Case 2:12-cv-07360-JAK-MRW Document 1

Thomas J. Friel, Jr. (SBN 80065}
tfriel@cooley.com

COOLEY LLP

101 California Street, Fifth Floor
San Francisco, CA 94111-5800
Telephone: 5415) 693-2000
Fa031m11e (415) 693-2222

J1m Brogan (1 BN 155906)
jbrogan(@cooley.com
Orion Armon
oarmon(@cooley.com
Brian Eutermoser
beutermoser@cooley.com
Peter Sauer
sauer(@coole
OOLEY LL
380 Interlocken Crescent, Suite 900
Broomfield, CO 80021
Phone: ﬁ7zd% 566-4000
Facsimile: (720) 566-4099

.com

N o0 1 N B W N e

e e e T G S G —y
SN th A W =D

ENFISH, LLC

—
~J

Plaintiff,

—
o oo

V.

MICROSOFT CORPORATION;
FISERV, INC.;
SOFTWARE, INC.; and JACK
HENRY & ASSOCIATES, INC.

Defendants.

NN NSRS
L N = D

Attorneys for Plaintiff ENFISH, LLC

INTUIT, INC.; SAGE

Filed 08/27/12 Page 1 of 814 Phd

FILED

IN THE UNITED STATES DISTRICT COURT
FOR THE CENTRAL DISTRICT OF CALIFORNIA

G 12-7369-

COMPLAINT FOR PATENT
INFRINGEMENT

DEMAND FOR JURY TRIAL

2 NN
o =1 O L b

-

(el

Case

© O N o o B~ wWw N P

N N RN RN NN NN R R P R R BB R R e
0 N o O B W N P O © © N o o M W N P O

2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 2 of 81 Page ID #:9

Plaintiff Enfish, LLC alleges against Defendants Microsoft Corporation;
Fiserv, Inc.; Intuit, Inc.; Sage Software, Inc.; and Jack Henry & Associates, Inc.
(collectively “Defendants” and individually “Defendant”) as follows:

JURISDICTION

1. This action arises under the Patent Laws of the United States, 35
U.S.C. 8§ 1, et seq. The Court has subject matter jurisdiction pursuant to 28 U.S.C.
8§ 1331 and 1338(a).

2. This Court has personal jurisdiction over Defendants because they
regularly conduct business in the State of California and in this district, including
operating systems and/or providing services in California and in this judicial district
that infringe one or more claims of the patents-in-suit in this forum. Each
Defendant has established minimum contacts with this forum such that the exercise
of jurisdiction over these Defendants would not offend traditional notions of fair
play and substantial justice.

VENUE

3. Venue is proper in this judicial district pursuant to 28 U.S.C. 88
1391(b) and (c), and 28 U.S.C. 8 1400(b) because each of the Defendants resides in
this district.

JOINDER
4, Joinder of the Defendants is proper under 35 U.S.C. § 299 because

each Defendant has infringed and is infringing the patents-in-suit by using

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 3 of 81 Page ID #:10

© O N o o B~ wWw N P

N N RN RN NN NN R R P R R BB R R e
0 N o O B W N P O © © N o o M W N P O

Microsoft’s .NET Framework software. Microsoft and each of its co-defendants is
jointly and severally liable for the co-defendant’s infringement, and questions of
fact common to all defendants will arise in the action with respect to their
infringing use of the .NET Framework.

THE PARTIES

5. Plaintiff Enfish, LLC is a limited liability company organized and
existing under the laws of the State of California, with a principal place of business
at 1446 Rose Villa Street, Pasadena, California 91106. Enfish’s managing member
Is Louise Wannier, who is also a co-inventor of each of the patents-in-suit.

6. Ms. Wannier co-founded Dex Information Systems, Inc. in 1993 to
create a patented information storage and retrieval system that the company referred
to as the Dex Engine. Dex later changed its name to Enfish, Inc., and after merging
with KnowledgeTrack Corporation, to Enfish Corporation. Ms. Wannier was CEO
of Dex, Enfish, Inc., and Enfish Corporation (hereinafter collectively referred-to as
“Enfish”). Enfish, LLC acquired the patents-in-suit from Enfish Corporation.

7. Enfish developed critically-acclaimed and award-winning software
based on its patented Dex Engine technology. Enfish Tracker Pro, an application
that tracks and sorts email, text files, and other electronic data, was named “Best
Software of 1998” by Investor’s Business Daily and was nominated in two
categories for the prestigious Codie Awards for Excellence in Software. In

November 1998, PC World magazine described Enfish Tracker Pro as “unique”

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 4 of 81 Page ID #:11

© O N o o B~ wWw N P

N N RN RN NN NN R R P R R BB R R e
0 N o O B W N P O © © N o o M W N P O

because of its ability to track useful information. Even in 2006, the eight-year-old
Enfish software was described as “ahead of its time.”

8. Subsequent software releases continued to build on the patented Dex
Engine technology. Enfish Find, for example, is a powerful indexing program that
allows users to search email, word processing files, and other data on their hard
drives. According to Forbes, Enfish Find was the best desktop search tool on the
market in 2004. Bill Gates, in an interview with PC Magazine earlier that same
year, even admitted that a competing Windows search tool did not work. Enfish
OneSpace added additional features, including a calendar, current news and
weather, and a consolidated list of inbound and outbound email from multiple email
accounts and clients.

9. Since the initial release in 1998, Enfish products have been
downloaded by more than 200,000 users. Enfish last sold or offered for sale
products in 2005.

