Case 8:12-cv-01186-JST-RNB Do entl Filed 07/20/12 Page 1 of 41 Page ID #:1

Vo TRV S, R LY, T - VS NG R

COPY

John E. Lord {(Bar No. 216111)
jlord@onellp.com

ONE LLP

301 Arizona Avenue, Suite 250
Santa Monica, CA 90401

Phone: (310) 866-5157 I
S ma
Peter R. Afrasiabi (Bar No. 193336) S550S
afrasiabi@onellp.com wlc &
ate L. Dilger (Bar No. 196203) L -
ndilger@onellp.com | Sen S =
ONE LLP I > ;ﬁ - L
4000 MacArthur Blvd. S oy
West Tower, Suite 1100 So 19
Newport Beach, CA 92660 55
Phone: (949) 502-2870 ~
Attorneys for Plaintiff,

%o
Agranat IP Licensing LLC

UNITED STATES DISTRICT COURT y

CENTRAL DISTRICT OF CALIFORNIA
SACV12 - 01186 JST (RNBx)

Case No.
Agranat IP Licensing LL.C,
o COMPLAINT FOR PATENT
Plaintiff] INFRINGEMENT, PERMANENT
INJUNCTION AND DAMAGES
V.
DEMAND FOR JURY TRIAL
Hewlett-Packard Company,
Defendant.

For its Complaint against Hewlett Packard Company (“*HP”), Plaintiff Agranat IP

Licensing LLC (“Plaintiff” or “Agranat”) alleges as follows:
THE PARTIES

1. Plaintiff is a limited liability company duly organized and existing under the

laws of California with its principal place of business at 30021 Tomas Street, Suite 300,

Rancho Santa Margarita, California, 92688.

|
COMPLAINT

© 0O N o o1t A W DN B

N NN RN DN RN N NN P P P P P PP R e
0 N o U B W N PP O © 0w N o ol b W N L O

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 2 of 41 Page ID #:2

2. Defendant HP is a corporation duly organized and existing under the laws of
Delaware, with its principal place of business at 3000 Hanover Street, Palo Alto, CA
94304-1185.

JURISDICTION AND VENUE

3. This is a civil action for patent infringement arising under the Patent Act of

the United States, 35 U.S.C. 88 1 et seq. This court has subject matter jurisdiction of such
federal question claims pursuant to 28 U.S.C. 88 1331 and 1338(a).

4, Venue is proper under 28 U.S.C. 88 1391(b), 1391(c) and 1400(b) in that the
acts and transactions complained of herein were conceived, carried out, made effective, and
had effect within the State of California and within this district, among other places. HP
resides in this judicial district by virtue of its business location and business activities in
this district, and has committed acts of infringement in this judicial district.

U.S. PATENT NO. 6,456,308

5. On September 24, 2002, the United States Patent & Trademark Office duly
and legally issued United States Patent No. 6,456,308 (“the *308 Patent”), entitled
“Embedded Web Server.” Agranat is the owner of all rights, title, and interest in the 308

Patent. A true and correct copy of the 308 Patent is attached as Exhibit A and
incorporated herein by reference.

6. The 308 Patent is a continuation of U.S. Patent Application No. 09/322,382,
filed May 28, 1999, which, in turn, is a continuation of U.S. Patent Application No.
08/907,770, filed Aug. 8, 1997 that was issued on October 26, 1999 as U.S. Patent No.
5,973,696. The *308 also claims priority under 35 U.S.C. Section 119(e) to U.S. Patent
Provisional Application Nos. 60/023,373, filed August 8, 1996, and 60/108,321, filed
November 13, 1998.

7. The *308 patent claims, among other things, methods and apparatuses for
providing and/or developing a web page which has a segment of code that, when executed,
causes a web server to provide real-time dynamic data. In certain of the claimed

embodiments, the systems comprise a data structure for use in a computer system,
2

COMPLAINT

© 0O N o o1t A W DN B

N NN RN DN RN N NN P P P P P PP R e
0 N o U B W N PP O © 0w N o ol b W N L O

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 3 of 41 Page ID #:3

including a client and a server in communication with each other, that has portions
containing executable code, written in a language other than HTML, where the executable
code runs and generates data for the server to serve to the client when the HTML file is
served, thereby providing real time dynamic data.
FIRST CLAIM FOR RELIEF AGAINST DEFENDANT HP FOR DIRECT
INFRINGEMENT, INDUCING INFRINGEMENT AND CONTRIBUTORY
INFRINGEMENT OF U.S. PATENT NO. 6,456,308

8. Plaintiff incorporates herein by reference the allegations set forth in

paragraphs 1-7 of the Complaint as though fully set forth herein.

9. Defendant HP imports, makes, uses, sells, and/or offers for sale products that
are network accessible and configurable, including printers, blades, servers, storage
devices, wireless access points, and networking equipment, such as routers and switches,
with an embedded web server application (collectively, the “HP Products™). Examples of
such products include, but are not limited to, the following printers: HP Deskjet 3050, HP
Photosmart 55xx, HP Photosmart 6510, HP Photosmart 7510, HP Photosmart C510a, HP
Officejet Pro 8600, HP Officejet Pro 8100, HP Officejet Pro 6100, HP Officejet 6500, HP
Officejet 6600, HP Officejet 6700, HP Officejet 7500A, HP Envy 114, HP Envy 110, HP
LasetJet Pro P1102w, HP LasetJet Pro M1212nf, HP LaserJet Pro M1217nfw, HP LaserJet
Pro M1536dnf, HP LasetJet Pro P1606dn, HP LaserJet Pro CP1525nw, HP LaserJet Pro
MFP M175nw, HP LaserJet Pro CP1025nw, HP LaserJet Pro M275 Printer, HP LaserJet
Pro 400 Color Printer M451nw, HP LaserJet Pro 400 Color Printer M451dn, HP LaserJet
Pro CM1415fnw Color MFP, HP LaserJet Pro 400 Color Printer M451dw, HP LaserJet Pro
300 Color MFP M375nw, HP LaserJet Pro 400 Color MFP M475dn, HP LaserJet
Enterprise 500 Color M551n, HP LaserJet Enterprise 600 M601n Printer, HP LaserJet Pro
400 Color MFP M475dw, HP LaserJet Enterprise 500 Color M551dn, HP LaserJet
Enterprise 600 M602n Printer, HP LaserJet Enterprise 600 M601dn Printer, HP LaserJet
Enterprise 600 M602dn Printer, HP LaserJet Enterprise 500 Color M551xh, HP Color

LaserJet CP5525n Printer, HP Color LaserJet CP5525dn Printer, HP Designjet T790 24-
3
COMPLAINT

© 0O N o o1t A W DN B

N NN RN DN RN N NN P P P P P PP R e
0 N o U B W N PP O © 0w N o ol b W N L O

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 4 of 41 Page ID #:4

inch ePrinter, HP Designjet T790 44-inch ePrinter, or any other printer with ePrint
capability or is otherwise network accessible.

10. Each HP Product stores and executes an embedded web server application.
When a user’s client device connects, via an IP network address, to a HP Product, the HP
Product executes the embedded web server application and serves an embedded web server
page, comprising HTML code, to the connecting client device. The embedded web server
page includes executable code that causes the embedded web server application to generate
data and to serve that generated data to the client, thereby providing real-time dynamic data
associated with the application.

11. By importing, making, using, selling, and offering for sale the HP Products,
each with an embedded web server application, HP has directly infringed, and continues to
directly infringe, the 308 Patent, including infringement under 35 U.S.C. § 271(a) and (f).

12. Oninformation and belief, HP has also indirectly infringed, and continues to
indirectly infringe, the *308 Patent by actively inducing direct infringement by other
persons, such as HP’s customers and end users, who operate methods and systems that
embody or otherwise practice one or more of the claims of the ‘308 Patent, when HP had
knowledge of the 308 Patent and knew or should have known that its actions would induce
direct infringement by others and intended that its actions would induce direct infringement
by others.

13. Oninformation and belief, HP has also indirectly infringed, and continues to
indirectly infringe, the *308 Patent by contributory infringement by providing non-staple
articles of commerce to others, such as HP’s customers and end users, for use in an
infringing system or method with knowledge of the *308 Patent and knowledge that these
non-staple articles of commerce are used as a material part of the claimed invention of the
‘308 Patent, and have no substantial non-infringing use.

14. Oninformation and belief, HP will continue to infringe the 308 Patent unless

enjoined by this Court.

4
COMPLAINT

© 0O N o o1t A W DN B

N NN RN DN RN N NN P P P P P PP R e
0 N o U B W N PP O © 0w N o ol b W N L O

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 5 of 41 Page ID #5

15. Oninformation and belief, HP’s infringement of the *308 Patent is, has been,
and continues to be willful and deliberate.

16. Asadirect and proximate result of HP’s infringement of the 308 Patent,
Agranat has been and continues to be damaged in an amount yet to be determined.

17. Unless a preliminary and permanent injunction are issued enjoining HP and
its officers, agents, servants and employees, and all others acting on their behalf or in
concert with HP, from infringing the *308 Patent, Agranat will be greatly and irreparably
harmed.

PRAYER FOR RELIEF
WHEREFORE, Plaintiff Agranat prays for judgment against Defendant HP as

follows:

(1) For ajudicial determination and declaration that Defendant HP has directly
infringed, and continues to directly infringe, the *308 Patent;

(2) For ajudicial determination and declaration that Defendant HP has induced,
and continues to induce, the infringement of the 308 Patent;

(3) For ajudicial determination and declaration that Defendant HP has
contributorily infringed, and continues to contributorily infringe, the 308 Patent;

(4) For ajudicial determination and decree that Defendant HP’s infringement of
the ‘308 Patent has been, and continues to be, willful and deliberate;

(5) For ajudicial determination and decree that Defendant HP, its respective
subsidiaries, officers, agents, servants, employees, licensees, and all other persons or
entities acting or attempting to act in active concert or participation with it or acting on its
behalf, be preliminarily and permanently enjoined from further infringement of the *308
Patent;

(6) For adeclaration that HP notify all of its customers and users of the infringing
system and customers’ participation in the infringement with HP’s encouragement, and that

HP encourage customers to cease all such infringing actions;

)
COMPLAINT

© 0O N o o1t A W DN B

N NN RN DN RN N NN P P P P P PP R e
0 N o U B W N PP O © 0w N o ol b W N L O

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 6 of 41 Page ID #:6

(7) For ajudicial decree that orders Defendant HP to account for and pay to
Agranat all damages caused to Agranat by reason of Defendant HP’s infringement pursuant
to 35 U.S.C. Section 284, together with pre-judgment and post-judgment interest;

(8) For an award of damages according to proof at trial;

(9) For ajudicial declaration that this case is exceptional under 35 U.S.C. Section
285 and Defendant HP be ordered to pay Agranat’s costs, expenses, and reasonable
attorney’s fees pursuant to 35 U.S.C. Sections 285, or as otherwise permitted by law; and

(10) For such other relief as justice requires.

Dated: July 20, 2012

. [Jot

John E. Lord
Attorneys for Plaintiff,
Agranat IP Licensing LLC

6
COMPLAINT

© 0O N o o1t A W DN B

N NN RN DN RN N NN P P P P P PP R e
0 N o U B W N PP O © 0w N o ol b W N L O

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 7 of 41 Page ID #:7

DEMAND FOR JURY TRIAL

Plaintiff hereby demands a jury trial pursuant to Rule 38 of the Federal Rules of

Civil Procedure as to all issues in this lawsuit.

