,417 ("the '417 patent"); one or more of claims 11, 14, or 16 of United States Patent No.

6,683,978 ("the '978 patent"); and one or more of claims 2, 4,8,13,16,18, or 19 of United

States Patent No. 6,658,146 ("the' 146 patent") (collectively, the "Asserted Claims" of the

"Asserted Patents").

2. Certified copies of the Asserted Patents are attached as Exhibit Nos. 1 through 4,

respectively.1 S3 Graphics Co., Ltd., owns all right, title, and interest in each of the Asserted

Patents. S3 Graphics, Inc., a wholly owned subsidiary of S3 Graphics Co. Ltd., holds a

nonexclusive license, with a right to grant sublicenses, to the Asserted Patents. (Confidential

Appendix I). Certified copies of recorded assignments demonstrating the chain of title of the

Asserted Patents are attached as Exhibit No.5.

3. The proposed respondent is Apple Inc. The Accused Products are certain electronic

devices with image processing systems, components thereof, and associated software including,

but not limited to multimedia devices, smart phones, personal computers, and software for use

1 S3G has not yet obtained a certified copy of the ' 146 patent. Exhibit No.4, therefore,
is not a certified copy of the' 146 patent. S3G will supplement Exhibit No.4 with a certified
copy of the' 146 patent upon receipt.

1

An industry as required by 19 U.S.C. § 1337(a)(2) and (3) exists in the United

with such devices (collectively the "Accused Products"). Examples of the Accused Products are

the Apple iPod Touch, iPhone, iPad, Apple computers such as the MacBook used in conjunction

with an Apple software development kit ("SDK"), and other application software. The Accused

Products are imported into the United States and sold after importation into the United States by

Apple.

4.

States relating to the technology protected by the Asserted Patents.

5. As set forth more fully in paragraph 119, S3G seeks as relief, a permanent

exclusion order barring from entry into the United States all infringing Apple electronic devices

with image processing systems, components thereof, and associated software sold for

importation into the United States, imported, or sold after importation. S3G also seeks, as relief,

a cease and desist order prohibiting Apple's sale for importation into the United States,

importation, sale after importation into the United States, offer for sale, solicitation of sales,

advertising, testing, technical support and other commercial activity related to Apple electronic

devices with image processing systems, components thereof, and/or associated software that

infringe one or more Asserted Claims of the Asserted Patents.

II. COMPLAINANTS

6. S3 Graphics, Inc., is a Delaware corporation with its principal place of business at

1025 Mission Court, Fremont, CA 94539. S3 Graphics Co., Ltd. is a Cayman Islands

corporation with its principal place of business at 2nd Fl., Zephyr House, Mary St., P.O. Box 709,

Grand Cayman, Grand Cayman Islands, British West Indies. S3 Graphics Co., Ltd. holds all

right, title, and interest in the Asserted Patents. (Exhibit No.5). S3G provides innovative

graphics visualization technologies and GPU (graphics processing unit) products for mobile

devices, desktop computers, and embedded systems.

2

7. S3G's image processing technologies enable coding of image attributes into data

files that can be more efficiently stored and later displayed. Many software developers use S3G

image processing technology to convert very large color image data files, particularly animated

(motion) images, into compressed data files that can be efficiently distributed to and displayed

by end users of the software. For example, video games typically implement life-like animation

by the rapid display of a sequence of progressively modified still images to achieve the illusion

of movement. Game developers can use S3G's image processing technology to encode the

image data into compressed formats that are convenient for distribution and can be decoded and

displayed by consumers. S3G's image processing technology is licensed by some of the largest

computer hardware and software companies in the world.

8. S3G engages in research, development, engineering, and product design activities

at S3 Graphics, Inc.'s principal place of business in Fremont, California including research,

development, and product design for products utilizing S3G image compression technology,

including the S3G Chrome series graphics products.

9. S3G operates a licensing business from S3 Graphics, Inc.'s principal place of

business in Fremont, California that includes formulation of licensing strategies, identification of

products and companies that currently do, or prospectively could, utilize S3G image processing

technology, analyzing those products and companies for potential licensing opportunities,

negotiating licenses under the S3G patent portfolio, and monitoring and enforcing compliance

with those licenses and S3G patent rights.

10. On information and belief, S3G's licensees conduct in the United States certain

research, development, engineering, manufacturing, and technical support of products with S3G

image processing technology.

3

III. PROPOSED RESPONDENT

11. On information and belief, respondent Apple Inc. is a corporation organized under

the laws of the State of California with its principal place of business at 1 Infinite Loop,

Cupertino, CA 95014. (Exhibit No.6).

12. On information and belief, Apple is involved in the design, development,

manufacture, sale for importation, importation, and sale after importation of the Accused

Products. Further, on information and belief, Apple performs several services to support the

importation and sale of Accused Products into and within the United States, including marketing

of the Accused Products, repair of the Accused Products, technical support, and other after-sale

services, such as supporting and configuring the Accused Products, as well as interfacing with

U.S.-based customers and distributors to conform the Accused Products to purchaser requests.

IV. THE TECHNOLOGY AND PRODUCTS AT ISSUE

13. The technologies at issue relate generally to apparatuses, methods, and data

formats for encoding and decoding, including compressing image data, storing of compressed

image data, and decompressing of such data. The Asserted Patents generally relate to aspects of

an image processing system for encoding and decoding, including compressing image data files

into a more compact form, a format for storing that compressed data, and a system for

decompressing that data for display as an image.