10. Defendant Microsoft Corporation is a Delaware corporation with a
principal place of business located at 1 Microsoft Way, Redmond, Washington
98052-6399. Microsoft uses infringing technology, including, for example, the
Microsoft .NET Framework and related software, to develop and operate computer
applications that store and retrieve various kinds of data. Microsoft also exports
infringing software, including, for example, the Microsoft .NET Framework and

related software.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 5 of 81 Page ID #:12

© O N o o B~ wWw N P

N N RN RN NN NN R R P R R BB R R e
0 N o O B W N P O © © N o o M W N P O

11. Defendant Fiserv, Inc. is a Wisconsin corporation with a principal
place of business located at 255 Fiserv Drive, Brookfield, Wisconsin 53945. Fiserv
uses infringing technology, including the Microsoft .NET Framework and related
software, to develop and operate computer applications that store and retrieve
various kinds of data, including, for example, computer applications related to
Fiserv’s Corillian and Voyager platforms, Premier banking solution, and
CubicsPlus credit union product.

12. Defendant Intuit, Inc. is a Delaware corporation with a principal place
of business located at 2700 Coast Avenue, Mountain View, California 94043.
Intuit uses infringing technology, including the Microsoft .NET Framework and
related software, to develop and operate computer applications that store and
retrieve various kinds of data, including, for example, Intuit’s QuickBooks line of
software products.

13. Defendant Sage Software, Inc. is a Delaware corporation with a
principal place of business located at 6561 Irvine Center Drive, Irvine, California
92618-3415. Sage uses infringing technology, including the Microsoft .NET
Framework and related software, to develop and operate computer applications that
store and retrieve various kinds of data, including, for example, computer
applications related to the Sage 50 and Sage Peachtree software products.

14. Defendant Jack Henry & Associates, Inc. (“JHA”) is a Delaware

corporation with a principal place of business located at 663 West Highway 60,

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 6 of 81 Page ID #:13

© O N o o B~ wWw N P

N N RN RN NN NN R R P R R BB R R e
0 N o O B W N P O © © N o o M W N P O

Monett, Missouri 65708-8215. JHA uses infringing technology, including the
Microsoft .NET Framework and related software, to develop and operate computer
applications that store and retrieve various kinds of data, including, for example,
computer applications related to JHA’s Core Director, Cruise, and ProfitStars
software products.

THE PATENTS-IN-SUIT

15. U.S. Patent No. 6,151,604 (“the 604 Patent”), entitled “Method and
Apparatus for Improved Information Storage and Retrieval System,” was duly and
legally issued to Enfish on November 21, 2000. A true and correct copy of the *604
Patent is attached as Exhibit A.

16. U.S. Patent No. 6,163,775 (“the *775 Patent™), entitled “Method and
Apparatus Configured According to a Logical Table Having Cell and Attributes
Containing Address Segments,” was duly and legally issued to Enfish on December
19, 2000. A true and correct copy of the *775 Patent is attached as Exhibit B.

17. Enfish is the sole holder of all right, title, and interest in the 604 and
775 Patents, including all rights to obtain equitable relief or damages for past or
present infringement, all rights to prevent others from making, having made, using,
offering for sale, or selling products or services covered by such patents, and all

rights to enforce the 604 and 775 Patents with respect to Defendants.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 7 of 81 Page ID #:14

© O N o o B~ wWw N P

N N RN RN NN NN R R P R R BB R R e
0 N o O B W N P O © © N o o M W N P O

FIRST CAUSE OF ACTION
(INFRINGEMENT OF THE 604 PATENT)
ALL DEFENDANTS

18. Enfish realleges and incorporates by reference the preceding
paragraphs of this Complaint as if fully set forth herein.

19. Microsoft, Fiserv, Intuit, Sage, and JHA have infringed, and are
continuing to infringe, one or more claims of the ’604 Patent in violation of 35
U.S.C. 8 271(a) by using infringing systems and methods, including software such
as the Microsoft .NET Framework, to create and operate computer applications for
the storage and retrieval of various kinds of data.

20. Microsoft has infringed and is continuing to infringe one or more
claims of the ’604 Patent in violation of 35 U.S.C. § 271(f) by exporting infringing
systems and methods, including software for the storage and retrieval of various
kinds of data such as the Microsoft .NET Framework.

21. Enfish has suffered damages as a result of the infringement of the ’604
Patent by Microsoft, Fiserv, Intuit, Sage, and JHA, and will suffer additional
damages as a result of Defendants’ continuing infringement.

22. Enfish is entitled to recover damages from Microsoft, Fiserv, Intuit,
Sage, and JHA of not less than a reasonable royalty adequate to compensate for
Defendants’ infringement.

23. Enfish is entitled to recover past damages from all Defendants because

Enfish had no obligation to mark any products during the past six years.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 8 of 81 Page ID #:15

© O N o o B~ wWw N P

N N RN RN NN NN R R P R R BB R R e
0 N o O B W N P O © © N o o M W N P O

SECOND CAUSE OF ACTION
(INFRINGEMENT OF THE *775 PATENT)
ALL DEFENDANTS

24. Enfish realleges and incorporates by reference the preceding
paragraphs of this Complaint as if fully set forth herein.

25. Microsoft, Fiserv, Intuit, Sage, and JHA have infringed, and are
continuing to infringe, one or more claims of the *775 Patent in violation of 35
U.S.C. 8 271(a) by using infringing systems and methods, including software such
as the Microsoft .NET Framework, to create and operate computer applications for
the storage and retrieval of various kinds of data.

26. Microsoft has infringed and is continuing to infringe one or more
claims of the *775 Patent in violation of 35 U.S.C. § 271(f) by exporting infringing
systems and methods, including software for the storage and retrieval of various
kinds of data such as the Microsoft .NET Framework.

27. Enfish has suffered damages as a result of the infringement of the 775
Patent by Microsoft, Fiserv, Intuit, Sage, and JHA, and will suffer additional
damages as a result of Defendants’ continuing infringement.