Dated: July 20, 2012

o [

John E. Lord
Attorneys for Plaintiff,
Agranat IP Licensing LLC

{

COMPLAINT

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 8 of 41 Page ID #:8

Exhibit A

e R RO) O D O

US006456308B1
a» United States Patent (10) Patent No.: US 6,456,308 B1
Agranat et al. 45) Date of Patent: Sep. 24, 2002
’
(54) EMBEDDED WEB SERVER 5,321,829 A 6/1994 Zifferer
5,398,336 A 3/1995 Tantry et al.
(75) Inventors: Ian D. Agranat, Weston, Kenneth A. 5,406,473 A 4/1995 Yoshikura et al.
Giusti, Upton; Scott D. Lawrence 5,420,977 A 5/1995 Sztipanovits et al.
’ ’ ’ 5,530,852 A * 6/1996 Meske, Jr et al. 709/206
Concord, all of MA (US) 5572643 A * 11/1996 Judson 700/218
. 5,598,536 A 1/1997 Slaughter, III et al.
(73) Assignee: Agranat Systems, Inc., Maynard, MA 5613115 A 3/1997 Gihlget al.
(US) 5623652 A 4/1997 Vora et al.
.)) o) 5625781 A 4/1997 Cline et al.
(*) Notice: Subject to any disclaimer, the term of this 5,706,502 A * 1/1998 Foley etal. 395/610
patent is extended or adjusted under 35 5745908 A * 4/1998 Anderson et al. ... 707/513
U.S.C. 154(b) by 0 days. 5,768,593 A * 6/1998 Walter et al. 395/705
5,805,442 A 9/1998 Crater et al.
(21) Appl. No.: 09/715,749 OTHER PUBLICATIONS
(22) Filed: Nov. 17, 2000 Allaire Releases Cold Fusion 1.5, Minneapolis, MN, Feb. 6,
’ ’ 1996, p. 30, Press Release posted at http://www.allaire.com.
Related U.S. Application Data “Allaire Announces Cold Fusion™ Fuel Pack Program”,
San Jose, Ca, Apr. 30, 1996, Press Release posted at http://
(63) Continuation of application No. 09/322,382, filed on May www.allaire.com, pp. 1-2.
28, 1999, now abandoned, which is a continuation of appli- “Allaire Introduces Major New Release of Cold Fusion Web
ga;%né\g]g 08/907,770, filed on Aug. 8, 1997, now Pat. No. Application Development Tool”, Cambridge, MA, Nov. 12,
(60) P}OVi;ional application No. 60/108,321, filed on Nov. 13, 1996, Press Release posted at htp://www.allaire.com, pp.
1998, and provisional application No. 60/023,373, filed on 1-14.
Aug. 8, 1996. Allegro Software Development, “RomPager Embedded
i i > i ted at
(51) Mt CL7 oo GOGF 3/00; GOGF 1516 veb Server Toolkit Architecture”, 1996, article posted a
http://www.allegrosoft.com, pp. 1-2.
(52) US.CL ... 345/854; 709/201; 709/203; . .
707/501.1; 707/513 (List continued on next page.)
(58) Field of Searchcc...ccooocoeo...... 345/854, 764; Primary Examiner—Raymond J. Bayerl
395/500; 707/501.1, 513, 514, 515, 901; Assistant Examiner—Cuong T. Thai
709/201, 203, 501, 513 (74) Antorney, Agent, or Firm—Wolf, Greenfield & Sacks,
P.C.
(56) References Cited 57) ABSTRACT
U.S. PATENT DOCUMENTS An embedded graphical user interface employs a World-
. Wide-Web communications and display paradigm. The
4,319,338 A 3/1982 Grudowski et al. . . .
4937977 A 6/1990 Flood et al. development environment includes an HTML compiler
4953074 A $/1990 Kametani et al. which recognizes and processes a number of unique exten-
5:012:402 A 4/1991 Akiyama sions to HTML. The HTML compiler produces an output
5,072,412 A 12/1991 Henderson, Ir. et al. which is in the source code language of an application to
5,122,948 A 6/1992 Zapolin which the graphical user interface applies. A corresponding
5,157,595 A 10/1992 Lovrenich run-time environment includes a server which serves the
5,225,974 A 7/1993 Mathews et al. compiled HTML documents to a browser.
5,297,257 A 3/1994 Struger et al.
5,307,463 A 4/1994 Hyatt et al. 13 Claims, 16 Drawing Sheets

| this HTML:

<FORM 0ST EMWEE_|
Fax Server Name: ot

<INPUT NAME=sysName TYPE=TEXT>

 903

Fax Log should contain: -~

<SELECT NAME =Logging>

-905

</SELECT>
</FORM>

<OPTION VALUE=in_only SELECTED>Incoming Only
<OPTION VALUE=out_only>Outgoing Only
<OPTION VALUE=in out>Incoming and Outgoing
<OPTION VALUE=no_log>Logging Disabled

produces the forms:

and generates the structure:

Fax Server Name:
Fax Log should contain:

[Incoming Only Iv]

typedef struct EwaForm_System_s 921
91)
struct ~907
H YUl 90e
g15< char* sysName; <~
EwaFormEnum_ew_archive Logging;
L } value;
(struct - 907
{

9171 int8 sysName;
int8 Logging;
) status; v °9°
} EwaForm System, *EwaForm_Systeme;

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 10 of 41 Page ID #:10

US 6,456,308 Bl
Page 2

OTHER PUBLICATIONS

Allegro Software Development, “RomPager Embedded
Web Server Toolkit Features™, 1996, article posted at http://
www.allegrosoft.com, pp. 1-2.

Allaire, Products Overview, 1997, Press Release posted at
http://www.allaire.com, pp. 1-5.

Michael R. Genesereth and Anna Patterson, editors, “The
Sixth International World Wide Web Conference Proceed-
ings”, Apr. 7-11, 1997, Santa Clara, CA.

Crespo, Arthro and Eric A. Bier, “WebWriter: A browser
—based editor for constructing Web applications,” Computer

Networks and ISDN Systems, vol. 28, No. 11, May 1996,
pp- 1291-1306.

Ladd, David, A. and J. Christopher Ramming, “Program-
ming the Web: An Application—Oriented Language for
Hypermedia Service Programming,” Proceedings of the 4th
International World Wide Web Conference, Dec. 1995,
Boston, MA, XP 0020498 (http://www.w3.org/pub/Confer-
ence/ WWW4/Papers/251/).

* cited by examiner

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 11 of 41 Page ID #:11

U.S. Patent Sep. 24, 2002 Sheet 1 of 16 US 6,456,308 B1

A

[
—

SOURCE DIRECTORY TREE
13

HTML, Java, text, graphics L

107 09
[I
f Application-Specific
/ EmWeb/Compiler pew_proto.h
ew_slubs.c
S/W developer
{ - [— lJ
EmWeb Archive EmWeb Archive Application-Specific
(Fixed Data) (ObjectCode)
ew_data.dat
ew_data.c |H ew_code.c |H *.C .
\\ l
~ /‘
~
SN 103
C Compiler

101

105
Object Code L F|g 1

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 12 of 41 Page ID #:12

U.S. Patent Sep. 24, 2002 Sheet 2 of 16 US 6,456,308 B1
o s V4
EmWeb Archive
DEVICE
CONFIGURATION
AND
We b/Serve STATISTICS
7
TCP/IP
PROTOCOL
STACK
A
- v NETWORK ACCESS -

Fig. 2

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 13 of 41 Page ID #:13

US 6,456,308 Bl

Sheet 3 of 16

Sep. 24, 2002

U.S. Patent

€ ‘bl

AL
p
<q/>
<OLO¥d dIMHHE/>HBUTpues<0olLOodd dIMWE>
N — J f — J
— e 60€
'S < '
![®3eagxXeRITRqOTSD] SWENS®3R3S UINlox ///QB
y)
q
LOE <
20€< nOTPIn’

sBuTtAaT®O®Y,,
_..mdn...n.mv.ﬂmm 1] v =
[]oweN®3R]Sy IPYD 3SUOD DTI3e]Ss
=D DNIVILS gFMHA> <> :93e3S XeJ3oN

mom\;

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 14 of 41 Page ID #:14

US 6,456,308 Bl

Sheet 4 of 16

Sep. 24, 2002

U.S. Patent

¥ bid

N
<q/>
<OLO¥d gEMHWE/>ZT<OLOMd gIAMWI>
{0} %
s - N <

!sebedqunNTeqoTd® uanjlox
1 =0 INI TVHWIDIA=FJAL SIMWT SNIYIS IEIMHI>
Svi\\Anv :jues sobed Jo asqunyN

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 15 of 41 Page ID #:15

U.S. Patent Sep. 24, 2002 Sheet 5 of 16 US 6,456,308 B1

—V
503

w
Fig. 5

501
'/

COMPONENT="'/standard/footer.html'>

EEMWEB_INCLUDE

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 16 of 41 Page ID #:16

U.S. Patent Sep. 24, 2002 Sheet 6 of 16 US 6,456,308 B1
3
g A N N
Lo/
0
~
(|
(]
4
)
=
-
o s
N o
3 &
it} o
« <
g .
o o L9 ©
0 Y4 © k .
(] ~ O
— B R i
- ()
n o~ o J ﬂ
O .g ~ o)
55 & p
D M M El
a4 3 =] o
O I8 P
a2 o (1))
H © M ~
| P
4 0
B ~ ~ | ~
= =}
= W)
K A A
v -

(QA

6
N\

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 17 of 41 Page ID #:17

US 6,456,308 Bl

Sheet 7 of 16

Sep. 24, 2002

U.S. Patent

. B4

<

{x933nq uanjex
‘(TTnF 3usdxed Aexy ‘,TINTF %%P%<TI>s« ‘I0IING)IuTads
osTe®
P w<q/>AAu@<q><TT>w ‘T9033ng]Adoxias
(0 == TInF 3uedaed Aexl) It
I(KAexy)Atddngxasdeg

ITNF juedxad Aexj
/y SUOTIRISIT 9JRUTWID] 4/ I{TINN uUINjax

(sAexgjoxequmN =< Aexl) It

{(IXO3UODSMO®) SUOTIRIDIIIXSIUODSME® = Aevaj

!{Xex3 *TIny juedasd Aexj jut
1 =0 ALVYELI gIMWIE ONIULS SEIMWA>

_oN\\\\

<ZH/>:sn3jels Aex] aedeg

To/>

T

<i

~

Wmo\.

\

<TO>

<ZH>

€04

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 18 of 41 Page ID #:18

US 6,456,308 Bl

Sheet 8 of 16

Sep. 24, 2002

U.S. Patent

g 614

AN

mow
Ar A.
/+ UOT3eI83T dO3S puUB 3US]3UOD OU ./ {TIAN UINISI
oS T®
{
/s UOT3RIS®]T SNUTJUOD 3Ng ‘JUBJUOD OU 4/ f,. UINIOI

=10}2]
b esTo

4 I
{Tan* [sxnjes3]oIqereIniesd uinlex
(Po1TE3SUT [®exnjee3]orgelseanjesd) JT
}
(3ZIS dT9VL FUALVES > ©anjes3i) It
I (axsjuopsme vmﬂOﬁDMHmuHuNmuﬂouwb\»w = 8anjesy quT

1=0 HIVEALI FEMNE FANTONI gIMRI>

€08 \;

Wvow

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 19 of 41 Page ID #:19

US 6,456,308 Bl

Sheet 9 of 16

Sep. 24, 2002

U.S. Patent

6 ‘b1

{queisdAs wrogdesd, ‘welsis wrogemy {

m&M\//}, {snye3s
{butbbo7 gaur

{owreNsAs gauT 16
}
mom\\\\ joniays
{enTeA {
{BUThHOT OATYDTI® MO WNUIUIOJIEMT
{esweNsks ,aeyd Gl6
I/ \\'. N s 1®Y, ,
606 66 N
—._ 106 INIIE
-
06 % }

8 we3sis wiogemd 3onijs Jepedia

[a] AJuQ Futwoour |

:urejuod p[noys 3o xeq

J JoweN IaAIaS Xv,]