14. The Asserted Patents disclose an image compression technology including an

image decomposer, an encoder for computing image data values and generating codeword

reference values, and a construction module for creating indices that map each image data value

to a set of colors generated from the codewords. The resulting codewords and indices form an

encoded image block.

4

15. The Asserted Patents also disclose a format for storage of encoding or

compressing image data that includes a portion for storage of multiple codewords from which a

set of colors can be computed and a portion for storage of indices for mapping pixel color to a

computed color.

16. The Asserted Patents also disclose an image data decoding or decompressing

technology that includes a decomposer for processing the encoded image data stream into a

header and a plurality of encoded image bocks, a header converter for generating an output

image header, one or more block data decoders for generating from the codewords and indices

pixel image attributes such as color and for mapping those attributes to pixels, and an image

composer that reassembles data blocks for a display device and/or a data file.

17. On information and belief, Apple provides an SDK specifically adapted for use

with Apple computers to compress and decompress image data files using the technology

disclosed and claimed in the Asserted Patents.

18. On information and belief, Apple's SDK and computers generate encoded image

files in the format disclosed and claimed in the Asserted Patents.

19. On information and belief, Apple sells a variety of imported products, including

the Apple iPod Touch, iPhone, iPad, Apple computers such as the MacBook, certain applications

for those products, and associated software that incorporate the image data compression,

decompression, and/or data format disclosed and claimed in the Asserted Patents.

20. The identification of a specific model, trade name, or type of electronic device

with image processing systems and/or the identification of specific software or components is

not intended to limit the scope of this Investigation. The remedy sought in this Complaint should

5

extend to all infringing electronic devices with image processing systems, components thereof,

and associated software.

V. THE ASSERTED PATENTS AND NON-TECHNICAL DESCRIPTION OF THE
INVENTIONS

A. Four Patents from a Single Original Application

21. On October 2, 1997, S3 Incorporated (a predecessor company to S3G) filed

United States Patent Application Serial Number. 08/942,860 ("U.S. Pat. App. Ser. No.

08/942,860"). From that single original application, through continuation and continuation-in-

part applications, all four of the patents at issue in this investigation were issued.

B. U.S. Patent No. 7,043,087

1. Identification and Ownership of the '087 Patent

22. United States Patent No. 7,043,087, entitled "Image Processing System," issued

on May 9, 2006, to inventors Zhou Hong, Konstantine 1. Iourcha, and Krishna S. Nayak.

(Exhibit No.1). The '087 patent issued from Application No. 10/893,084, filed on July 16,

2004, that claims priority from the original U.S. Pat. App. Ser. No. 08/942,860. Id.

23. The '087 patent has 1 independent claim and 7 dependent claims. S3G is

asserting claims 1,6, and 7 of the '087 patent in this Investigation.

24. The Asserted Claims of the '087 patent are valid, enforceable, and currently in

full force and effect until its expiration on October 2, 2017.

25. S3 Graphics Co., Ltd., owns by assignment the entire right, title, and interest in

and to the '087 patent. (Exhibit No.5).

26. Pursuant to Commission Rule 210.12(c), this Complaint is accompanied by a

certified copy of the prosecution history of the '087 patent and three copies thereof.

6

(Appendix A). Further, this Complaint is accompanied by four copies of each technical

reference identified in the prosecution history of the '087 patent (Appendix E).

2. Non-Technical Description of the Invention Claimed in the '087
Patent

27. The '087 patent discloses aspects of an image processing system for encoding and

decoding image data, including compressing image data files into a more compact form, a format

for storing that compressed data, and a system for decoding and/or decompressing that data for

display as an image and/or for storage. Asserted Claims 1,6, and 7 of the '087 patent are

directed to aspects of an engine for decoding image data files. A nontechnical description of that

decoding engine is that it includes: (a) a decomposer for converting encoded image data files into

a modified header and at least one encoded or compressed image block, where each image block

is associated with at least one codeword and index values for a plurality of pixels; (b) at least one

block decoder for decoding or decompressing image blocks by generating a set of quantized

image data values and mapping the index value to one of the quantized image data values from

the set of quantized image data values; and (c) at least one decoder configured for decoding or

decompressing each of the image blocks. This nontechnical description does not limit or

interpret the claims of the '087 patent.

3. Foreign Counterparts

28. The foreign patents and patent applications reported as related to the '087 patent

are identified in Exhibit No.7. On information and belief, no other foreign applications or

patents corresponding to the '087 patent have been filed, abandoned, or rejected.

7

4. Licenses

29. As required under Commission Rule 210.12(a)(9)(iii), a list of licensed entities is

attached to this Complaint as Confidential Exhibit No. 19C. On information and belief, there are

no other current licenses involving the '087 patent.

C. U.S. Patent No. 6,775,417

1. Identification and Ownership of the '417 Patent

30. United States Patent No. 6,775,417 (the "'417 patent"), entitled "Fixed-Rate

Block-Based Image Compression with Inferred Pixel Values," issued on August 10,2004, to

inventors Zhou Hong, Konstantine 1. Iourcha, and Krishna S. Nayak. (Exhibit No.2). The '417

patent issued from Application No. 10/052,613, filed on January 17,2002, that claims priority

from the original U.S. Pat. App. Ser. No. 08/942,860. Id

31. The '417 patent has 8 independent claims and 22 dependent claims. S3G is

asserting claims 1, 7, 8,12,13,15 and 23 of the '417 patent in this Investigation.