28. Enfish is entitled to recover damages from Microsoft, Fiserv, Intuit,
Sage, and JHA of not less than a reasonable royalty adequate to compensate for
Defendants’ infringement.

29. Enfish is entitled to recover past damages from all Defendants because

Enfish had no obligation to mark any products during the past six years.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 9 of 81 Page ID #:16

© O N o o B~ wWw N P

N N RN RN NN NN R R P R R BB R R e
0 N o O B W N P O © © N o o M W N P O

PRAYER FOR RELIEF

WHEREFORE, Enfish respectfully requests the following relief:

a) That this Court adjudge and decree that Defendants have been, and are
currently, infringing each of the 604 and *775 patents;

b) That this Court award damages to Enfish to compensate it for each of
the unlawful actions set forth in Enfish’s Complaint, including damages for
Defendants’ past infringement of the 604 and 775 patents and a running royalty
for Defendants’ ongoing infringement of the *604 and *775 patents;

C) That this Court award pre- and post-judgment interest on such
damages to Enfish;

d) That this Court order an accounting of damages incurred by Enfish
between the close of fact discovery and the entry of a final, non-appealable
judgment;

e) That this Court determine that this patent infringement case is
exceptional pursuant to 35 U.S.C. 88 284 and 285 and award Enfish its costs and
attorneys’ fees incurred in this action; and

f) That this Court award such other relief as the Court deems just and
proper.

DEMAND FOR JURY TRIAL

Enfish respectfully requests a trial by jury on all issues triable thereby.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 10 of 81 Page ID #:17

O 0 1 O s W~

[\ TN N TR NG TR NG IR O TR \O R NG T NS R N0 R T e T S e
0o N N Bk W N = O D 0NN WY~ O

Dated: August 24,2012

Resp

P e O I
Thomas J. Friel,\lr., StatevBar # 80065
COOLEY LLP

101 California Street, Fifth Floor
San Francisco, CA 94111-5800
Telephone: (415) 693-2000
Facsimile: (415) 693-2222
tfriell@cooley.com

Jim Brogan, State Bar #155906
Orion Armon

Brian Eutermoser

Peter Sauer

COOLEY LLP

380 Interlocken Crescent, Ste. 900
Broomfield, CO 80021-8023
Telephone: (720) 566-4000
Facsimile: (720) 566-4099
Jjbrogan(@cooley.com
oarmon(@cooley.com
beutermoser@cooley.com
psauer(@cooley.com

ATTORNEYS FOR PLAINTIFF ENFISH,

LLC

10.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 11 of 81 Page ID #:18

EXHIBIT A

case 212 varseo ncvrn pocument .\ RREAAEINY

1]

US006151604A
United States Patent [(1] Patent Number: 6,151,604
’ ’
Wlaschin et al. 451 Date of Patent: *Nov. 21, 2000
’

[54] METHOD AND APPARATUS FOR 5,421,012 5/1995 Khoyi et al. cceeceerrerercreecrccnne 395/650
IMPROVED INFORMATION STORAGE AND 5,459,860 10/1995 Burnett et al. wccvevrerercreecrecmecnne 707/1
RETRIEVAL SYSTEM 5,537,591 7/1996 OKa .cevvevevenrineirieienieeieienieneenns 707/4

5,537,633 7/1996 Suzuki et al. ..o.ooorreeeeeerrrrre. 70773

[75] Inventors: Scott Wlaschin; Robert M. Gordon, 5,553,218 9/1996 Lietal woenimsesiissnissinn 395/148

both of Tos Anccles: Louise J 5,557,787 971996 Shinl €t Al weoveorroorerroreeeeeeeroeeennene 707/1
VS’ ol OE Cge 65’ TLof Cabit: Cl 5,564,046 1071996 Nemoto et al. moorrmrovreveeooreonene 707/4
annier, La Lanada, all ol Lalil.; Clay 5,630,005 5/1997 Hoover et al. ..ooovveeveeereerrer. 707/3
Gordon, New York, N.Y. 5729730 371998 Wlaschin et al. ..oo.ovvvvevvevrerrero. 70773
[73] Assignee: Dex Information Systems, Inc. Primary Examiner—Thomas G. Black
. Assistant Examiner—Frantz Coby
[*] Notice: Tlhl.s patent is subject to a terminal dis- Attorney, Agent, or Firm—Morrison & Foerster LLP
claimer.
[57] ABSTRACT
[21] Appl. No.: 09/035,510 The information management and database system of the
[22] Filed: Mar. 5, 1998 present invention comprises a flexible, self-referential table
that stores data. The table of the present invention may store
Related U.S. Application Data any type of data, both structured and unstructured, and
provides an interface to other application programs. The

[63] Continuation of application No. 08/383,752, Mar. 28, 1995, table of the present invention comprises a plurality of rows
Pat. No. 5,729,730. and columns. Each row has an object identification number

[51] Int.Cl7 GO6F 17/30 (OID) and each column also has an OID. A row corresponds

[52] US.Cle oo 7 07/100707 1102: 7073 to a record and a column corresponds to a field such that the