:24njonu)s ay) sajesausb pue

:SwJoj ay) saonpoud

<HHOod/>
<LOFTIAS />

peTqesIad BurtBHoT<6OT ou=ANTVA NOILJO>

futofigng pue Butwoour<3no uT=FNTVA NOILIO>

ATup BuTOb3INO<ATUO INO=INTYA NOILJO>

ATu0 BUTWOOUIAALIATAS ATUO UT=FANTYA NOIIJO>

\\\\\Aunﬂuuoqn dWYN LOJIES>
SUTRIUOD noys BHo
06 rej pInoy T Xej

€06 <Iq>
\[\J

<LXAL=UdAL oweNsSAS=HWYN LAJINI>

;% :oWeN IeAIoS xed

pEmumhmnmsﬂzIMHS&m,Bmomnnomamz o>

“TNLH sy}

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 20 of 41 Page ID #:20

U.S. Patent Sep. 24, 2002 Sheet 10 of 16 US 6,456,308 B1
1001
ARCHIVE HEADER ~_/
ENTRY POINT >
. 1001a
COMPRESSION[™ V
DICTIONARY : y 1008
. DOCUMENT HEADER
1001b . :
1003 ™\
P / _ 1005a
1011 N-1005b
1013 — 1~
N MIME TYPE - 1005¢
. N
HEADER NODES : 1005d
1015~ ’
N\ 1005e
Y
1017a\DOCUMENT NODES DATA [\ 019
OFFSET
1017¢c—"|_INDEX UNCOMPRESSED)
" 1017
DOCUMENT HEADER DOCUMENT HEADER
0= - S —
‘\ 1009 &1007

Fig. 10

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 21 of 41 Page ID #:21

US 6,456,308 Bl

Sheet 11 of 16

Sep. 24, 2002

U.S. Patent

L0kt

uoljodl|ddy

1L Bl

60t

-

PP JIWDUAQ

—

~ <ONIYLS 9IMWI>
L0k

EHH

~

-

bioQg dHPIS

::\ DIDQ JIWDUAQ

SOH

-

P

€oH

DJo
o 1@ SULIS

|}

MO 002 L'L/dLLH

IETSEINZETYIITE

I'L/dL1H Juiy oo}/ mo\

LOLL
19sMmo.g

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 22 of 41 Page ID #:22

US 6,456,308 Bl

Sheet 12 of 16

Sep. 24, 2002

U.S. Patent

ZL b1
W& ~ pypoq esuodsay |
= GLZI
13N 8suodsal
euz’ 1T 7 jugnowiojome M&
let <
'L/d11H Wiy 00}/ 1SOd
sz . Nﬂ pjoQg asuodsay
Z .
§ SON|DA }J|NDJOP Lozt
ee0zl ~ OAI9SW I0{DMD 7
0zl -~
'l/d11H |Wiy 00}/ 139
uolndijddy 19AI9S/gaMWI3

1asmoug

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 23 of 41 Page ID #:23

US 6,456,308 Bl

Sheet 13 of 16

Sep. 24, 2002

U.S. Patent

¢l b4
eLel
~ o P JIWDUAQ |
2508 pIoQ JIWDUAQ GLel
PSOeL <ONRLS 9IMWI>
|||||||||||||| g OUINSYSMD
e -
\ -1
] Joe— puadsngsma ol
0BT s, <ONRILS gIMWI> AN
A0 00¢ L'L/dLLH
'L/d11H [wiy 004/ 139 /
Logk
uolpdi|ddy 1aA19S/gaMWI] lasmoug

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 24 of 41 Page ID #:24

U.S. Patent Sep. 24, 2002 Sheet 14 of 16 US 6,456,308 B1

14(<
(BROWSER)

1402
TCP/IP

1407

1405 —
P
Ixt ps .gif.jpg.html .class
1403
Fig. 14

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 25 of 41 Page ID #:25

U.S. Patent Sep. 24, 2002 Sheet 15 of 16 US 6,456,308 B1

)

1401
BROWSER

(

Q
8/ a
o O

—_

APPLICATION

Fig. 15

—
Qo
[Te]
~—

1407

.gif .jpg.html .class

ps

JIxt

1405 —

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 26 of 41 Page ID #:26

U.S. Patent Sep. 24, 2002 Sheet 16 of 16 US 6,456,308 B1
MASTER
ARCHIVE "\ APPLICATION
e
/777 SERVER
DOCUMENT CODE
) COMPILER ‘ \ !
OBJECTS m COMPILER
I ,,
-
\ ew_code.ewd \ EXE
x L -
ML MAP m OTHER
PAGES
DERIVED
ARCHIVE
o ~ J

Fig. 16

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 27 of 41 Page ID #:27

US 6,456,308 B1

1
EMBEDDED WEB SERVER

CROSS-REFERENCE TO RELATED
APPLICATION

Priority is claimed under 35 U.S.C. §119(e) to the inven-
tors” Provisional U.S. Patent Application Ser. No. 60/023,
373, entitled EXTENDED LANGUAGE COMPILER AND
RUN TIME SERVER, filed Aug. 8, 1996, now abandoned,
and to the inventors’ Provisional U.S. Patent Application
Ser. No. 60/108,321, entitted EMBEDDED GRAPHICAL
USER INTERFACE USING A PROGRAMMING
LANGUAGE, filed Nov. 13, 1998, now abandoned. The
inventors’ above-identified provisional U.S. patent applica-
tions are incorporated herein by reference.

This application is a continuation of application Ser. No.
09/322,382, filed May 28, 1999, entitled EMBEDDED
WEB SERVER, and now abandoned, which is a continua-
tion of application Ser. No. 08/907,770, filed Aug. 8, 1997,
entitled EMBEDDED WEB SERVER, issued on Oct. 26,
1999 as U.S. Pat. No. 5,973,696.

COPYRIGHT NOTICE

The appendices attached to the disclosure of this patent
contain material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

1. Field of the Invention

The present invention relates generally to graphical user
interfaces (GUISs), i.e. user interfaces in which information
can be presented in both textual form and graphical form.
More particularly, the invention relates to GUIs used to
control, manage, configure, monitor and diagnose software
and hardware applications, devices and equipment using a
World-Wide-Web client/server communications model. Yet
more particularly, the invention relates to methods and
apparatus for developing and using such GUIs based on a
World-Wide-Web client/server communications model.

2. Related Art

Many modern communications, entertainment and other
electronic devices require or could benefit from improved
local or remote control, management, configuration, moni-
toring and diagnosing. It is common for such devices to be
controlled by a software application program specifically
written for each device. The design of such a device includes
any hardware and operating environment software needed to
support the application, which is then referred to as an
embedded application, because it is embedded within the
device. Embedded application programs are generally writ-
ten in a high-level programming language such as C, C++,
etc., referred to herein as a native application programming
language. Other languages suitable to particular uses may
also be employed. The application program communicates
with users through a user interface, generally written in the
same high-level language as the application.

The representation of an application in a native applica-
tion programming language is referred to as the application
program source code. A corresponding representation,
which can be executed on a processor, is referred to as an
executable image.

Before an application written in a high-level language can
be executed it must be compiled and linked to transform the
application source code into an executable image. A com-

10

15

20

25

30

40

45

50

55

60

65

2

piler receives as an input a file containing the application
source code and produces as an output a file in a format
referred to as object code. Finally, one or more object code
files are linked to form the executable image. Linking
resolves references an object module may make outside of
that object module, such as addresses, symbols or functions
defined elsewhere.

Source code may also define arrangements by which data
can be stored in memory and conveniently referred to
symbolically. Such defined arrangements are referred to as
data structures because they represent the physical arrange-
ment of data within memory, i.e., the structure into which the
data is organized.

Most commonly, remote control, management,
configuration, monitoring and diagnosing applications
employ unique proprietary user interfaces integrated with
the application software and embedded into the device.
Frequently these user interfaces present and receive infor-
mation in text form only. Moreover, they are not portable,
generally being designed to operate on a specific platform,
i.e., combination of hardware and software. The devices for
which control, management, configuration and diagnosing
are desired have only limited run-time resources available,
such as memory and long-term storage space. Proprietary
interfaces are frequently designed with such limitations to
data presentation, data acquisition and portability because of
the development costs incurred in providing such features
and in order to keep the size and run-time resource require-
ments of the user interface to a minimum. Since each user
interface tends to be unique to the particular remote control,
management, configuration, monitoring or diagnosing func-
tion desired, as well as unique to the operating system,
application and hardware platform upon which these opera-
tions are performed, significant time and/or other resources
may be expended in development. Graphics handling and
portability have therefore been considered luxuries too
expensive for most applications.

However, as the range of products available requiring
control, management, configuration, monitoring or diagnos-
ing increase, such former luxuries as graphical presentation
and portability of the interface from platform to platform
have migrated from the category of luxuries to that of
necessities. It is well known that information presented
graphically is more quickly and easily assimilated than the
same information presented as text. It is also well known
that a consistent user interface presented by a variety of
platforms is more likely to be understood and properly used
than unique proprietary user interfaces presented by each
individual platform. Therefore, portable GUIs with low
ran-time resource requirements are highly desirable.

With the growing popularity and expansion of the
Internet, one extremely popular public network for commu-
nications between computer systems, and development of
the World-Wide-Web communication and presentation
model, a new paradigm for communication of information
has emerged.

The World-Wide-Web and similar private architectures
such as internal corporate LANs, provide a “web” of inter-
connected document objects. On the World-Wide-Web,
these document objects are located on various sites on the
global Internet. The World-Wide-Web is also described in
“The World-Wide Web,” by T. Berners-Lee, R. Cailliau, A.
Luotonen, H. F. Nielsen, and A. Secret, Communications of
the ACM, 37 (8), pp. 76-82, August 1994, and in “World
Wide Web: The Information Universe,” by Berners-Lee, T.,
et al., in Electronic Networking: Research, Applications and

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 28 of 41 Page ID #:28

US 6,456,308 B1

3

Policy, Vol. 1, No. 2, Meckler, Westport, Conn., Spring
1992. On the Internet, the World-Wide-Web is a collection
of documents (i.e., content), client software (i.e., browsers)
and server software (i.e., servers) which cooperate to present
and receive information from users. The World-Wide-Web is
also used to connect users through the content to a variety of
databases and services from which information may be
obtained. However, except as explained below, the World-
Wide-Web is based principally on static information con-
tained in the content documents available to the browsers
through the servers. Such a limitation would make the
World-Wide-Web paradigm useless as a GUI, which must
present dynamic information generated by a device or
application.

The World-Wide-Web communications paradigm is based
on a conventional client-server model. Content is held in
documents accessible to servers. Clients can request,
through an interconnect system, documents which are then
served to the clients through the interconnect system. The
client software is responsible for interpreting the contents of
the document served, if necessary.

Among the types of document objects in a “web” are
documents and scripts. Documents in the World-Wide-Web
may contain text, images, video, sound or other information
sought to be presented, in undetermined formats known to
browsers or extensions used with browsers. The presentation
obtained or other actions performed when a browser
requests a document from a server is usually determined by
text contained in a document which is written in Hypertext
Mark-up Language (HTML). HTML is described in Hyper-
Text Markup Language Specification—2.0, by T. Berners-
Lee and D. Connolly, RFC 1866, proposed standard,
November 1995, and in “World Wide Web & HTML,” by
Douglas C. McArthur, in Dr. Dobbs Journal, December
1994, pp. 18-20, 22, 24, 26 and 86. HTML documents
stored as such are generally static, that is, the contents do not
change over time except when the document is manually
modified. Scripts are programs that can generate HTML
documents when executed.

HTML is one of a family of computer languages referred
to as mark-up languages. Mark-up languages are computer
languages, which describe how to display, print, etc. a text
document in a device-independent way. The description
takes the form of textual tags indicating a format to be
applied or other action to be taken relative to document text.
The tags are usually unique character strings having defined
meanings in the mark-up language. Tags are described in
greater detail, below.