32. The Asserted Claims of the '417 patent are valid, enforceable, and currently in

full force and effect until its expiration on March 16,2018.

33. S3 Graphics Co., Ltd., owns by assignment the entire right, title, and interest in

and to the '417 patent. (Exhibit No.5).

34. Pursuant to Commission Rule 210.12(c), this Complaint is accompanied by a

certified copy of the prosecution history of the'417 patent and three copies thereof.

(Appendix B). Further, this Complaint is accompanied by four copies of each technical

reference identified in the prosecution history ofthe '417 patent (Appendix F).

2. Non-Technical Description of the Invention of the '417 Patent

35. The '417 patent discloses aspects of an image processing system for encoding and

decoding image data, including compressing image data files into a more compact form, a format

8

for storing that encoded or compressed data, and a system for decoding and/or decompressing

that data for display as an image and/or for storage.

36. Asserted Claims 1, 7, and 15 of the'417 patent is directed to aspects of an

apparatus and method for encoding image data files. A nontechnical description of that encoding

engine is that it includes: (a) a decomposer for decomposing image data files into a header and at

least one image block, where each image block has a set of image elements and each image

element has an original image data value; (b) at least one block encoder for encoding or

compressing each image block by associating each original image data value of the image

element with an index to a derived image data value in a set of quantized image data values; and

(c) an encoded image composer ordering the encoded image blocks into a data file. This

nontechnical description does not limit or interpret the claims of the'417 patent.

37. Asserted Claims 8, 12, and 13 of the'417 patent are directed to aspects of an

apparatus for decoding image data files. A nontechnical description of that apparatus is that it

includes: (a) a decomposer for converting encoded image data files into a modified header and at

least one encoded or compressed image block, where each image block is associated with at least

one codeword and index values for a plurality of image elements and (b) at least one block

decoder for decoding or decompressing image blocks by generating a set of quantized image data

values and mapping the index value to one of the quantized image data values in the set of

quantized image data values. This nontechnical description does not limit or interpret the claims

of the '417 patent.

38. Asserted Claim 23 of the '417 patent is directed to aspects of a method for

decoding image data files. A nontechnical description of that decoding method is that it

includes: (a) decomposing an encoded image into a modified header and a plurality of encoded

9

image blocks having at least one codeword and a plurality of image elements associated with an

index value; (b) generating a set of quantized image data values; and (c) mapping the index value

for each image element to one of the quantized image data values. This nontechnical description

does not limit or interpret the claims of the '417 patent.

3. Foreign Counterparts

39. The foreign patents and patent applications reported as related to the '417 patent

are identified in Exhibit No.7. On information and belief, no other foreign applications or

patents corresponding to the'417 patent have been filed, abandoned, or rejected.

4. Licenses

40. As required under Commission Rule 210.12(a)(9)(iii), a list oflicensed entities is

attached to this Complaint as Confidential Exhibit No. 19C. On information and belief, there are

no other current licenses involving the'417 patent.

D. U.S. Patent No. 6,683,978

1. Identification and Ownership of the '978 Patent

41. United States Patent No. 6,683,978 (the '''978 patent"), entitled "Fixed-Rate

Block Based Image Compression with Inferred Pixel Values," issued on January 17,2004, to

inventors Konstantine 1. Iourcha, Krishna S. Nayak, and Zhou Hong. (Exhibit No.3). The '978

patent issued from Application No. 09/442,114, filed on November 17, 1999, that claims priority

from the original U.S. Pat. App. Ser. No. 08/942,860. !d.

42. The '978 patent has 5 independent claims and 24 dependent claims. S3G is

asserting claims 11, 14, and 16 of the '978 patent in this Investigation.

43. The Asserted Claims of the '978 patent are valid, enforceable, and currently in

full force and effect until its expiration on October 2,2017.

10

44. 83 Graphics Co., Ltd., owns by assignment the entire right, title, and interest in

and to the '978 patent. (Exhibit No.5).

45. Pursuant to Commission Rule 21O.12(c), this Complaint is accompanied by a

certified copy of the prosecution history of the '978 patent and three copies thereof.

(Appendix C). Further, this Complaint is accompanied by four copies of each technical

reference identified in the prosecution history of the '978 patent (Appendix G).

2. Non-Technical Description of the Invention of the '978 Patent

46. The '978 patent discloses aspects of an image processing system for encoding and

decoding image data files, including compressing image data files into a more compact form, a

format for storing that compressed data, and a system for decoding and/or decompressing that

data for display as an image and/or file storage. Asserted claims 11, 14, and 16 ofthe '978

patent are directed to aspects of a data format for representing an original color image. A

nontechnical description of the data format is: (a) a codeword portion for storing at least one

codeword and a bitmap portion for storing a set of indices and (b) the bitmap portion constructed

by a bitmap construction module utilizing the codeword portion associated with the bitmap

portion where (i) at least one codeword defines a set of colors that approximate the pixel color

set and (ii) the indices map the pixel color set to at least one color in the set of colors. This

nontechnical description does not limit or interpret the claims ofthe '978 patent.