58 F'- l‘d f S """" h """""""""" ’ 707/3 ’4 100 intersection of a row and a column comprises a cell that may

(58] Field of Search ... ’70’7 " 02’ contain data for a particular record related to a particular

field, a cell may also point to another record. To enhance

[56] References Cited searching and to provide for synchronization between

columns, columns are entered as rows in the table and the
U.S. PATENT DOCUMENTS record corresponding to a column contains various informa-
5205256 3/1904 Bapat 305/500 tion about the column. The table includes an index structure
,295, APAL e .
5305380 4/1994 PAlMET .oooooeeeeeereoeseeeeeseoesroeeo 3sy1 Lo extended queries.
5,359,724 10/1994 Farle 395/425
5,375,237 12/1994 Tanaka et al.c.ccocevveueunnnee. 395/650 60 Claims, 17 Drawing Sheets
120 122 130 124 134 126 132 100
/ J |/ J /
108~ TYPE [#1012] ADDRESS EMPLOYED BY TIE AUTHOR
OBJECT ID [# 101] LABEL [#1013] [#1019] [#1033] [#1032]
110 #1020 117 EAST
~ Ao [COMPANY] DEXIS COLORADO A WA
138 #1010 scorr #1100
I [PERSON] WLASCHIN JOEXIS] N/A /A
#1030
#1118 [500K] #1122
#1050
#1122 Juemo] #1122
#1060 C:\ WORD\ PROJECT
#1127 [DOCUMENT] PROJ.DOC PLAN #1101
136 £ 210 EMPLOYED
~ #1009 [FIELD] By
135 #1117
~ # 210 [TPE] COLUMN
140 # 111
~ # 111 [vPE] IYPE
I

133

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 13 of 81 Page ID #:20

U.S. Patent Nov. 21, 2000 Sheet 1 of 17 6,151,604
S
. d
(
S
\
N
V
3 N
S
3
V Q
& = & =
XD D S =
= Q = %]
. Ix o= > RS S
N © & Ly N
Ll\ Y 3 % E'
~J
/ \ [L A S
~ & 8 N 5

43
)
7\
>
235

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 14 of 81 Page ID #:21

6,151,604

Sheet 2 of 17

Nov. 21, 2000

U.S. Patent

J9ATIMONY

.‘J
95

RRZ
ISV T
%8 a3 | %
199
99
~-#9
ST FSvavivg
3svaviva 2
~-5/ GUNIO N5/
N
INIGE003 SLTHSOTS (N g
SINFHN20a
INISSTO0Y QoM | =85
=~ -~ -
STXIONT bS ISVBVIYD TINYIINT 26 TNSILXT 05

¢ 9l

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 15 of 81 Page ID #:22

6,151,604

Sheet 3 of 17

Nov. 21, 2000

U.S. Patent

£l
]
JdA! \ \\wwtw\ L # ~op1
NANT0) [Fartf 017 #
R ; 2y
Ag [a1319]
AUOTINT 017 # 6I0F ~opy
NY1d 200°104d [INFNN2004]
L0i1# 103108 \a¥om \:9 0901 et
221 i# w@%ﬁ ZATL
ZZII# @@q\w\ 91 IF
YN v/ [six3q] NIHISY M [NOS¥3d] 10114 L
001 1# 11095 0101 # 8l
0av¥0709 [ANVdn09]
VN v/N 1573 211 SIX3a 0z01f 0L# b~
[zso1 4] [ccoi#] [6101#] [c101#] 738977 [101 #]
YOHINY Ei, Ag auotana|| Ssyvady [z1014] EY 01 193760 ~gyy
/ [[/ [/ /
00! cel 921 ¥5l A o8l zz4 A

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 16 of 81 Page ID #:23

6,151,604

Sheet 4 of 17

Nov. 21, 2000

U.S. Patent

@5\% 118 3l S\E@/m 17

AV 118 V OINT

HINVIYEILL OGNV dWVISINIL ~q;7

ONY NOISS3S INIGN0J

ON

¢
1INTT
JIHIWIFY HIMVIYE31L
SYH

gl NOISS3S HI134

~tic

YIVIEGILL INIWFHINT |

[
0zz

0437 01 ¥DIVIHEILL 135 17,7

¢
d3HI131

JHI dWVISINIL
SI

dWVIS JALL ISVT SV IAVS

dWVISINIL HOLTA

~—00c

ar 19340 31v34I

v Ol

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 17 of 81 Page ID #:24

6,151,604

Sheet 5 of 17

Nov. 21, 2000

U.S. Patent

q/ Ol
W [Six3a] 00114 || SFINNVM FSINOT | 201 1#
v [Six3a] 001 1#3| NIHISYIM 1100S | 101 1# s
[STINNVM 3SIN0T] 20114 ‘INIHOSYIM 1109S] 1011# 7 SIX30 | 00114
[sT3407m3] c20i# | [x6 aU0IMT] 61014 [zt | a0 | O
yﬂN 991~
/4] =] [Aq a3407an3] 6101# NOSH3d (430704 1004]\ STUOTMNT | £2014 o)
[STU0TINT] £201# ANVAOD (430704 1004]\ | A8 GUOTMT | 6L01# ~g
[HIIM FZINOSHINAS] ZZZ# | [3dAL 01 10141SF] ZZz# | [HIVd HOuVAS] 1zz# | [13avijzion# | 1103rg0 9
. G Ol

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 18 of 81 Page ID #:25

U.S. Patent Nov. 21, 2000 Sheet 6 of 17 6,151,604

FIG. 6

INPUT TEXT }— 150

FETCH ‘SEARCH PATH AND
RELATED OPTIONS FROM — 152
ASSOCIATED COLUMN DEFINITION

SEARCH FOLDERS ETC.. FOR | 154
RECORD MATCHING SPECIFIED TEXT

160

ASK USER:

CREATE A NEW RECORD
?l

NO ITEMS FOUND RETURN NIL
2

164

1) FETCH DEFAULT CREATION
162~ VALUES FROM ASSOCIATED
COLUMN DEFINITION |
2) CREATE RECORD WITH
THESE VALUES

RETURN 01D
OF NEW
RECORD

MORE
THAN ONE TTEMSSNJES | PRESENUT é_IST 10 USER gFE T gA’fLNEC%
FoUnD AND ASK USER TO PICK ONE]
' \
170

172

RETURN 01D
OF FOUND
RECORD

168

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 19 of 81 Page ID #:26

U.S. Patent Nov. 21, 2000

Sheet 7 of 17

6,151,604

ADD AN OID 10 THIS CELL

REMOVE AN OID FROM THIS CELL

~ i

MAKE A BACKUP OF THE ORIGINAL LIST OF 0IDS

- 180

CHANGE THE LIST TO THE A NEW LIST
AS REQUIRED BY THE ADD OR DELETE ACTION

L — 182

184

IS

THIS FIELD (F1)

SYNCHRONIZED WITH ANOTHER

FIELD (F2)
?