HTML is used in the World-Wide-Web because it is
designed for writing hypertext documents. The formal defi-
nition is that HTML documents are Standard Generalized
Markup Language (SGML) documents that conform to a
particular Document Type Definition (DTD). An HTML
document includes a hierarchical set of markup elements,
where most elements have a start tag, followed by content,
followed by an end tag. The content is a combination of text
and nested markup elements. Tags are enclosed in angle
brackets (‘<” and ‘>’) and indicate how the document is
structured and how to display the document, as well as
destinations and labels for hypertext links. There are tags for
markup elements such as titles, headers, text attributes such
as bold and italic, lists, paragraph boundaries, links to other
documents or other parts of the same document, in-line
graphic images, and many other features.

For example, here are several lines of HTML:

Some words are bold, others are <I>italic</I>.

Here we start a new paragraph.<P>Here’s a link to the

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Agranat
Systems, Inc.home page.

This sample document is a hypertext document because it
contains a “link” to another document, as provided by the
“HREF=." The format of this link will be described below.
A hypertext document may also have a link to other parts of
the same document. Linked documents may generally be
located anywhere on the Internet. When a user is viewing the
document using a client program called a Web browser
(described below), the links are displayed as highlighted
words or phrases. For example, using a Web browser, the
sample document above would be displayed on the user’s
screen as follows:

Some words are bold, others are italic. Here we start a
new paragraph.

Here’s a link to Agranat Systems, Inc. home page.

In the Web browser, the link may be selected, for example
by clicking on the highlighted area with a mouse. Selecting
a link will cause the associated document to be displayed.
Thus, clicking on the highlighted text “Agranat Systems,
Inc.” would display that home page.

Although a browser can be used to directly request
images, video, sound, etc. from a server, more usually an
HTML document which controls the presentation of infor-
mation served to the browser by the server is requested.
However, except as noted below, the contents of an HIML
file are static, i.e., the browser can only present a passive
snapshot of the contents at the time the document is served.
In order to present dynamic information, i.e., generated by
an application or device, or obtain from the user data which
has been inserted into an HTML-generated form, conven-
tional World-Wide-Web servers use a “raw” interface, such
as the common gateway interface (CGI), explained below.
HTML provides no mechanism for presenting dynamic
information generated by an application or device, except
through a raw interface, such as the CGI. Regarding obtain-
ing data from the user for use by the application or device,
although standard HTML provides a set of tags which
implement a convenient mechanism for serving interactive
forms to the browser, complete with text fields, check boxes
and pull-down menus, the CGI must be used to process
submitted forms. Form processing is important to remote
control, management, configuration, monitoring and diag-
nosing applications because forms processing are a conve-
nient way to configure an application according to user input
using the World-Wide-Web communications model. But,
form processing using a CGI is extremely complex, as will
be seen below, requiring an application designer to learn and
implement an unfamiliar interface. A CGI is therefore not a
suitable interface for rapid development and prototyping of
new GUI capabilities. Moreover, a developer must then
master a native application source code language (e.g., C,
C++, etc.), HTML and the CGI, in order to develop a
complete application along with its user interface.

Models of the World-Wide-Web communications para-
digm for static content and dynamic content are shown in
FIGS. 14 and 15, respectively. As shown in FIG. 14, a
browser 1401 makes a connection 1402 with a server 1403,
which serves static content 1405 from a storage device 1407
to the browser 1401. In the case of dynamic content, shown
in FIG. 185, the server 1403 passes control of the connection
1402 with the browser 1401 to an application 1501, through
the CGI 1503. The application 1501 must maintain the
connection 1402 with the browser 1401 and must pass
control back to the server 1403 when service of the request,
which included dynamic content, is complete. Furthermore,
during service of a request which includes dynamic content,

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 29 of 41 Page ID #:29

US 6,456,308 B1

5

the application 1501 is responsible for functions normally
performed by the server 1403, including maintaining the
connection 1402 with the browser 1401, generating headers
in the server/browser transport protocol, generating all of the
static and dynamic content elements, and parsing any form
data returned by the user. Since use of the CGI 1503 or other
raw interface forces the application designer to do all of this
work, applications 1501 to which forms are submitted are
necessarily complex.

In order to provide dynamic content to a browser, the
World-Wide-Web has also evolved to include Java and other
client side scripting languages, as well as some server side
scripting languages. However, these languages are inter-
preted by an interpreter built into the browser 1401 or server
1403, slowing down the presentation of information so
generated. In the case of client side scripting, the script does
not have any direct access to the application or to application
specific information. Therefore, in order to generate or
receive application specific information using client side
scripting, the CGI 1503 or other raw interface must still be
used. In the case of server side scripting, the server 1403
must parse the content as it is served, looking for a script to
be interpreted. The access, which a script has to the
application, is limited by the definition of the scripting
language, rather than by an application software interface
designed by the application designer.

A server side script is an executable program, or a set of
commands stored in a file, that can be run by a server
program to produce an HTML document that is then
returned to the Web browser. Typical script actions include
running library routines or other applications to get infor-
mation from a file, a database or a device, or initiating a
request to get information from another machine, or retriev-
ing a document corresponding to a selected hypertext link.
A script may be run on the Web server when, for example,
the end user selects a particular hypertext link in the Web
browser, or submits an HTML form request. Scripts are
usually written in an interpreted language such as Basic,
Practical Extraction and Report Language (Perl) or Tool
Control Language (Tcl) or one of the Unix operating system
shell languages, but they also may be written in program-
ming languages such as the “C” programming language and
then compiled into an executable program. Programming in
Tcl is described in more detail in ¢! and the Tk Toolkit, by
John K. Ousterhout, Addison-Wesley, Reading, Mass., USA,
1994. Perl is described in more detail in Programming Perl,
by Larry Wall and Randal L. Schwartz, O’Reilly &
Associates, Inc., Sebastopol, Calif., USA, 1992.

Each document object in a web has an identifier called a
Universal Resource Identifier (URI). These identifiers are
described in more detail in T. Berners-Lee, “Universal
Resource Identifiers in World-Wide-Web: A Unifying Syn-
tax for the Expression of Names and Addresses of Objects
on the Network as used in the World-Wide Web,” RFC 1630,
CERN, June 1994; and T. Berners-Lee, L. Masinter, and M.
McCabhill, “Uniform Resource Locators (URL),” RFC 1738,
CERN, Xerox PARC, University of Minnesota, December
1994. A URI allows any object on the Internet to be referred
to by name or address, such as in a link in an HTML
document as shown above. There are two types of URIs: a
Universal Resource Name (URN) and a Uniform Resource
Locator (URL). A URN references an object by name within
a given name space. The Internet community has not yet
fully defined the syntax and usage of URNs. A URL refer-
ences an object by defining an access algorithm using
network protocols. An example URL is “http://
www.agranat.com” A URL has the syntax “scheme:
scheme__specific_ components” where

10

15

20

25

30

35

40

45

50

55

60

65

6

a “scheme” identifies the access protocol (such as HTTP,
FTP or GOPHER).

For a scheme of HTTP, the URL may be of the form
“http://host:port/path?search™ where

“host” is the Internet domain name of the machine that
supports the protocol;

“port” is the transmission control protocol (TCP) port
number of the appropriate server (if different from the
default),

“path” is a scheme-specific identification of the object;
and

“search” contains optional parameters for querying the
content of the object.
URLs are also used by web servers and browsers on private
computer systems or networks and not just the World-Wide-
Web.

A site, i.e. an organization having a computer connected
to a network, that wishes to make documents available to
network users is called a “Web site” and must run a “Web
server” program to provide access to the documents. A Web
server program is a computer program that allows a com-
puter on the network to make documents available to the rest
of the World-Wide-Web or a private web. The documents are
often hypertext documents in the HTML language, but may
be other types of document objects as well, as well as
images, audio and video information. The information that
is managed by the Web server includes hypertext documents
that are stored on the server or are dynamically generated by
scripts on the Web server. Several Web server software
packages exist, such as the Conseil Europeen pour la
Recherche Nucleaire (CERN, the European Laboratory for
Particle Physics) server or the National Center for Super-
computing Applications (NCSA) server. Web servers have
been implemented for several different platforms, including
the Sun Sparc 11 workstation running the Unix operating
system, and personal computers with the Intel Pentium
processor running the Microsoft® MS-DOS operating sys-
tem and the Microsoft® Windows™ operating environment.

Web servers also have a standard interface for running
external programs, called the Common Gateway Interface
(CGI). CGI is described in more detail in How To Set Up and
Maintain A Web Site, by Lincoln D. Stein, Addison-Wesley,
August 1995. A gateway is a program that handles incoming
information requests and returns the appropriate document
or generates a document dynamically. For example, a gate-
way might receive queries, look up the answer in an SQL
database, and translate the response into a page of HTML so
that the server can send the result to the client. A gateway
program may be written in a language such as “C” or in a
scripting language such as Perl or Tcl or one of the Unix
operating system shell languages. The CGI standard speci-
fies how the script or application receives input and
parameters, and specifies how any output should be format-
ted and returned to the server.

A user (typically using a machine other than the machine
used by the Web server) that wishes to access documents
available on the network at a Web site must run a client
program called a “Web browser.” The browser program
allows the user to retrieve and display documents from Web
servers. Some of the popular Web browser programs are: the
Navigator browser from NetScape Communications Corp.,
of Mountain View, Calif.; the Mosaic browser from the
National Center for Supercomputing Applications (NCSA);
the WinWeb browser, from Microelectronics and Computer
Technology Corp. of Austin, Tex.; and the Internet Explorer,
from Microsoft Corporation of Redmond, Wash. Browsers

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 30 of 41 Page ID #:30

US 6,456,308 B1

7

exist for many platforms, including personal computers with
the Intel Pentium processor running the Microsoft®
MS-DOS operating system and the Microsoft® Windows™
environment, and Apple Macintosh personal computers.

The Web server and the Web browser communicate using
the Hypertext Transfer Protocol (HTTP) message protocol
and the underlying transmission control protocol/internet
protocol (TCP/IP) data transport protocol of the Internet.
HTTP is described in Hypertext Transfer Protocol—HTTP/
1.0, by T. Berners-Lee, R. T. Fielding, H. Frystyk Nielsen,
Internet Draft Document, Oct. 14, 1995, and is currently in
the standardization process. At this writing, the latest version
is found in RFC Z068, which is a draft definition of
HTTP/1.1. In HTTP, the Web browser establishes a connec-
tion to a Web server and sends an HTTP request message to
the server. In response to an HTTP request message, the Web
server checks for authorization, performs any requested
action and returns an HTTP response message containing an
HTML document resulting from the requested action, or an
error message. The returned HTML document may simply
be a file stored on the Web server, or it may be created
dynamically using a script called in response to the HTTP
request message. For instance, to retrieve a document, a Web
browser sends an HTTP request message to the indicated
Web server, requesting a document by its URL. The Web
server then retrieves the document and returns it in an HTTP
response message to the Web browser. If the document has
hypertext links, then the user may again select a link to
request that a new document be retrieved and displayed. As
another example, a user may fill in a form requesting a
database search, the Web browser will send an HTTP request
message to the Web server including the name of the
database to be searched and the search parameters and the
URL of the search script. The Web server calls a program or
script, passing in the search parameters. The program exam-
ines the parameters and attempts to answer the query,
perhaps by sending a query to a database interface. When the
program receives the results of the query, it constructs an
HTML document that is returned to the Web server, which
then sends it to the Web browser in an HTTP response
message.

Request messages in HTTP contain a “method name”
indicating the type of action to be performed by the server,
a URL indicating a target object (either document or script)
on the Web server, and other control information. Response
messages contain a status line, server information, and
possible data content. The Multipurpose Internet Mail
Extensions (MIME) are a standardized way for describing
the content of messages that are passed over a network.
HTTP request and response messages use MIME header
lines to indicate the format of the message. MIME is
described in more detail in MIME (Multipurpose Internet
Mail Extensions): Mechanisms for Specifying and Describ-
ing the Format of Internet Message Bodies, Internet RFC
1341, June 1992.