3. Foreign Counterparts

47. The foreign patents and patent applications reported as related to the '978 patent

are identified in Exhibit No.7. On information and belief, no other foreign applications or

patents corresponding to the '978 patent have been filed, abandoned, or rejected.

11

4. Licenses

48. As required under Commission Rule 210.12(a)(9)(iii), a list of licensed entities is

attached to this Complaint as Confidential Exhibit No. 19C. On information and belief, there are

no other current licenses involving the '978 patent.

E. U.S. Patent No. 6,658,146

1. Identification and Ownership of the '146 Patent

49. United States Patent No 6,658,146, entitled "Fixed-Rate Block-Based Image

Compression with Inferred Pixel Values" issued December 2,2003, to inventors Konstantine 1.

Iourcha, Krishna S. Nayak, and Zhou Hong. (Exhibit No.4). The' 146 patent issued from

Application No. 09/351,930, filed on July 12, 1999, that claims priority from the original U.S.

Pat App. Ser. No. 08/942,860. Id.

50. The '146 patent has 9 independent claims and 13 dependent claims. S3G is

asserting claims 2, 4, 8,13,16,18, and 19 of the '146 patent in this Investigation.

51. The Asserted Claims of the '146 patent are valid, enforceable, and currently in

full force and effect until its expiration on October 2, 1017.

52. S3 Graphics Co., Ltd., owns by assignment the entire right, title, and interest in

and to the '146 patent. (Exhibit No.5).

53. Pursuant to Commission Rule 210.12(c), this Complaint is accompanied by a

copy of the prosecution history of the ' 146 patent and three copies thereof.2 (Appendix D).

Further, this Complaint is accompanied by four copies of each technical reference identified in

the prosecution history of the' 146 patent (Appendix H).

2 As of the time of filing, S3G has not yet obtained a certified copy of the prosecution
history of the '146 patent. S3G will supplement Appendix D with a certified copy of the
prosecution history of the' 146 patent upon receipt.

12

2. Non-Technical Description of the Invention of the '146 Patent

54. The' 146 Patent discloses aspects of an image processing system for encoding

and decoding image data files, including compressing image data files into a more compact form,

a format for storing that compressed data, and a system for decoding and/or decompressing that

data for display as an image and/or file storage. Asserted Claims 2 and 4 of the' 146 Patent are

directed to aspects of an apparatus for encoding image data files. The apparatus includes: (a) a

decomposer for breaking an image into one or more image blocks; (b) at least one block encoder

for encoding or compressing each image block to generate an encoded image block; and (c) an

encoded image composer for ordering the encoded image blocks into a data file. The block

encoder also includes a color quantizer for generating codewords from which quantized colors

are derived. The color quantizer further includes a block type module for selecting an

identifiable block type of the image block.

55. Asserted Claims 8,13,16,18, and 19 of the '146 patent are directed to aspects of

a method for encoding image data files. A nontechnical description of that method is that it

includes: (a) fitting a geometric element to the color points of the image block to the center of

gravity of the color points of the image block while minimizing the moment of inertia; (b)

computing a set of codewords; (c) computing a set of computed colors; (d) mapping each of the

color points of the image block to one of the computed colors to generate an index; and (e) using

the indices to represent the color points of the image bock. This nontechnical description does

not limit or interpret the claims of the' 146 Patent.

3. Foreign Counterparts

56. The foreign patents and patent applications reported as related to the' 146 patent

are identified in Exhibit No.5. On information and belief, no other foreign applications or

patents corresponding to the ' 146 patent have been filed, abandoned, or rejected.

13

4. Licenses

57. As required under Commission Rule 210.12(a)(9)(iii), a list of licensed entities is

attached to this Complaint as Confidential Exhibit No. 19C. On information and belief, there are

no other current licenses involving the' 146 patent.

VI. UNLAWFUL AND UNFAIR ACTS OF RESPONDENTS-PATENT
INFRINGEMENT

58. Apple has engaged in unfair trade practices, including the sale for importation,

importation, and sale after importation of certain electronic devices with image processing

systems, components thereof, and associated software that infringe the Asserted Claims of the

Asserted Patents.

A. Infringement of the '087 Patent

59. On information and belief, the Accused Products infringe at least claims 1,6, and

7 of the '087 patent. A chart that applies representative independent claim 1 ofthe '087 patent to

the Accused Products is attached to this Complaint as Exhibit No.8.

1. Direct Infringement of the '087 Patent

60. On information and belief, Apple sells for importation into the United States,

imports, and/or sells after importation in the United States the Accused Products, including the

Apple iPod Touch, iPhone, iPad, Apple computers such as the MacBook, the Apple SDK, and

application software. S3G has purchased these devices and certain application software in the

United States directly from Apple. (See Exhibit Nos. 12-16).

61. On information and belief, Apple tests or operates the Accused Products in the

United States by using the Accused Products, including the Apple iPod Touch, iPhone, iPad, and

Apple computers such as the MacBook in combination with associated software (e.g., encoded

image data and the Apple SDK), thereby directly infringing claims 1,6, and 7 of the '087 patent.

14

2. Contributory Infringement of the '087 Patent

62. Apple will have knowledge of the '087 patent and the infringing acts at least as

early as its receipt of this Complaint.

63. On information and belief, Apple contributes to the infringement of claims 1, 6,

and 7 of the '087 patent.