168

ARE

WE ALREADY

INSIDE A ACTIVE SYNCHRONIZATION

PROCESS
?

O DETERMINE THE LIST OF

OIDS THAT HAS CHANGED COMPARED
1O THE ORIGINAL LIST.
FOR EACH 0ID (02) IN THIS LIST..

FIND THE RECORD (R2)
CORRESPONDING TO THE 0ID (02).

1

|~ 194

186
/

UPDATE comfa

190
/

UPDATE COMPLETE)

192

FIG. 7a

FIND THE CELL CORRESPONDING TO THE
RECORD R2 AND SYNCHRONIZATION FIELD F2.

|~ 196

1

ADD OR REMOVE THE CURRENT
OID (01) FROM THE R2:F2 CELL

kALL 0IDS PROCESSED)/ 200

(UPDATE COMPLETE)/‘ZOZ

|~ 198

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 20 of 81 Page ID #:27

6,151,604

Sheet 8 of 17

Nov. 21, 2000

U.S. Patent

05 —1

NIHOSY M ﬁm
VININ
NOINN / NIHOSYIH 11005 |85
Kwﬁm 09310 Nvs | | 3V NOIN #09% INIAST NHOP
09310 Nvs =18 VNG 25901
e STIIONV SOT | A18 VENINGA Zs+0 HLINS NHOr
A - GININGT 1S NIYW 00! 300 AW
NIVA /| - .
sqiow 507 | | 962 | INIAYT 'GAT8 COOMATION #1%1 300 NHor [l "9
By STIIINY SOT| NG 13SNNS 0S#Z1 | VAMINGA T3vHOIN [~z¢7
qoom wmw ALID SSIMaavY NN
\ \ \
SAHOM INVISOIN] oz o Ay
(u+ v + .SI FNVN 3HL.) NINL3Y
(IWN 1SYT 473S) +¥ G131 = Y
(GNVN 1S¥4 4135) +V a1 = Y HLINS NHOr g5z qQ o/4
NN INWN ISVT | INWN IS¥IS
/ / / /
052 95z YA 26¢
JNN LSV,
= QT4 43 G131 X I 1SHIS D .
= (19[4 434 G134 ST W FHL | HLIWS nHor [N9zz g 9Ol
TN I ISVT | I 1SHId
{ / / /
012 $2Z 2ze 02Z

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 21 of 81 Page ID #:28

6,151,604

Sheet 9 of 17

Nov. 21, 2000

U.S. Patent

001

VA 9z/ Szl A zZ!
[INTW0I] # JH0HINY] Zs01 F1111] ££01
T430704 INIWVL] 10§ Fdud 101 (138V1] N v v961| MN00G|8111#
_ [ig
aAU0TNI] 6101 [INIWKOI] ¥ [31vIS] GLOI
Su1a] #io1 [ssyaav] si0t [INVN] 2101
J430704 INFHYd] 105 Fdal 10! [138vT] 2 00114 | Y3ISTHD N 224 |NIHOSYIM 1100S] NOSY3d | 104 if] 85!
[INIWN0D] # [INOHJ] £10!
Javis] sior JuIa] 101 [ssyaav] £101
JSSINISNG 40 Fdid] £201 TANVaWOI] 2204
Jy3a704 INFSVA] 10§ T 101 [138VT] Z W {loav0700 3 £11 SIX30| ANYan02 | 001 14041
_ SINTINOD o
\ W W 0¥0238| NHNT02 | § 08 [62!
[SININOD G40934] V(4G a3407am3] |V [ssayaav] | [139vi] | [Fd4d] .
108# 6101# FI01# ¢ 10ig | arofoct
m\ﬁ) &&u&%x\ NHNT0D SINIINOIGH0IIY $04 NOILINIAIG

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 22 of 81 Page ID #:29

6,151,604

Sheet 10 of 17

Nov. 21, 2000

U.S. Patent

193r40 430704
Y 40 JINEIYLLY

NY SV 350 NI
NIYTTIHIYITTOS 24 0%
\ / \
N\ g To3INNVH 3SIN0T] 201 o
ANIHISYIM 1109S] 1011 [Six3a] 0011 W SIVINOD | 430704 | osoif | TPPC
[s1oviNod] L
N 0/01# | NIHOSYIM 1100S | NOSHId | 10114 | 85F
[sioviNod]
N 0L01# SIXIa | ANvanod | 001 1#
N W | NFSTTIHIYITTIOH a13L4 0ZsH#
7 W | $30704 INFHvd | § 01314 10SH
[NFHATIHIYIAI04] | [430705 INFHYL] [13gv7] | | [3d4]
0ZE# LOSH ZE | 1ot | arodrgo
SNANT09 a31V13Y 430704 ¥04 SNOILINILIT