The request methods defined in the HTTP/1.1 protocol
include GET, POST, PUT, HEAD, DELETE, LINK, and
UNLINK. PUT, DELETE, LINK and UNLINK are less
commonly used. The request methods expected to be defined
in the final version of the HTTP/1.1 protocol include GET,
POST, PUT, HEAD, DELETE, OPTIONS and TRACE.
DELETE, PUT, OPTIONS and TRACE are expected to be
less commonly used. All of the methods are described in
more detail in the HTTP/1.0 and HTTP/1.1 specifications
cited above.

Finally, a device or application using conventional World-
Wide-Web technology must have access to a server. Con-

10

15

20

25

30

35

40

45

50

55

60

65

8

ventional servers are large software packages, which run on
relatively large, resource-rich computer systems. These sys-
tems are resource-rich in terms of processing speed and
power, long-term storage capacity, short-term storage capac-
ity and operating system facilities. Conventional servers
take advantage of these resources, for example, in how they
store content source documents. For high-speed, convenient
access to content, it is conventionally stored in a directory
tree of bulky ASCII text files. Therefore, conventional
World-Wide-Web technology cannot be used to implement
a GUI in a relatively small, inexpensive, resource-poor
device or application.

The combination of the Web server and Web browser
communicating using an HTTP protocol over a computer
network is referred to herein as the World-Wide-Web com-
munications paradigm.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
an improved graphical user interface (GUI) for use in
connection with remote control, management, configuration,
monitoring and diagnosing functions embedded in
applications, devices and equipment.

According to one aspect of the invention, there is pro-
vided a method for providing a graphical user interface
having dynamic elements. The method begins by defining
elements of the graphical user interface in at least one text
document written in a mark-up language. Next, the method
defines including at a location in the document a code tag
containing a segment of application source code. The text
document is then served to a client which interprets the
mark-up language; and when the location is encountered, the
client is served a sequence of characters derived from a
result of executing a sequence of instructions represented by
the segment of application source code. An embodiment of
code tags illustrating their use is described in detail, later.

According to another aspect of the invention, there is
another method for providing a graphical user interface
having dynamic elements. This method also defines ele-
ments of the graphical user interface in at least one text
document written in a mark-up language. Included in the
document is a string identified by prototype tags. The text
document is served to a prototyping client which interprets
the mark-up language but does not recognize and does not
display the prototype tag, but does display the string. An
embodiment of prototype tags illustrating their use is
described in detail, later.

According to yet another aspect of the invention, there is
yet another method for providing a graphical user interface
having dynamic elements. Elements of the graphical user
interface are defined in at least one text document written in
a mark-up language. Included at a location in the document
is a code tag containing a segment of application source
code. Also included in the document is a string identified by
prototype tags. The text document is compiled into a content
source, which is subsequently decompiled into a replica of
the text document. The replica of the text document is served
to a client which interprets the mark-up language; and when
the location is encountered in the replica, the client is served
a character stream generated by executing the segment of
application source code.

Yet another aspect of the invention is a software product
recorded on a medium. The software product includes a
mark-up language compiler which can compile a mark-up
language document into a data structure in a native appli-
cation programming language, the compiler recognizing one

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 31 of 41 Page ID #:31

US 6,456,308 B1

9

or more code tags which designate included text as a
segment of application source code to be saved in a file for
compilation by a compiler of the native application pro-
gramming language.

Another aspect of the invention is a method for providing
a graphical user interface having displayed forms for entry
of data. The steps of this method include defining elements
of the graphical user interface in at least one text document
written in a mark-up language; naming in the document a
data item requested of a user and used by an application
written in a native application programming language; and
compiling the text document into a content source including
a data structure definition in the native application program-
ming language for the named data item.

Yet another aspect of the invention may be practiced in a
computer-based apparatus for developing a graphical user
interface for an application, the apparatus including an editor
which can manipulate a document written in a mark-up
language and a viewer which can display a document written
in the mark-up language. The apparatus further includes a
markup language compiler which recognizes a code tag
containing a source code fragment in a native application
source code language, the code tag not otherwise part of the
mark-up language, the compiler producing as an output a
representation in the native application source code lan-
guage of the document, including a copy of the source code
fragment.

In accordance with another aspect of the invention, there
is a method for developing and prototyping graphic user
interfaces for an application. The method includes accessing
an HTML file, encapsulating portions of said HTML and
entering source code therein, producing a source module
from said HTML with encapsulated portions, producing
source code for a server, and cross compiling and linking
said application, said source code module and said server
thereby producing executable object code.

The invention, according to another aspect thereof, may
be a data structure fixed in a computer readable medium, the
data structure for use in a computer system including a client
and a server in communication with each other. The data
structure includes crosscompiled, stored and linked, HTML
files with encapsulated portions containing executable code
associated with said application, server code, and applica-
tion code, wherein said executable code is run when the
HTML file is served thereby providing real time dynamic
data associated with said application.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, in which like reference numerals denote
like elements:

FIG. 1 is a block diagram of that aspect of the invention
relating to development systems;

FIG. 2 is a block diagram of that aspect of the invention
relating to an embedded system;

FIG. 3 is an HTML text fragment illustrating the use of an
EMWEB__STRING tag;

FIG. 4 is another HTML text fragment illustrating another
use of an EMWEB__STRING tag;

FIG. § is an HTML text fragment illustrating the use of an
EMWEB_ INCLUDE tag;

FIG. 6 is another HTML text fragment illustrating another
use of an EMWEB__INCLUDE tag;

FIG. 7 is an HTML text fragment showing a use of the
EMWEB_ ITERATE attribute in connection with an
EMWEB__STRING tag;

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 8 is an HTML text fragment showing a use of the
EMWEB _ ITERATE attribute in connection with an
EMWEB__INCLUDE tag;

FIG. 9 is an example of forms processing showing the
relationship between the HTML source code for the form
and the form output produced;

FIG. 10 is a block diagram of the data structure which
defines the header for the data.dat archive file;

FIG. 11 is a state diagram of an embedded system
illustrating dynamic content processing;

FIG. 12 is a state diagram of an embedded system
illustrating forms processing;

FIG. 13 is a state diagram of an embedded system
illustrating suspend/resume processing;

FIG. 14 is a block diagram illustrating conventional
World-Wide-Web communication of static content between
a server and a client;

FIG. 15 is a block diagram illustrating conventional
World-Wide-Web communication of dynamic content
between a server and a client; and

FIG. 16 is a block diagram illustrating another aspect of
the invention related to a development system.

DETAILED DESCRIPTION

The present invention will be better understood upon
reading the following detailed description in connection
with the figures to which it refers.

Embodiments of various aspects of the invention are now
described. First, a development environment is described in
which application development and graphical user interface
development are closely linked, yet require a low level of
complexity compared to conventional development of an
application and GUI. Second, an operating environment is
described in which the application, a server and GUI are
tightly coupled, compact and flexible. In the described
system a GUI having portability, low run-time resource
requirements and using any of a wide variety of systems
available to a user as a universal front end, i.e. the point of
contact with the user is software with which the user is
already familiar.

Development Environment

FIG. 1 illustrates a development environment according
to one aspect of the invention. Not all components of the
environment are shown, but those shown are identified in the
following discussion.

Conventionally, an application development environment
may include a source code editor, a compiler 101, a linker
and a run-time environment in which to test and debug the
application. It is expected that development environments in
accordance with the invention include those components of
a conventional development environment which a developer
may find useful for developing an application. In the case of
embedded applications, i.e., applications included within a
device or larger application, the run-time environment
includes the device or application in which the application is
embedded, or a simulation or emulation thereof.

The compiler 101 takes source code 103 generated using
the source code editor or from other sources and produces
object code 105, which is later linked to form the executable
image.

In addition to the conventional elements noted above, the
described embodiment of a development environment
according to the invention includes an HTML compiler 107
whose output 109 is in the source code language of the
application under development. In addition, the develop-

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 32 of 41 Page ID #:32

US 6,456,308 B1

11

ment environment may include an HTML editor, an HTTP-
compatible server for communicating with client software,
i.e., browsers, and an HTTP-compatible browser.

The HTML editor is used to create and edit HTML
documents 111 which define the look and feel of a GUI for
the application. Numerous tools are now available for per-
forming this task while requiring a minimal knowledge or no
knowledge of HTML, for example, Microsoft® Front
Page™. It is preferred that the HTML editor used permit
entry of non-standard tags into the HTML document.

As will be seen in further detail, below, the server and
browser are used to test a prototype GUI before it is fully
integrated with the application or in the absence of the
application. The browser should be capable of making a
connection with the server using, for example, a conven-
tional connection protocol such as TCP/IP, as shown and
described above in connection with FIG. 14. Other protocols
or direct connections can also be used, as would be under-
stood by those skilled in this art. While the browser and the
server may be connected through a network such as the
Internet, they need not be. For example, the server and client
may run and connect on a single computer system.

Application development proceeds substantially in a con-
ventional manner as known to software developers. The
application development should include the design of a
software interface through which data will be communicated
into and out of the application. However, the software
interface is not a GUI. Rather, the interface merely defines
how other software can communicate with the application.
For example, the interface may be a collection of function
calls and global symbols which other software can use to
communicate with the application. The application should
be written in a high level language such as C, C++, etc. The
application can be tested by compiling and linking it with
prototype code that provides or receives information through
the software interface, exercising those features of the
application.

Meanwhile, a GUI for the application is designed as
follows. The look and feel of the GUI are developed using
the HTML editor, server and browser to create a set of
content source documents 111 including at least one HTML
document, which together define the look and feel of the
GUI. This aspect of GUI development is conventional,
proceeding as though the developer was developing a
World-Wide-Web site.

At locations in one or more HTML documents where data
obtained from the application is to be displayed, the author
includes special tags, explained further below, which allow
the HTML document to obtain from the application the
required data, using the application software interface.

The content source documents 111 are stored convention-
ally in the form of one or more directory trees 113. The
directory tree 113 containing the content which defines the
GUI is then compiled using the HTML compiler 107, to
produce an application source code language output 109
representing the content source documents in the directory
tree. The source code elements 109 produced from the
content source documents 111 in the directory tree 113,
source code for an HTTP compatible server (not shown) and
the application source code 103 are compiled into object
code 105 and linked to form an executable image. The server
may be supplied in the form of an object code library, ready
for linking into the finished executable image. The execut-
able image thus formed fully integrates the graphical user
interface defined using familiar tools of World-Wide-Web
content development with the control and other functions
defined using conventional application development tools.

10

15

20

25

30

35

40

45

50

55

60

65

12

In order to successfully perform the integration described
above, the HTML compiler 107 of the described embodi-
ment of the invention, the EmWeb™/compiler 107, recog-
nizes a number of special extensions to HTML. The HTML
extensions implemented by the EmWeb™/compiler 107,
embodying aspects of the invention is described in detail in
Appendix A, Section 3.2. Several of these extensions are
described briefly here, to aid in understanding the invention.

The EMWEB_STRING tag is an extension of HTML
used to encapsulate a fragment of source code in the HTML
document. The source code will be executed by a system in
which the application is embedded when the document is
served to a browser (usually running on another system) and
the location of the EMWEB_ STRING tag is reached. The
source code returns a character string that is inserted as is
into the document at the location of the EMWEB_STRING
tag. Examples of the use of the EMWEB_ STRING tag are
shown in FIGS. 3 and 4.

In the example of FIG. 3, the EMWEB__ STRING tag 301
first defines using “C=" a boundary character 303 used to
define the end 305 of the included source code. Immediately
following the boundary character definition is a fragment of
C code 307 which returns a pointer to a string representing
one of three fax states. When served by an embedded
application, this example HTML produces the text “NetFax
State:” followed by “Sending”, “Receiving” or “Idle”,
depending on the value of the symbol GlobalFaxState.

The example of FIG. 4 shows the use of EMWEB
STRING to output typed data whose type is defined by an
attribute, EMWEB__TYPE 401. The EmWeb™/compiler
uses this attribute 401 to produce a source code output
routine which converts the typed data found at the address
returned 403 into a string for serving at the proper location
in the document.