64. On information and belief, the graphics decoding components of the Apple iPod

Touch, iPhone, and iPad are specially adapted for an infringing use of one or more of claims 1, 6,

and 7 of the '087 patent; embody a material part of the inventions claimed in the '087 patent; and

are not staple articles of commerce suitable for substantial non-infringing use. Apple sells for

importation into the United States, imports, and/or sells after importation in the United States the

Apple iPod Touch, iPhone, iPad, and the graphics decoding components of those products.

65. On information and belief, software application developers and consumers make

and use the claimed inventions by using the Apple iPod Touch, iPhone, and iPad, in combination

with associated software (e.g., encoded image data) thereby directly infringing claims 1,6, and 7

of the '087 patent.

3. Inducement of Infringement of the '087 Patent

66. Apple will have knowledge of the '087 patent and the infringing acts at least as

early as its receipt of this Complaint.

67. On information and belief, Apple induces others to infringe claims 1, 6, and 7 of

the '087 patent by encouraging and facilitating others to perform actions known by Apple to

infringe and with the intent that performance of the actions will infringe.

68. On information and belief, Apple encourages software application developers to

make and use the claimed inventions by providing compressed image data, providing

15

instructions and support for developing applications, and providing a distribution channel for

applications for the Apple iPod Touch, iPhone, and iPad that include the encoded image data.

69. On information and belief, Apple induces consumers to use the claimed

inventions by providing the Apple iPod Touch, iPhone, and iPad, and by providing software

applications for those products that include encoded image data files. Further, Apple actively

encourages, promotes, distributes, provides instruction for, and supports the use of software

applications for its iPod Touch, iPhone, and iPad products that include encoded image data files.

70. On information and belief, software application developers and consumers make

and use the claimed inventions by using the Apple iPod Touch, iPhone, and iPad, in combination

with associated software (e.g., encoded image data) thereby directly infringing claims 1,6, and 7

of the '087 patent.

71. On information and belief, Apple induces software application developers to

make and use the claimed inventions by providing the Apple SDK for use with Apple computers

such as the MacBook. The Apple SDK works exclusively on Apple computers such as the

MacBook, and the Apple SDK in combination with Apple computers such as the MacBook can

be used to produce application software at issue. Apple actively encourages application software

developers to use the Apple SDK with Apple computers such as the MacBook to develop

application software by distributing the Apple SDK and providing instructions and support for its

use with Apple computers such as the MacBook and by selling, promoting, distributing, and

marketing applications made using the Apple SDK.

72. On information and belief, application software developers make and use the

claimed inventions by using Apple computers such as the MacBook in combination with

16

associated Apple software (e.g., the Apple SDK) thereby directly infringing claims 1, 6, and 7 of

the '087 patent.

B. Infringement of the'417 Patent

73. On information and belief, the Accused Products infringe at least claims 1, 7, 8,

12, 13,15 and 23 of the '417 patent. Charts that apply representative independent claims 1,8, 15

and 23 of the '417 patent to the Accused Products are attached to this Complaint as Exhibit No.

9.

1. Direct Infringement of the '417 Patent

74. On information and belief, Apple sells for importation into the United States,

imports, and/or sells after importation in the United States the Accused Products, including the

Apple iPod Touch, iPhone, iPad, Apple computers such as the MacBook, the Apple SDK, and

application software. S3G has purchased these devices and certain application software in the

United States directly from Apple. (Exhibit Nos. 12-16).

75. On information and belief, Apple tests or operates the Accused Products in the

United States by performing the claimed methods and by using the Accused Products, including

the Apple iPod Touch, iPhone, iPad, and Apple computers such as the MacBook in combination

with associated software (e.g., encoded image data and the Apple SDK), thereby directly

infringing claims 1, 7, 8, 12, 13, 15 and 23 of the '417 patent.

2. Contributory Infringement of the '417 Patent

76. Apple will have knowledge of the '417 patent and the infringing acts at least as

early as its receipt of this Complaint.

77. On information and belief, Apple contributes to the infringement of claims 8, 12,

13, and 23 of the '417 patent.

17

78. On information and belief, the graphics decoding components of the Apple iPod

Touch, iPhone, and iPad, are specially adapted for practicing an infringing method or an

infringing use of one or more of claims 8, 12, 13, and 23 of the'417 patent; embody a material

part of the inventions claimed in the'417 patent; and are not staple articles of commerce suitable

for substantial non-infringing use. Apple sells for importation into the United States, imports,

and/or sells after importation in the United States the Apple iPod Touch, iPhone, iPad, and the

graphics decoding components of those products.

79. On information and belief, application software developers and consumers make

and use the claimed inventions and practice the claimed methods by using the Apple iPod Touch,

iPhone, and iPad, in combination with associated software (e.g., encoded image data) thereby

directly infringing claims 8, 12, 13 and 23 of the '417 patent.

3. Inducement of Infringement of the'417 Patent

80. Apple will have knowledge of the '417 patent and the infringing acts at least as

early as its receipt of this Complaint.

81. On information and belief, Apple induces others to infringe claims 1, 7, 8, 12, 13,

15 and 23 of the '417 patent by encouraging and facilitating others to perform actions known by

Apple to infringe and with the intent that performance of the actions will infringe.

82. On information and belief, Apple encourages software application developers to

make and use the claimed inventions by providing encoded image data, providing instructions

and support for developing application software, and providing a distribution channel for

application software for the Apple iPod Touch, iPhone, and iPad that include encoded image

data.