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 23 of 81 Page ID #:30

6,151,604

Sheet 11 of 17

Nov. 21, 2000

U.S. Patent

00! -

VA A 0% p/Z A 9/Z
/ / / / /
L0S1H 1021# ‘9071 # 7 W WLV | 430704 059#
W | W \XFaNI\ | 2101101 1# NIHISYIM Wo3l | 10SIH re—i-
W | WINIW\XTONI\ | 2001321 Z# YYNINA WYL | 2021f a2/
W | VI \XIONI\ | 2001321 1 # NOINN WL\ 90Ci# =y,
[NFHaTIHD 430704] | [430704 INFSVE] | [Sar T139] [138v7] [Farul]
0Z6# 10S# 0294 ¥ 101 # alo
pH = 01 WYIL S1 = d0IS 6 = 1S
_o 4/ n] u 8 __ [8D Yy o1 W NN Q\lu\

25¢ 1

SLovl L ¢l 1l 0 6 8 £9G¢v £

6,151,604

Sheet 12 of 17

Nov. 21, 2000

216 AASIAY —
9If N "% 00¢
. g15—C ¥ |
T N]
D — L
= sl v e
O Z 2 e .
e [Y VE |
e
-‘]
- 7\]
O]
015 —C O [—g67
THOM INVIYOSNI SGH007Y
([1X314FdAH] 90Z1# ‘Se-#2)
Wm0z # ‘G-1)
200121 I # TWIH WYL LOZIH = b SyoHINY
2001921 L || IXTISIAAH wyal | 9ozi# X313 'V 17l 9l
H07 THYONVIS ¥V SI THIH JUON| 2L
[sar 7739] [13gv1] |[ar ssvio]
0Z9# Z# [01#F| aio [3ion] ([ar ssvio]
Z001# 101# aio

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 24 of 81 Page ID #:31
U.S. Patent

6,151,604

U.S. Patent

4 - \
‘.I.ﬁm N\ :
‘ ‘ AN [
TN e\ N =
(STHOM INVINOINI) (SG4093Y) (STHOM INVINOANT) (S04093Y) (SGHOM INVISOANT)
YIS

S1INS3Y FIVIGINYIINT IIVIGINYIINT FIVIGINGTINI)i
gl O
(SGHOM INVIHOINI) (Sa¥0934) (Sa¥OM INVISOINI)
SIINSIY FIVIGINYTINT 1MVIS

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 26 of 81 Page ID #:33

6,151,604

Sheet 14 of 17

Nov. 21, 2000

U.S. Patent

29¢ 09¢ 868 96¢ 25 268 24! i ue |
/ / / / / / / / /
2001 =1H9IIM STINVINOD
Tngr] oosi# YIUNINOD | 1dTINOI | £051
%0/ =1HIIIM
Twar] oosi# 140S082IN | 1d3INOD | 205t
S05=IHOLM Mn
[nei] ooci# Jd WAL 1d3ON0I | 10€) =,
[SINTHOVW |
Z09=1HIIIM SSINISNg 05¢
40/ =1H9ITM [STINVIN0D || 2001 =1HOIIM | TYNOLIYNSTINI] i
[140s084011] HUNIN0I] [9d warl vozi#+ [nar] -
| cocif | cosi |\ josi#| IwAI] cociE# | sozi# NGr| 1d3IN0J | 0051
SINIHIYW
[nar] SSINISNE ~1-99¢
L 005 1 # | TYNOLLYNYFINT AR AL =
[nar]
— 00514 nal N3l | €021 o
[snyi [N | [1d39N0)
[0SV 33S] | [swyal TvyIN79 A0S | [SWANONAS] |1dToN0D] | INFMVA] [13gv] | [ar ssv19]
SOL# FHON] voLH#| FHON] oL 20L# 10L# 129# Z# [01#| aIo
/
" /1 Ol

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 27 of 81 Page ID #:34
U.S. Patent Nov. 21, 2000 Sheet 15 of 17 6,151,604

FIG. 18 rrior a1

(" RECORD #1103
HIML IS A STANDARD FOR HYPERTEXT

J START=1, STOP=5 RECORDID=#1107

RECORD #1107 ==

TITLE: ABOUT HIML
HIML STANDS FOR HYPERTEXT MARKUP LANGUAGE

RECORD #1103
HIML IS A STANDARD FOR HYPERTEXT

START=1, SIOP=5 TERMID=#1207

TERM #1207

LABEL: CELLIDS

~— HIML: #1107:2; #1108:1002;

RECORD #1107

TITLE: ABOUT HIML~=
HIML STANDS FOR HYPERTEXT MARKUP LANGUAGE

RECORD #1108
ANOTHER NOTE ABOUT HIML ==

FIG. 19

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 28 of 81 Page ID #:35

U.S. Patent Nov. 21, 2000 Sheet 16 of 17 6,151,604
FIG. 20aq erior sr FIG. 20b reior s
406 408
/ /
D 0 G Shasta is a Dog
AW \ AN \ \ \ i
1 A - \ 1 1 1 \
400 402 404 410 412 414 406
420
/
FIG. 20c - 408
PRIOR ART
424
L
RECORD RECORD STRUCTURE HIERARCHY |

}

]

i \

!

5 ATIRIBUTEL |ATTRIBUTE) |ATTRIBUTE
| I
|

|

i

:

|

:

{

{

]

}

[1 [[[1 |

FIELD HYPERTEXT
TEXT rerereNcel | ANCHOR GRAPHIC || BUTTON || TEXT
[[

l |/ A L]
438 440 442

{" _________ e 1“"""'\]
i LINE}- 432 LINE}- 434 LINE}- 436 LINE] |
| [] T ! : — |
| !
i PARAGRAPH)- 430 PARAGRAPH |
!