A similar function is performed by the HTML extension,
the EMWEB__INCLUDE tag. Using this tag, standard parts
of a GUI such as headers and footers common to multiple
pages or windows of information need only be stored once.
Header and footer files are referred to using the EMWEB__
INCLUDE tag which inserts them at the location in each
HTML content document where the tag is placed. In the
described embodiment of the invention, the contents of the
EMWEB__INCLUDE tag must resolve to a relative or
absolute path name within the local directory tree of content.
This can be done by specifying a local Universal Resource
Locator (URL), which is how resources are located in the
World-Wide-Web communications paradigm, or by includ-
ing source code which returns a string representing such a
local URL. An absolute local URL takes the form “/path/
filename”, where “/path” is the full path from the root of the
directory tree to the directory in which the file is located. A
relative URL defines the location of a file relative to the
directory in which the current, i.e., base, document is located
and takes the form “path/filename”. While the described
embodiment requires resolution of the EMWEB__
INCLUDE tag to a local URL, the invention is not so
limited. In alternate embodiments, local and external URLs
may be permitted or other limitations imposed. Examples of
the use of the EMWEB__INCLUDE tag are shown in FIGS.
5 and 6.

In the example of FIG. 5, a COMPONENT attribute 501
in an EMWEB_ INCLUDE tag simply defines a local URL
503.

In the more elaborate example of FIG. 6, a fragment of
source code 601 which produces a local URL 603 upon a
defined condition 605 is used to generate a local URL at run
time.

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 33 of 41 Page ID #:33

US 6,456,308 B1

13

The results to be returned by an EMWEB__STRING or
EMWEB_INCLUDE tag can also be built up iteratively
using repeated calls to the included source code. This is done
using the EMWEB_ ITERATE attribute, yet another exten-
sion to HTML. Examples of the use of EMWEB__ITERATE
are shown in FIGS. 7 and 8.

FIG. 7 shows an example of the EMWEB_ITERATE
attribute 701 used in connection with the EMWEB
STRING tag 703. The fragment of code 705 is executed
repeatedly until a NULL is returned. Thus, this HTML
repeatedly executes the C source code fragment to display
the tray status of all trays in a system.

Similarly, in FIG. 8§, EMWEB_INCLUDE 801 and
EMWEB ITERATE 803 are used to build a table of fea-
tures for which content from other URLs 805 are to be
displayed. When the table is complete, a NULL is returned
807, terminating the iterations.

Since the extensions to HTML described above allow the
encapsulation of source code within an HTML document a
mechanism with which to provide the encapsulated source
code with required global definitions, header files, external
declarations, etc. is also provided in the form of an
EMWEB__HEAD tag. The EMWEB__HEAD tag specifies a
source code component to be inserted in the source code
output of the EmWeb™/compiler, outside of any defined
function. Although it is preferred that the EMWEB__HEAD
tag appears in the HTML file header, it may appear any-
where. The code generated by an EMWEB__HEAD tag is
placed before any functions or other code defined within the
HTML content source documents.

As indicated above, the GUI may be prototyped using a
conventional server and browser (see FIG. 14) to preview
the HTML documents comprising the GUI. Therefore, it
may be useful to provide static content with which to
preview the page, at locations where dynamic content will
appear during use, but which does not appear in the com-
piled document. For example, it may be useful to include a
prototyping value for content which is otherwise provided
using the EMWEB_ STRING tag mechanism. Therefore,
another extension to HTML recognized by the EmWeb™/
compiler is the EMWEB_ PROTO begin 309 and end 311
tags, as shown in FIG. 3. The EmWeb™/compiler removes
these tags and everything between them when compiling the
document, but the tags are ignored and the text between
them is interpreted normally by a conventional browser
viewing the HTML document either directly or via a con-
ventional server. Conventional browsers recognize the tag
due to its special syntax, e.g., being enclosed in “<” and “>”,
but are designed to ignore and not display any tag for which
the browser does not have a definition. All EmWeb™/
compiler HTML extensions are thus skipped over by con-
ventional browsers. Thus, in the example of FIG. 3, the
prototype page displays “NetFax State: Sending”. FIG. 4
shows a similar use of EMWEB__ PROTO tags.

Handling of HTML forms by the EmWeb™/compiler is
now described in connection with FIG. 9. As seen in FIG. 9,
an HTML form is defined substantially conventionally.
Names used in the form are used in constructing symbol
names used in the output source code produced by the
EmWeb™/compiler. Therefore names should be valid sym-
bol names in the source code language.

Each element of a form definition is translated by the
EmWeb™/compiler into a part of a corresponding data
structure defined for that form. Forms data is moved into and
out of the application by changing values of items in the data
structure.

Turning now to the example in FIG. 9, the relationship
between the illustrated HTML form definition and the cor-

10

15

20

25

30

35

40

45

50

55

60

65

14

responding data structure is described. The form is given a
unique name, using an EMWEB_NAME attribute in a
FORM tag. The form name becomes part of the structure
name, for easy reference and uniqueness. The form name
will also be used to generate function names for functions
which are called when the form is served and when the form
is submitted.

The structure generated is itself composed of two struc-
tures. The first holds values of each dynamic element of the
form. The second holds a status flag indicating the status of
the contents of a corresponding value. Thus, in the example
of FIG. 9, a structure to hold values and status for the
sysName INPUT and the Logging SELECTion is created.
The value of sysName is a character string, while Logging
is an enumerated type.

Two function prototypes are also generated. The actions
to be performed by these functions must be defined by the
developer. The Serve function is called when the form is
served and can be used to supply default values, for
example. The Submit function is called when the form is
submitted, to update values in the data structure, for
example.

Currently, EmWeb™/compiler supports TEXT,
PASSWORD, CHECKBOX, RADIO, IMAGE, HIDDEN,
SUBMIT, RESET, SELECT and OPTION input fields. For
detailed descriptions, see Appendix A, Section 3.2.5. In
addition, the EmWeb™/compiler supports “typing” of
TEXT input field data. That is, the EMWEB TYPE
attribute may be used to define a TEXT input field to contain
various kinds of integers, a dotted IP address (i.e., an address
of the form 000.000.000.000), various other address
formats, etc. A mapping of EMWEB_ TYPE values to C
language types is formed in the table in Appendix A, Section
3253,

The EmWeb™ /compiler has been described in terms of a
generic application source code language. The current com-
mercial embodiment of the EmWeb™ /compiler assumes the
application source code language to be C or a superset
thereof, e.g., C++. However, the functionality described can
be generalized to any application source code language
which may be preferred for a particular application purpose.
However, in order to more fully understand how the
EmWeb™/compiler and HTML extensions described above
cooperate to permit integration of an HTML defined GUI
with an application defined in an application source code, it
will be assumed, without loss of generality, that the appli-
cation source code language is C or a superset thereof.

The EmWeb™ /compiler produces a set of output files
including a data.dat file containing the fixed data of a content
archive, a code.c file containing the generated source code
portions of an archive including portions defined in
EMWEB__STRING, EMWEB__INCLUDE and EMWEB__
HEAD tags and other source code generated by the
EmWeb™/compiler, as well as proto.h and stubs.c files
containing the definitions of C functions used for forms
processing. The structure of these files is now described in
connection with the data structure illustrated in FIG. 10.

The content archive file data.dat has a header structure as
illustrated in FIG. 10. The data structure is accessed through
an archive header 1001 which is a table of offsets or pointers
to other parts of the archive. For example, there is a pointer
1001 a to a compression dictionary 1003 for archives which
include compressed documents. There is also a pointer
10015 to a linked list of document headers 1005, 1007 and
1009. Each document header 1005, 1007 and 1009 is a table
of offsets or pointers to various components of the docu-
ment. For example, the document header includes a pointer

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 34 of 41 Page ID #:34

US 6,456,308 B1

15

10054 to the URL 1011 to which the document corresponds.
There is also a pointer 10055 to a field 1013 giving the
Multipurpose Internet Mail Extension (MIME) type of the
document. There are pointers 1005¢ and 10054 respectively
to header nodes 1015 and document nodes 1017, explained
further below. Finally, there is a pointer 1005¢ to a block of
static compressed or uncompressed data 1019 representing
the static portions of the document.

The static data does not include any EmWeb™ tags, i.c.,
the extensions to HTML discussed above and defined in
detail in Appendix A. Rather, information concerning any
EmWeb™ tags used in the document appears in the docu-
ment nodes structure.

Each EmWeb™ tag employed in a document is repre-
sented in that document’s document nodes structure as
follows. The location of the EmWeb™ tag within an uncom-
pressed data block or an uncompressed copy of a com-
pressed data block is represented by an offset 10174 relative
to the uncompressed data. The type of tag is indicated by a
type flag 1017h. A node may include a flag which indicates
any attributes associated with the tag represented. For
example, a node for a tag of type EMWEB__ STRING may
include a flag indicating the attribute EMWEB_ITERATE.
Finally, nodes include an index 1017c¢. In nodes defining
form elements, the index holds a form number and element
number uniquely identifying the element and form within
the document. In nodes defining EMWEB__STRING tags,
the index is a reference to the instance of source code which
should be executed at that point. As such, the index may be
evaluated in an expression of a “switch” statement in C,
where each controlled statement of the “switch” statement is
one source code fragment from one EMWEB__STRING
instance. Alternatively, the index may be a pointer or index
into a table of source code fragments from EMWEB__
STRING tags, which have been encapsulated as private
functions.

The data structure defined above provides a convenient
way of transferring control as a document containing
dynamic content is served. When a document is requested,
the list of document nodes is obtained, to determine at what
points control must be transferred to code segments which
had been defined in the HTML source document. The
document is then served using the data block defining the
static elements of the document, until each document node
is encountered. When each document node is encountered,
control is transferred to the appropriate code segment. After
the code segment completes execution, the static content
which follows is served until the offset of the next document
node is encountered.

Header nodes permit the storage of document meta
information, not otherwise handled, such as content
language, e.g., English, German, etc., cookie control, cache
control or an e-tag giving a unique version number for a
document, for example a 30-bit CRC value computed for the
document. By avoiding having to put this information in the
header of each document, significant space can be saved in
the archive because not all documents require this informa-
tion. Therefore, header nodes need only be stored for docu-
ments using this information.

The data structure which represents the archive of content
used by the EmWeb™/compiler embodiment of the inven-
tion is defined by the C source code contained in Appendix
B.

Run-time Environment

Aspects of the invention related to the run-time environ-
ment and server are embodied in the EmWeb™/server as
described in detail in Appendix A, Section 4.

10

15

20

25

30

35

40

45

50

55

60

65

16

To a conventional browser implementing HTTP, the
EmWeb™/server behaves conventionally. However, as
shown in FIG. 2, the EmWeb™/server is fully integrated
with the application and therefore has access to information
about the application and device in which it is embedded.

Operation of the EmWeb™ /server with respect to presen-
tation of dynamic content is now described in connection
with FIG. 11.

Before the operations shown in FIG. 11 commence, one or
more archives are loaded by the server. When each archive
is loaded, the server generates a hash table using the archive
header data structure to make documents easy to locate
using URLs.

First, the browser requests a document at a specified URL,
using HTTP 1101 . The EmWeb™/server acknowledges the
request, in the conventional manner 1103. The EmWeb™/
server then uses the hash table of the archive header to locate
the document requested and begin serving static data from
the document 1105. When a document node is encountered,
for example denoting the presence of an EMWEB__
STRING tag, then the server passes control to the code
fragment 11074 of the application which had been included
in the EMWEB_STRING tag 1107. When the code frag-
ment completes execution and returns some dynamic data
1109, the EmWeb™/server then serves that dynamic data to
the browser 1111. The EmWeb™!/server then resumes serv-
ing any static data remaining in the document 1113. This
process continues until the entire document, including all
dynamic elements has been served.

Run-time serving and submission of forms is now
described in connection with FIG. 12. A brief inspection of
FIG. 12 will show that form service and submission pro-
ceeds along similar lines to those for serving dynamic
content.