83. On information and belief, Apple induces consumers to use the claimed

inventions by providing the Apple iPod Touch, iPhone, and iPad and by providing application

18

software for those products that include encoded image data files. Further, Apple actively

encourages, promotes, distributes, provides instruction for, and supports the use of software

applications for its iPod Touch, iPhone, and iPad products that include encoded image data files.

84. On information and belief, application software developers and consumers make

and use the claimed inventions and practice the claimed methods by using the Apple iPod Touch,

iPhone, and iPad, in combination with associated software (e.g., encoded image data) thereby

directly infringing claims 8, 12, 13 and 23 of the '417 patent.

85. On information and belief, Apple induces application software developers to

make and use the claimed inventions and practice the claimed methods by providing the Apple

SDK for use with Apple computers such as the MacBook. The Apple SDK works exclusively on

Apple computers such as the MacBook, and the Apple SDK in combination with Apple

computers such as the MacBook can be used to produce the software applications at issue.

Further, Apple actively encourages application software developers to use the Apple SDK with

Apple computers such as the MacBook to develop application software by distributing the Apple

SDK and providing instructions and support for its use with Apple computers such as the

MacBook and by selling, promoting, distributing, and marketing application software made

using the Apple SDK.

86. On information and belief, application software developers make and use the

claimed inventions and practice the claimed methods by using Apple computers such as the

MacBook in combination with associated Apple software (e.g., the Apple SDK) thereby directly

infringing claims 1, 7, 8, 12, 13, 15 and 23 of the '417 patent.

19

C. Infringement of the '978 Patent

87. On information and belief, the Accused Products infringe at least claims 11, 14,

and 16 of the '978 patent. Charts that apply representative independent claims 11, 14, and 16 of

the '978 patent to the Accused Products are attached to this Complaint as Exhibit No. 10.

1. Direct Infringement of the '978 Patent

88. On information and belief, Apple sells for importation into the United States,

imports, and/or sells after importation in the United States the Accused Products, including

certain application software containing encoded image data files, thereby directly infringing

claims 11, 14, and 16 of the '978 patent. S3G has purchased certain application software

containing encoded image data files in the United States directly from Apple. (Exhibit No. 16).

89. On information and belief, Apple makes and uses the claimed invention by testing

or operating application software, containing encoded image data files, thereby directly

infringing claims 11, 14, and 16 of the '978 patent.

2. Inducement of Infringement of the '978 Patent

90. Apple will have knowledge of the '978 patent and the infringing acts at least as

early as its receipt of this Complaint.

91. On information and belief, Apple induces others to infringe claims 11, 14, and 16

of the '978 patent by encouraging and facilitating others to perform actions known by Apple to

infringe and with the intent that performance of the actions will infringe.

92. On information and belief, Apple induces application software developers to

make and use the claimed inventions by providing the Apple SDK for use with Apple computers

such as the MacBook. The Apple SDK works exclusively on Apple computers such as the

MacBook, and the Apple SDK in combination with Apple computers such as the MacBook can

be used to produce the application software at issue. Further, Apple actively encourages

20

application software developers to use the Apple SDK with Apple computers such as the

MacBook to develop application software by distributing the Apple SDK and providing

instructions and support for its use with Apple computers such as the MacBook and by selling,

promoting, distributing, and marketing applications made using the Apple SDK.

93. On information and belief, application software developers make and use the

claimed inventions by using Apple computers such as the MacBook in combination with

associated Apple software (e.g., the Apple SDK) thereby directly infringing claims 11, 14, and

16 of the '978 patent.

94. On information and belief, Apple induces consumers to use the claimed

inventions by marketing, distributing, promoting, selling, and providing support for software

applications, containing encoded image data files, for use with Apple's iPod Touch, iPhone, and

iPad.

D. Infringement of the '146 Patent

95. On information and belief, the Accused Products infringe at least claims 2, 4, 8,

13, 16, 18, and 19 ofthe '146 patent. Charts that apply representative independent claims 4,8,

13, and 18 of the '146 patent to the Accused Products are attached to this Complaint as Exhibit

No. 11.

1. Direct Infringement of the '146 Patent

96. On information and belief, Apple sells for importation into the United States,

imports, and/or sells after importation in the United States the Accused Products, including

Apple computers such as the MacBook and associated Apple software (e.g., the Apple SDK).

S3G has purchased these devices in the United States directly from Apple. (Exhibit No. 15).

97. On information and belief, Apple tests or operates the Accused Products in the

United States by performing the claimed methods and by using the Accused Products, including

21

Apple computers such as the MacBook in combination with associated software (e.g., the Apple

SDK), thereby directly infringing claims 2, 4,8, 13, 16, 18, and 19 of the '146 patent.

2. Inducement of Infringement of the '146 Patent

98. Apple will have knowledge of the' 146 patent and the infringing acts at least as

early as its receipt of this Complaint.

99. On information and belief, Apple induces others to infringe claims 2, 4,8, 13, 16,

18, and 19 of the' 146 patent by encouraging and facilitating others to perform actions known by

Apple to infringe and with the intent that performance of the actions will infringe.

100. On information and belief, Apple induces application software developers to

make and use the claimed inventions and practice the claimed methods by providing the Apple

SDK for use with Apple computers such as the MacBook. The Apple SDK works exclusively on

Apple computers such as the MacBook, and the Apple SDK in combination with Apple

computers such as the MacBook can be used to produce the application software at issue.