| ' . ' |
| PAGE |
: I ,
| i
| LAYOUT HIERARCHY DOCUMENT] |

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 29 of 81 Page ID #:36

U.S. Patent Nov. 21, 2000 Sheet 17 of 17 6,151,604
KEY PHRASE | SORTED UNDER
100 [
FIG. 22a 1984 1" THEN ‘9’
PRIOR ART 20 2, THEN 0
3 3’
JOHN SHITH %
THE BIG OAK |'T’
KEY PHRASE | SORTED UNDER
3 3
20 20
100 100
1984 1984
THE BIG 0AK | 'B'=BIG
JOHN SMITH /'~JOHN
FIG. 22pb |98 ‘N'=NINETEEN EIGHTY FOUR
THE BIG OAK | ‘O—OAK
100 '0"—ONE HUNDRED
1984 '0’—ONE THOUSAND NINE HUNDRED..,
JOHN SITH 'S SHITH
3 T~ THREE
20 'T—TWENTY
2 T=TWO
FIG. 23
T G IMPORTANT DATES
12/1/94 = DEC 1
MEET WITH JOHN NEXT MONDAY te- 852 %
CHRISTMAS P Loee 30
CALL _TOMORROW JAN 1
LA 1=

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 30 of 81 Page ID #:37

6,151,604

1

METHOD AND APPARATUS FOR
IMPROVED INFORMATION STORAGE AND
RETRIEVAL SYSTEM

This is a continuation of application Ser. No. 08/383,752
filed Mar. 28, 1995 and now U.S. Pat. No. 5,729,730.

RELATED APPLICATIONS

The present application is related to the application
entitled “Method and Apparatus for a Physical Storage
Architecture for a Shared File Environment,” filed Feb. 3,
1995, Ser. No. 08/383,752 now U.S. Pat. No. 5,729,730,
which is herein incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to a method and
apparatus for storing, retrieving, and distributing various
kinds of data, and more particularly, to an improved database
architecture and method for using the same.

2. Art Background

Over the past 30 years, computers have become increas-
ingly important in storing and managing information. Dur-
ing this time, many database products have been developed
to allow users to store and manipulate information and to
search for desired information. The continuing growth of the
information industry creates a demand for more powerful
databases.

The database products have evolved over time. Initially,
databases comprised a simple “flat file” with an associated
index. Application programs, as opposed to the database
program itself, managed the relationships between these
files and a user typically performed queries entirely at the
application program level. The introduction of relational
database systems shifted many tasks from applications pro-
grams to database programs. The currently existing database
management systems comprise two main types, those that
follow the relational model and those that follow the object
oriented model.

The relational model sets out a number of rules and
guidelines for organizing data items, such as data normal-
ization. A relational database management system
(RDBMS) is a system that adheres to these rules. RDBMS
databases require that each data item be uniquely classified
as a particular instance of a ‘relation’. Each set of relations
is stored in a distinct ‘table’. Each row in the table represents
a particular data item, and each column represents an
attribute that is shared over all data items in that table.

The pure relational model places number of restrictions
on data items. For example, each data item cannot have
attributes other than those columns described for the table.
Further, an item cannot point directly to another item.
Instead, ‘primary keys’ (unique identifiers) must be used to
reference other items. Typically, these restrictions cause
RDBMS databases to include a large number of tables that
require a relatively large amount of time to search. Further,
the number of tables occupies a large amount of computer
memory.

The object oriented database model, derived from the
object-oriented programming model, is an alternative to the
relational model. Like the relational model, each data item
must be classified uniquely as belonging to a single class,
which defines its attributes. Key features of the object-
oriented model are: 1) each item has a unique system-
generated object identification number that can be used for

10

15

20

25

30

35

40

45

50

55

60

65

2

exact retrieval; 2) different types of data items can be stored
together; and 3) predefined functions or behavior can be
created and stored with a data item.

Apart from the limitations previously described, both the
relational and object oriented models share important limi-
tations with regard to data structures and searching. Both
models require data to be input according to a defined field
structure and thus do not completely support full text data
entry. Although some databases allow records to include a
text field, such text fields are not easily searched. The
structural requirements of current databases require a pro-
grammer to predefine a structure and subsequent date entry
must conform to that structure. This is inefficient where it is
difficult to determine the structure of the data that will be
entered into a database.

Conversely, word and image processors that allow
unstructured data entry do not provide efficient data retrieval
mechanisms and a separate text retrieval or data manage-
ment tool is required to retrieve data. Thus, the current
information management systems do not provide the capa-
bility of integrating full text or graphics data entry with the
searching mechanisms of a database.

The present invention overcomes the limitations of both
the relational database model and object oriented database
model by providing a database with increased flexibility,
faster search times and smaller memory requirements and
that supports text attributes. Further, the database of the
present invention does not require a programmer to precon-
figure a structure to which a user must adapt data entry.
Many algorithms and techniques are required by applica-
tions that deal with these kinds of information. The present
invention provides for the integration, into a single database
engine, of support for these techniques, and shifts the
programming from the application to the database, as will be
described below. The present invention also provides for the
integration, into a single database, of preexisting source files
developed under various types of application programs such
as other databases, spreadsheets and word processing pro-
grams. In addition, the present invention allows users to
control all of the data that are relevant to them without
sacrificing the security needs of a centralized data repository.

SUMMARY OF THE INVENTION

The present invention improves upon prior art informa-
tion search and retrieval systems by employing a flexible,
self-referential table to store data. The table of the present
invention may store any type of data, both structured and
unstructured, and provides an interface to other application
programs such as word processors that allows for integration
of all the data for such application programs into a single
database. The present invention also supports a variety of
other features including hypertext.

The table of the present invention comprises a plurality of
rows and columns. Each row has an object identification
number (OID) and each column also has an OID. A row
corresponds to a record and a column corresponds to an
attribute such that the intersection of a row and a column
comprises a cell that may contain data for a particular record
related to a particular attribute. A cell may also point to
another record. To enhance searching and to provide for
synchronization between columns, columns are entered as
rows in the table and the record corresponding to a column
contains various information about the column. This renders
the table self referential and provides numerous advantages,
as will be discussed in this Specification.