The browser first requests a URL using HTTP 1201.
When, during service of the contents of the URL requested,
a form is encountered, service of the form and any HTML-
defined default values commences normally. The EmWeb™/
server then makes a call to the application code 1203 to run
a function 12032 which may substitute alternate default
values 1205 with which to fill in the form. The document
served then is made to include the default values defined by
the static HTML as modified by the application software
1207. Later, when the user submits the form, the browser
performs a POST to the URL using HTTP 1209. The form
data is returned to the application by a call 1211 made by the
EmWeb™/server to a function 1211 which inserts the data
returned in the form into the data structure defined therefor
within the application code. The response 1213 is then
served back to the browser 1215.

Finally, it should be noted that there may be times when
a request for dynamic content may require extended
processing, unacceptably holding up or slowing down other
operations performed by the application. In order to avoid
such problems, the EmWeb™ /server implements a suspend/
resume protocol, as follows. The suspend/resume protocol
exists within a context of a scheduler maintained and
operated by the server. The scheduler includes a task list of
scheduled server tasks to be performed.

FIG. 13 illustrates a situation where a browser requests a
document containing an EMWEB__ STRING tag whose pro-
cessing is expected to interfere with other application opera-
tions. The initial HTTP request 1301 for the document is
acknowledged 1303, conventionally. When the EMWEB__
STRING tag is encountered, control transfers 13054 to the
appropriate source code fragment 1305b in the application.
The application then calls the suspend function 1307 of the

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 35 of 41 Page ID #:35

US 6,456,308 B1

17

EmWeb™/server and returns a dummy value 1309 to the
function call generated at the EMWEB_ STRING tag loca-
tion. Calling the suspend function 1307 causes the scheduler
to remove the EMWEB__STRING processing task from the
task list. When the application has finally prepared the
dynamic content required in the original function call, the
application calls a resume function 1311 of the EmWeb™/
server. Calling the resume function 1311 requeues the
EMWEB_ STRING processing task on the task list, as the
current task. The EmWeb™/server responds by calling
1305c the function 13054 defined at the EMWEB_ STRING
tag again, this time immediately receiving a response from
the application in which the requested dynamic content 1313
is returned. The dynamic content is then served to the
browser 1315.

The suspend/resume feature is particularly useful in dis-
tributed processing environments. If an embedded applica-
tion is running on one processor of a distributed
environment, but dynamic content can be requested which is
obtained only from another processor or device in the
distributed environment, then the use of suspend/resume can
avoid lockups or degraded processing due to the need to
obtain the dynamic content through a communication path
of the distributed environment. Consider, for example, a
distributed system including a control or management
processor, and several communication devices. An embed-
ded application running on the management processor can
be queried for configuration data of any of the communica-
tion devices. Without suspend/resume, obtaining that data
would tie up the communication path used by the manage-
ment processor for control of the various communication
devices, degrading performance.

As described above, a compiled archive may include one
or more dynamic elements. It may be desired to permit some
portions of the user interface defined by such a compiled
archive to be changed or replaced, without disturbing other
portions of the user interface. For example, in designing a
user interface, a programmer may need to rewrite the
definition of the interface, which is written in mark-up
language, e¢.g., HTML, while making use of established
dynamic elements, for example written in c¢. The process
desired resembles the paradigm in other programming dis-
ciplines in which a program is written which make calls to
substantially unchanging library functions.

The archive compiler recognizes names for EMWEB__
STRING and EMWEB_ FORMS constructs, as well as a
general object namespace, whereby objects can be referred
to by name, both internally and externally to a given source
file. In order to support named references to an object, the
compiler generates and exports a symbol table,
ew_code.ewa, mapping the .c and .dat files discussed
above. The .ewa file is then reimported into the compiler to
generate derived archives, as shown in FIG. 16. This process
is now described in greater detail.

Source files defining a user interface as a web site and
other HTML files referencing named structures are supplied
to the compiler, together with maps of external structures,
such as a Namespace map. The compiler produces a master
archive including header (.h), code (.c) and data (.dat) files.
Also produced is the ew__code.ewa map. The ew__code.ewa
map is fed back to the compiler. Modified web pages can
then be compiled with the map files to produce derived
archives referring to named objects in the master archives.
The pages of the derived archives can therefore be substi-
tuted for master archive pages, while making use of the
dynamic elements already coded. Only the master archive
needs be cross-compiled and linked with the application and

10

15

20

25

30

35

40

45

50

55

60

65

18

server for which the user interface is the front end, to
produce executable code.

The described embodiments of the invention illustrate
several advantages thereof. For example, an embedded
application can now have a GUI which is independent of
either the application platform of that used to view the GUI.
For example, the GUI can be operated through a Microsoft®
Windows™ CE machine, Windows™ 3.x machine, Apple
Macintosh, WebTV box, etc. running conventional browser
software. Also, development of a GUI for an embedded
application is greatly simplified. The look and feel is
designed using conventional HTML design techniques,
including straightforward prototyping of the look and feel
using a conventional client server system, using simple
HTML extensions. Integration with the embedded applica-
tion does not require the developer to learn or develop any
special interface, but rather uses some HTML extensions to
incorporate application source code directly into the HTML
content. Yet another advantage in that the entire embedded
application along with an HTTP-compatible server and the
content to be served is reduced to a minimum of application
source code, data structures for static data and data struc-
tures for dynamic data.

The present invention has now been described in connec-
tion with specific embodiments thereof. However, numerous
modifications which are contemplated as falling within the
scope of the present invention should now be apparent to
those skilled in the art. For example, the invention is not
limited to content whose source is HIML. Any mark up
language could be used in the context of this invention.
Alternatively, the content source could be raw text, which is
particularly suitable for situations where the output of the
user interface is also processed by one or more automatic
software text filters. Therefore, it is intended that the scope
of the present invention be limited only by the properly
construed scope of the claims appended hereto.

What is claimed is:

1. A method of providing from a server to a client a
graphical user interface having dynamic elements, compris-
ing:

defining elements of the graphical user interface in at least

one text document written in a mark-up language and
stored with the server;
including at a location in the document a code tag
containing a segment of application source code written
in a language other than the mark-up language;

serving the text document from the server to the client
which interprets the mark-up language but does not
interpret the application source code; and

when the location is encountered, serving from the server

to the client a sequence of characters derived from a
result of, before the step of serving, executing a
sequence of instructions represented by the segment of
application source code.

2. The method of claim 1, further comprising:

including in the document at least one more code tag

containing a segment of application source code.

3. The method of claim 1, wherein the step of defining
further comprises:

providing a plurality of documents which collectively

define the graphical user interface; and

storing the text document and the plurality of documents

as files in a directory tree.

4. The method of claim 3, further comprising:

compiling the directory tree and the files therein into an

archive including content sources; and

Case 8:12-cv-01186-JST-RNB Document 1

Filed 07/20/12 Page 36 of 41 Page ID #:36

US 6,456,308 B1

19

decompiling a content source back into the text document

before the step of serving.

5. A method for developing and prototyping an applica-
tion software program having a graphic user interface
defined by information served from a server program to a
client program, the method comprising the steps of:

accessing a file contain the information served, including

HTML tags,
encapsulating source code written in a language other
than HTML within tags in portions of said file, the
source code not served to the client program,
producing a source code module from said file with
encapsulated source code

producing source code for a server, and

cross compiling and linking said application, said source
code module and said server source code thereby
producing executable object code which serves the
information defining the graphic user interface, and
information which varies as a result of executing the
object code.

6. The method of claim 5, further comprising the steps of:

running said object code,

executing said compiled encapsulated source code when
requested by a viewer, wherein said encapsulated
source code is associated with said application.

7. The method of claim 6, further comprising the steps of:

converting data returned by execution of said compiled
encapsulated code into a form displayable by said
viewer.

8. The method of claim 7, wherein the data returned by
executing said compiled encapsulated code changes over
time as a result of changes within the application.

9. A data structure fixed in a computer readable medium,
the data structure for use in a computer system including a
client and a server in communication with each other, the
data structure comprising:

cross-compiled, stored and linked, including therein

encapsulated portions containing executable code,
written in a language other than HTML, and associated

20

with said application, server code, and application

code, wherein said executable code runs and generates

data for the server to serve to the client when the HTML

file is served thereby providing real time dynamic data
5 associated with said application.

10. A computer software product including a computer-
readable medium encoded with a sequence of instructions
defining a method comprising:

defining elements of the graphical user interface in at least

one text document written in a mark-up language and
stored with the server;

10

including at a location in the document a code tag
containing a segment of application source code written
in a language other than the mark-up language;

serving the text document from the server to the client
which interprets the mark-up language but does not
interpret the application source code; and

when the location is encountered, serving from the server
to the client a sequence of characters derived from a
result of, before the step of serving, executing a
sequence of instructions represented by the segment of
application source code.
11. The software produce of claim 10, the method defined
by the sequence of instructions further comprising:

20

25
including in the document at least one more code tag
containing a segment of application source code.
12. The method of claim 10, wherein the step of defining
further comprises:
providing a plurality of documents which collectively
define the graphical user interface; and
storing the text document and the plurality of documents
as files in a directory tree.

5 13. The method of claim 12, further comprising:
compiling the directory tree and the files therein into an

archive including content sources; and

decompiling a content source back into the text document
before the step of serving.

#* #* #* #* #*

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 37 of 41

Page ID #:37

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,456,308 B1 Page 1 of 1
DATED : September 24, 2002
INVENTOR(S) :Ian D. Agranat, Kenneth A. Giusti and Scott D. Lawrence

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 2
Line 50, please replace “ran-time” with -- run-time --.

Column 9
Line 21, please replace “markup” with -- mark-up --.
Line 41, please replace “crosscompiled” with -- cross-compiled --.

Signed and Sealed this

Eleventh Day of February, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 38 of 41 Page ID #:38

UNITED STATES DISTRICT COURT
CENTRAL DISTRICT OF CALIFORNIA

NOTICE OF ASSIGNMENT TO UNITED STATES MAGISTRATE JUDGE FOR DISCOVERY

This case has been assigned to District Judge Josephine Tucker and the assigned
discovery Magistrate Judge is Robert N. Block.

The case number on all documents filed with the Coutt should read as follows:

SACV12- 1186 JST (RNBx)

Pursuant to General Order 05-07 of the United States District Court for the Central
District of California, the Magistrate Judge has been designated to hear discovery related
motions.

All discovery related motions should be noticed on the calendar of the Magistrate Judge

NOTICE TO COUNSEL

A copy of this notice must be served with the summons and complaint on alt defendants (if a removal action Is
filed, a copy of this notice must be served on all plaintiffs).

Subsequent documents must be filed at the following 1ocation:

Wastern Division [X] Southern Divislon Eastern Division
312 N. Spring St., Rm. G-8 411 West Fourth St., Rm. 1-053 3470 Twelfth St., Rm. 134
Los Angeles, CA 90012 Santa Ana, CA B2701-4516 Riverside, CA 982501

Fallure to fila at the proper location will result in your documents being retumed to you.

Cv-18(03/08) NOTICE OF ASSIGNMENT TO UNITED STATES MAGISTRATE JUDGE FOR DISCOVERY

Case 8:12-cv-01186-JST-RNB Document 1 Filed 07/20/12 Page 39 of 41 Page ID #:39

Name & Address:

Peter R. Afrasiabi (pafrasiabi@onelip.com)
John E. Lord (jlord@onellp.com)
ONELLP 4000 MacArthur Blvd

Suite 1100, Newport Beach, CA 92660

P (949) 502-2870 F (949) 258-5081

UNITED STATES DISTRICT COURT
CENTRAL DISTRICT OF CALIFORNIA

Agranat [P Licensing LLC, CASE NUMBER

. 01186 JST (RNBX)
PLAINTIFE(S) SACVi2
v,

Hewlett-Packard Company,

SUMMONS

DEFENDANT(S).

TO: DEFENDANT(S): Hewlett-Packard Company,

A lawsuit has been filed against you.