Further, Apple actively encourages application software developers to use the Apple SDK with

Apple computers such as the MacBook to develop software applications by distributing the

Apple SDK and providing instructions and support for its use with Apple computers such as the

MacBook and by selling, promoting, distributing, and marketing applications made using the

Apple SDK.

101. On information and belief, application software developers make and use the

claimed inventions and practice the claimed methods by using Apple computers such as the

MacBook in combination with associated Apple software (e.g., the Apple SDK) thereby directly

infringing claims 2, 4,8, 13, 16, 18, and 19 ofthe '146 patent.

22

VII. SPECIFIC INSTANCES OF UNFAIR IMPORTATION AND SALE

102. During April 2010, samples of Accused Products were purchased in the United

States.

103. On or about April19, 2010, an Apple iPod Touch multimedia player was

purchased in the United States. Exhibit No. 14 is a copy of the purchase receipt, and

photographs of the packaging and iPod Touch device, including a label indicating that the device

was "Assembled in China." A physical sample of the Apple iPod Touch, purchased as described

above, is submitted as Physical Exhibit No.3 to this Complaint.

104. On or about April19, 2010, an Apple iPhone 3GS smart phone was purchased in

the United States. Exhibit No. 12 is a copy of the purchase receipt, and photographs of the

packaging and iPhone 3GS device, including a label indicating that the device was "Assembled

in China." A physical sample of the Apple iPhone, purchased as described above, is submitted

as Physical Exhibit No.1 to this Complaint.

105. On or about April 20, 2010, an Apple iPad tablet computer was purchased in the

United States. Exhibit No. 13 is a copy of the purchase receipt, and photographs of the

packaging and iPad device, including a label indicating that the device was "Assembled in

China." A physical sample ofthe Apple iPad, purchased as described above, is submitted as

Physical Exhibit No.2 to this Complaint.

106. On or about May 26, 2010, three software applications for the iPhone were

purchased in the United States. Exhibit No. 16 is a copy of the purchase receipt, screenshots

from these software applications, and information about the location of the developers. On

information and belief, all three software applications were made outside of the United States. A

compact disc containing the three iPhone applications, purchased as described above, is

submitted as Physical Exhibit No.6.

23

107. On or about April 19, 2010, an Apple MacBook Pro computer was purchased in

the United States. Exhibit No. 15 is a copy of the purchase receipt, and photographs of the

packaging and MacBook Pro device, including a label indicating that the device was "Assembled

in China." A physical sample of the Apple MacBook Pro, purchased as described above, is

submitted as Physical Exhibit No.4 to this Complaint.

VIII. HARMONIZED TARIFF SCHEDULE ITEM NUMBERS

108. On information and belief, the Harmonized Tariff Schedule of the United States

item numbers under which the infringing image processing systems, and products containing

same have been imported into the United States may include at least the following HTS

numbers: 8517.12.00 (mobile phones), 8519.81.40, 8519.89.30, or 8521.90.00 (portable media

players), 8471.30.01, 8471.41.01, or 8471.49.00 (portable computers), and 9504.10.0000

(software) .

IX. RELATED LITIGATION

109. S3G has not previously asserted any of the Asserted Patents in any other judicial

or administrative proceeding.

X. THE DOMESTIC INDUSTRY

110. An industry in the United States, relating to the image processing systems

protected by the Asserted Patents, exists under 19 U.S.C. § 1337(a)(3)(a)-(c), comprising

significant investments in physical operations, employment of labor and capital, and exploitation

of the Asserted Patents.

A. S3G's Investments in the Domestic Industry

111. S3 Graphics, Inc., employs a work force the United States that conducts research,

development, engineering, product design, support, and repair in the United States for S3

Graphics, Inc.' s products that practice the Asserted Patents, including at least the S3 Graphics,

24

Inc. Chrome series of graphics products (Chrome S25, S27, 2300E; Chrome 430, 435ULP,

440GTX; Chrome 4300E, 4400E; Chrome 535 ULP, and 540GTX. S3 Graphics, Inc., makes

significant investments in plant, equipment, labor, engineering, and research and development in

the United States in connection with its research, development, design, technical support, and

repair of products that practice the Asserted Patents. See Confidential Exhibit Nos. 28C-30C.

B. S3G's Practice of the Asserted Patents

112. S3G makes extensive use of the Asserted Patents in several of its own products.

As noted above, S3G has a variety of graphics products including the Chrome S25, S27, 2300E,

430, 435ULP, 440GTX, 4300E, 4400E, 535 ULP, 540GTX, and 5400E. Each of these products

practices the Asserted Patents. As an example, the Chrome 430 and 440 chips are provided with

this Complaint as Physical Exhibit No.5.

113. An exemplary claim chart comparing the Chrome 400 series to a representative

claim of the '087 patent is attached as Confidential Exhibit No. 20C.

114. An exemplary claim chart comparing the Chrome 400 series to a representative

claim of the'417 patent is attached as Confidential Exhibit No. 21C.

115. An exemplary claim chart comparing the Chrome 400 series to a representative

claim of the '978 patent is attached as Confidential Exhibit No. 22C.

116. An exemplary claim chart comparing the Chrome 400 series to a representative

claim of the '146 patent is attached as Confidential Exhibit No. 23C.

C. S3G's Licensees' Practice of the Asserted Patents

117. On information and belief, S3G's licensees practice at least one claim of each of

the Asserted Patents in the United States. For example, a major computer software company

holds a license to the Asserted Patents. Charts comparing a representative claim of each of the

Asserted Patents to a corresponding product of this major computer software company, are

25

submitted as Confidential Exhibit Nos. 24C-27C. Similarly, a number of other major computer

software and hardware companies hold licenses to the Asserted Patents. On information and

belief, certain ofS3G's licensees have a contractual obligation to incorporate S3G's image

processing technologies in their products and S3G's licensees practice at least one claim of each

of the Asserted Patents. On information and belief, S3G's licensees make significant

investments in plant, equipment, labor, and consulting services in the United States in the course

of researching, developing, engineering, manufacturing, and supporting products that practice

one or more Asserted Claims of the Asserted Patents.

D. S3G's Licensing Business

118. S3G operates a licensing business from its headquarters in Fremont, California.

S3G and its consultants formulate licensing strategies, identify products and companies that

currently or prospectively could utilize S3G image processing technology, analyze those

products and companies for potential licensing opportunities, negotiate licenses under the S3G

patent portfolio, and monitor and enforce compliance with those licenses and S3G patent rights.

The work force and compensation of S3 Graphics, Inc., in Fremont, California responsible for

licensing S3G's patent portfolios, including the Asserted Patents, is identified in Confidential

Exhibit No. 31C. S3G's domestic investments in plant, equipment, labor, and consulting

services used to conduct that licensing business are set forth in Confidential Exhibit No. 31C.

XI. RELIEF REQUESTED

119. WHEREFORE, by reason of the foregoing, S3G respectfully requests that the

United States International Trade Commission:

(a) Institute an immediate investigation, pursuant to Section 337 ofthe Tariff Act

of 1930, as amended, 19 U.S.C. § 1337(a)(l)(B)(i) and (b)(l), with respect to violations of

Section 337 by the Apple Inc. based upon its sale for importation, importation, and/or sale after

26

importation into the United States of certain electronic devices with image processing systems,

components thereof, and associated software, that infringe one or more of the Asserted Claims of

S3G's United States Patent Nos. 7,043,087; 6,775,417; 6,683,978; and 6,658,146;

(b) Schedule and conduct a hearing on said unlawful acts and, following said

hearing;

(c) Issue a limited exclusion order pursuant to 19 U.S.C. § 1337(d)(l), barring

from entry into the United States all Accused Products, that infringe one or more of the Asserted

Claims ofS3G's United States Patent Nos. 7,043,087; 6,775,417; 6,683,978; and 6,658,146,

including but not limited to the Apple iPod Touch, iPhone, iPad, certain application software for

those products, and related software (e.g., the Apple SDK);

(d) Issue a permanent cease and desist order, pursuant to 19 U.S.C. § 1337(f),

directing Apple Inc., to cease and desist from selling for importation into the United States,

importing, selling after importation into the United States, offering for sale, marketing,

advertising, demonstrating, sampling, warehousing inventory for distribution, offering for sale,

selling, distributing, licensing, testing, technical support, use, or other related commercial

activity involving imported Accused Products that infringe one or more of the Asserted Claims

of S3G's United States Patent Nos. 7,043,087; 6,775,417; 6,683,978; and 6,658,146, including

but not limited to the Apple iPod Touch, iPhone, iPad, certain application software for those

products, and related software (e.g., the Apple SDK); and

(e) Grant such other and further relief as the Commission deems just and proper

based on the facts determined by the investigation and the authority of the Commission.

27

Dated: May 28, 2010 Respectfully submitted,

Thomas L. Jarvis
Thomas W. Winland
John R. Alison
Paul C. Goulet
John M. Williamson
FINNEGAN, HENDERSON, FARABOW,

GARRETT & DUNNER, LLP
901 New York Avenue, N.W.
Washington, D.C. 20001-4413
Telephone: (202) 408-4000
Facsimile: (202) 408-4400

Attorneys for Complainants
S3 Graphics Co., Ltd. and
S3 Graphics, Inc.

VERIFICATION OF COMPLAINT

I, Ken Weng, declare, in accordance with 19 C.F.R. §§ 210.4 and 210. 12(a), under

penalty of perjury, that the following statements are true:

1. I am CEO of S3 Graphics, Inc., and am duly authorized to sign this Complaint on

behalf of Complainant S3 Graphics, Inc.;

2. I am CEO of S3 Graphics Co., Ltd., and am duly authorized to sign this Complaint

on behalf of Complainant S3 Graphics Co., Ltd.;

3. I have read the foregoing Complaint;

4. To the best of my knowledge, information, and belief, based on reasonable inquiry,

the foregoing Complaint is well-founded in fact and is warranted by existing law or by a non-

frivolous argument for the extension, modification, or reversal of existing law or the

establishment of new law;

5. The allegations and other factual contentions have evidentiary support or are likely

to have evidentiary support after a reasonable opportunity for further investigation or discovery;

and

6. The foregoing Complaint is not being filed for an improper purpose, such as to

harass or to cause unnecessary delay or needless increase in the cost of litigation.

Executed May 28, 2010.

Ken Weng
CEO
S3 Graphics, Inc.
S3 Graphics Co., Ltd.
1025 Mission Court
Fremont, CA 94539