Within __21__ days after service of this summaons on you (not counting the day you received it), you

must serve on the plaintiff an answer to the attached E‘roomp]ainl] amended complaint

O counterclaim 03 cross-claim or a motion under Rule 12 of the Federal Rules of Civil Procedure. The answer
or motion must be served on the plaintiff’s attorney, Peter R. Afrasiabi , whose address is
4000 MacArthur Blvd, West Tower, Suite 1100, Newport Beach, CA 92660 . If you fail to do so,

judgment by default will be entered against you for the relief demanded in the complaint. You also must file
your answer or motion with the court.

JUL 20 20p

Dated:

Deputy Clerk

{Seal of the Court)

{Use 60 days if the defendant is the United States or a United States agency, or is an officer or employee of the United States. Allowed
60 days by Rule 12(a)(3)].

CV-OIA (12/07) SUMMONS

:Case,8:12-cv-01186-JST-RNB Docu

1 FiI@O?/ZO/lZ Page 40 of 41
!

UNITED STATES DISTRICT COURT, CENTRAL DISTRICT OF CALIFORNIA
CIVIL COVER SHEET

Page ID #:40

1 (1) PLAINTIFFS (Check box if you are representing vourself ()

Agranat IP Licensing L1.C,

DEFENDANTS
ITewlctt-Packard Company,

{b) Atlemeys (Firm Name, Address and Telcphone Number, If you are representing

yourself, provide same.)
Peter R Afrasiabi and John E. Lord

One LLP, 4000 W. MacArhur, West Tower, Suite $ 100,
Newport Beach, CA 92660

Attorney's {If Known)

Xedl Ag

11, BASIS OF JURISDICTION (Place an X in one box only.}

O | US. Governmem Plaintilf

0 2U.5. Governmenl Defendant

&3

04 Diversity (Indicate Citizenship

Federal Question (LS.

Government Not o Party}

ol Parties in item 118

Chitizen of This Stale

Cilizen of Another State

FTF
al

gz

Cilizen or Subject of a Foreign Country 0 3

111, CITIZENSHIP OF PRINCIPAL PARTIES - For Diversity Cases Only
{Place an X in onc box for plaintilf and one for delendant.)

DEF PTF DEF

D1 Incorporaied or Principal Place 04 04
of Business in this Stale

02 Incorporated and Principal Ploce O5 O35
of Business in Another Stote

(O3 Foreign Nation 06 0Oe¢

I¥. QRIGIN (Place an X n gne box only.)

[i(l Original
Proceeding

02 Removed from O3 Remanded from O 4 Remnstaled or
State Court

Appellate Court

Reopened

05 Translerred from anather district (specify).

06 Muhi- 07 Appeal to District
Diswict Judge from
Litigation Magisuate Judpe

V. REQUESTED IN COMPLAINT: JURY DEMAND: Iﬂ"("es O No (Check ' Yes™ only if demanded in complaint)
CLASS ACTION voder FRC.P. 23: OYes ofNo

0 MONEY DEMANDED [N COMPLAINT: S proven at trial

¥1. CAUSE OF ACTION (Citc the U.5. Civil Statute under which you are filing and write a bricl statement of cause. Do not cite jurisdictional statules unless diversity.)
Patent Inlringemem, Permanent [njunction, and Damages

¥I1. NATURE OF SUIT (Place an X io one box only.)

_OTHERSTATUTES "]|~ CONTRACT][~ ToRfS | TORTS TRISONER 7] TABOR |
D400 Staie Reapportionment |0 110 Insurance PERSONAL INJURY PERSONAL 1L PETITIONS _ _j|O710 Fair Labor Siandards
0410 Antitrust 0120 Marine D310 Aiplane PROPERTY 8510 Motions 1o Act
D 43C Banks and Banking 0130 Miller Act D315 Airplane Preduct |3 370 Other Fraud Vacate Sentence |[3720 Labor/Mgm,

0450 Commerce/1CC 0140 Negotiable Instrument Liability Q371 Trah in Lending Habeas Corpus Retanons
Rates/cic, O 150 Recovery of D320 Assault, Libel & |3380 Other Personal |01 530 General D730 Labor/MgmL.
0460 Depornation Overpayment & Slandes . Property Damage |0 535 Death Penaity Reporting &
1470 Rackeicer Influenced Enforcement of D330 Fed Employers™ |1y 385 Property Damage [[) 540 Mandamus/ Disclosure Act
and Corrupt Judgmen 0 340 k;“b,'l"y Product Liabihty Other 0740 Relway Labor Act
Organizations 0151 Medicare Act 0 s M Broduct 'BANKRUPTCY_ |01550 Civil Rights D790 Oiher Labor
O 48¢ Consumer Credn 0152 Recavery of Defaulted Li::il;lel foduc D422 Appeal 22USC |0 555 Prison Conditien_ Litigation
049 Cable/Sul TV Student Loan (Exel. 01356 Motor \yfehiclc 158 i FORFEITURE/ {|O791 Empl. Ret Inc.
[mEILH Selcct_i_fc Service) Velerans) 0155 Motor Vehicle 0O d23 Wilhdrawa) 28 ______h&PEN_:i__l_._T}'__ goad) _____'_'S_g:glji_!‘}_'_ Act
0 85¢ Securities’Commodities/ |0 153 Recovery of Product Lishility o UsCis? 10610 Agriculure ___PROPERTY. RIGHTS,
Exchange Overpayment ol 0360 Other Personal CCIVILBIGHTS |00 620 Other Food & 0820 Copyrights
0875 Customer Chaflenge 12 Veleran's Benefits Injury Odat Voting Brug 830 Patent
USC 410 0160 Siockholders® Suils 001362 Personal tnjury- (04492 Employment 0625 Brug Relaied 0840 Trademark
0O 890 Other Suiutery Actions |G 190 Other Contract Med Malpraciice |0 443 Housing/Acco- Seuzure of ..SQCIAL SECURITY .
0O 891 Agriculiural Act 3 195 Coniract Product [J365 Personal Injury- mmodalions Property 21 USC |0 861 HIA (1395f1)
0O 892 Economic Slatilization Liability Product Eiability |0 444 Welfare 881 D862 Black Lung (923)
Act 0196 Fronchise _ |O368 Asbestos Personal (D445 American with |0 630 Liquor Laws 0863 DIWC/DIWW
2393 Environmental Matters | REAL PROPERTY. 3 Injury Produci Disabilitics - 0640 R & Truck (J05{g)
0 894 Energy Allocation Act (3210 Land Condenmation N Liability Empioymenl O 65¢ Airtine Regs 0864 SSID Title XVI
D895 Freedom of Info. Act |[) 220 Foreclosure _ IMMIGRATION | |0 446 American with |C1660 Occupational D865 RSI (405
D900 Appeal of Fee Determi- 0230 Renl Lease & Ejectment [0 462 Noturalization Disabililies - Safety Health |, FEDERAL TAX SUITS |
natien Under Equal [1240 Torls to Land Application Other 690 Other 0O 870 Taxes (U.S. Plintiff
Access ta Justice D245 Tort Product Liability [(1463 Habeas Corpus- 111440 Other Crvil or Defendant)
0950 Constitutionality of ~ |D290 Al Other Real Property Alien Belaince Rights O 871 IRS-Third Party 26
State Statutes 0 463 i‘:;‘f“ Immigration USC 7609
ions
SACVIZ- 01186 JST (RNBx)
FOR OFFICE USE ONLY: Case Number:

AFTER COMPLETING THE FRONT SIDE OF FORM CV-71, COMPLETE THE INFORMATION REQUESTED BELOYY.

CV-TL{05/08)

CIVIL COVER SHEET

Pagc) of 2

“CasexS:12-cv—01186-JST-RNB Document 1 Filed 07/20/12 Page 41 of 41 Page ID #:41

UNITED STATES DISTRICT COURT, CENTRAL DISTRICT OF CALIFORNIA
CIVIL COVER SHEET

VIIln). IDENTICAL CASES: 1las this action been previously filed in this court and dismissed, remanded or closed? IE’N() 1 Yes
If yes, list case number(s).

V11I(b). RELATED CASES: Have any cases begn previously filed in this court thal are related to the present case? dNo O Yes
IF yes, list case number(s):

Clvil cases nre deemed related if a previously filed case and the present case:
(Check all boxes thatapply) O A. Arise from the same or closely related transactions, happenings. ar evenls: or
aB Call for determination of the same or substantrally related or similar questions of law and fact, or
aC. for other reasens weuld emadl substantial dupticatior of labor il heard by difTerent judges, or
O D. Involve the same patent, trademark os copynight. and one ol the factors identified above in a, b or ¢ alse is present.

IX. YVENUE: (When completing the following informalion, use an adduional sheet il necessary.)

{a) Listthe County in this District, Californsa Counly outside of this District; Statc if other than California; or Foreign Couniry, in which EACH named plainul¥F resides
D Check here if the government, its agencies or employees is a named plaintilT. [f this box is checked, ge 1o item (b).

County in this Distric1 * Catifornia County oulside of this Disirict. Stale, il other than California; or Foreign Couniry
Orange

{b) List the County n this District, Califernia County outside of 1his District; Siate if other than Califomia: or Fareign Country, in which EACH named defendamt resides.
{0 Check here if the govermment. ils apencies or employees is 2 pamed defendant. [this box is checked, po te ilem {c).

County in this Dvstrict * California County owside ol this Distric, 5tate, 1f olhcr than California, or Foreign Country
Santa Clara

{c) Lust the County in this District;, Califomia County outside of this District; Statc if other than California; or Foreign Country, in which EACH claim arosc.
Note: In land condemnpation cases, use the locallon of the tract of 1and involved.

Counly in this Distncl:* California County aulside of this Disirict; Stale, if other than Califomnia; or Foteign Country

Orange

* Los Angeles, Omange, San Bernardino, Riverside, Yentura, Santa Barbarn, or $an Luls Obispe Counties
Note In land condemnatian cases_ use the location of the tract of land involved

X. SIGNATURE OF ATTORNEY (OR PRO PER) /% / Date July 20, 2012

Nuoilce to Counsel/Parties: The CV-71 (I15-44) Civit Cover Sheet and the inlarmation contained herein neither replace nor supplement the filing and service of pleadings
or other papers as required by law. This form, appraved by the Judicial Conlcrence of the United States in Seplember 1974, is required pursuant to Loca! Rule 3-1 is not filed
but 1s used by the Clerk of the Court far the purpoese of siatistics, venue and imtinting the ¢ivil docket sheet. (For more detailed instructions, see sepasate instructions sheet.)

Key to Statistical codes relnting to Social Security Coses:

Nalure of Suit Code Abbreviation Substantive Staterment of Cause of Action

861 HlA All claims for health insurance benelis {Medicare) under Tille 18, Part A, of the Social Security Act, as amended.
Also, include clamms by hospitals, skilted nursing lacilitics, ctc., for certification as providers of services under the
pregram. (42 U.8.C. t935FF(by

8a2 BL All claims lor “Black Lung” benefits under Title 4, Part B, of the Federal Coal Mine Health ond Sofety Act of 1969,
(30050 923)

863 DIWC All claims filed by insured workers for disability insurance benefits under Title 2 of the Social Security Act, as
amended; plus all ctaims filed For child’s insurance benelits based on disability, (42 U S.C. 40520

863 DIWwWw All claims lited for widows or widowers insurance benefits based on disability under Title 2 of the Socsal Security
Act, as nmended. (42 U.S5.C. 405(gh

864 SSID All claims for supplemental security income payments based upan disability filed under Title 16 of the Social Sceunty
Act, as amended.

865 RSl All claims for retirement (old age} and survivers benefits under Titie 2 of the Social Security Act, a5 amended. (42
UsSC. gy

Cv-71 (05/08) CIVIL COYER SHEET Page 2 0f 2

	TAB 2
	2384887.pdf
	Complaint - Agranat v. HP
	Exhibit A to Complaint - Agranat
	Exhibit A.pdf
	US6456308

	TAB 6
	TAB 1
	TAB 3