The present invention includes an index structure to allow
for rapid searches. Text from each cell is stored in a key

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 31 of 81 Page ID #:38

6,151,604

3

word index which itself is stored in the table. The text cells
include pointers to the entries in the key word index and the
key word index contains pointers to the cells. This two way
association provides for extended queries. The invention
further includes weights and filters for such extended que-
ries.

The present invention includes a thesaurus and knowledge
base that enhances indexed searches. The thesaurus is stored
in the table and allows a user to search for synonyms and
concepts and also provides a weighting mechanism to rank
the relevance of retrieved records.

An application support layer includes a word processor, a
password system, hypertext and other functions. The novel
word processor of the present invention is integrated with
the table of the present invention to allow cells to be edited
with the word processor. In addition, the table may be
interfaced with external documents which allows a user to
retrieve data from external documents according to the
enhanced retrieval system of the present invention.

These and numerous other advantages of the present
invention will be apparent from the following description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram illustrating one
possible computer system incorporating the teachings of the
present invention.

FIG. 2 is a block diagram illustrating the main compo-
nents of the present invention.

FIG. 3 illustrates the table structure of the database of the
present invention.

FIG. 4 is a flow chart for a method of computing object
identification numbers (OID’s) that define rows and columns
in the table of FIG. 1.

FIG. § is a part of the table of FIG. 2 illustrating the
column synchronization feature of the present invention.

FIG. 6 is a flow chart for a method of searching the table
of FIG. 2.

FIG. 7a is a flow chart for synchronizing columns of the
table of FIG. 2.

FIG. 7b illustrates the results of column synchronization.

FIG. 8a illustrates a reference within one column to
another column.

FIG. 8b illustrates an alternate embodiment for referring
to another column within a column.

FIG. 9 illustrates a “Record Contents” column of the
present invention that indicates which columns of a particu-
lar record have values.

FIG. 10 illustrates a folder structure that organizes
records. The folder structure is stored within the table of
FIG. 2.

FIG. 11 illustrates the correspondence between cells of
the table of FIG. 2 and a sorted key word index.

FIG. 12 illustrate the “anchors” within a cell that relate a
word in a cell to a key word index record.

FIG. 13 illustrates key word index records stored in the
table of FIG. 2.

FIG. 14 illustrates the relationship between certain data
records and key word index records.

FIG. 15 illustrates the relationship of FIG. 14 in graphical
form.

FIG. 16a illustrates an extended search in graphical form.

FIG. 16b illustrates a further extended search in graphical
form.

10

20

25

30

35

40

45

50

55

60

65

4

FIG. 17 illustrates the thesaurus structure of the present
invention stored in the table of FIG. 2.

FIG. 18 illustrates prior art hypertext.

FIG. 19 illustrates the hypertext features of the present
invention.

FIG. 20a illustrates a character and word box structure of
the word processor of the present invention.

FIG. 20b illustrates the word and horizontal line box
structure of the word processor of the present invention.

FIG. 20c illustrates the vertical box structure of the word
processor of the present invention.

FIG. 21 illustrates the box tree structure of the word
processor of the present invention.

FIG. 22a illustrates the results of a prior art sorting
algorithm.

FIG. 22b illustrates the results of a sorting alogrithm
according to the present invention.

FIG. 23 illustrates the correspondence between cells of
the table of FIG. 2 and a sorted date index.

NOTATION AND NOMENCLATURE

The detailed descriptions which follow are presented
largely in terms of algorithms and symbolic representations
of operations on data bits within a computer memory. These
descriptions and representations are the means used by those
skilled in the data processing arts to most effectively convey
the substance of their work to others skilled in the art.

An algorithm is here, and generally, conceived to be a
self-consistent sequence of steps leading to a desired result.
These steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It proves convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like. It should be borne in mind, however,
that all of these and similar terms are to be associated with
the appropriate physical quantities and are merely conve-
nient labels applied to these quantities.

Further, the manipulations performed are often referred to
in terms, such as adding or comparing, which are commonly
associated with mental operations performed by a human
operator. No such capability of a human operator is
necessary, or desirable in most cases, in any of the opera-
tions described herein which form part of the present inven-
tion; the operations are machine operations. Useful
machines for performing the operations of the present inven-
tion include general purpose digital computers or other
similar digital devices. In all cases there should be borne in
mind the distinction between the method operations in
operating a computer and the method of computation itself.
The present invention relates to method steps for operating
a computer in processing electrical or other (e.g.,
mechanical, chemical) physical signals to generate other
desired physical signals.

The present invention also relates to apparatus for per-
forming these operations. This apparatus may be specially
constructed for the required purposes or it may comprise a
general purpose computer as selectively activated or recon-
figured by a computer program stored in the computer. The
algorithms presented herein are not inherently related to a
particular computer or other apparatus. In particular, various
general purpose machines may be used with programs
written in accordance with the teachings herein, or it may

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 32 of 81 Page ID #:39

6,151,604

5

prove more convenient to construct more specialized appa-
ratus to perform the required method steps. The required
structure for a variety of these machines will appear from the
description given below.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention discloses methods and apparatus
for data storage, manipulation and retrieval. Although the
present invention is described with reference to specific
block diagrams, and table entries, etc., it will be appreciated
by one of ordinary skill in the art that such details are
disclosed simply to provide a more thorough understanding
of the present invention. It will therefore be apparent to one
skilled in the art that the present invention may be practiced
without these specific details.

System Hardware

Referring to FIG. 1, the hardware configuration of the
present invention is conceptually illustrated. FIG. 1 illus-
trates an information storage and retrieval system structured
in accordance with the teachings of the present invention. As
illustrated, the information storage and retrieval system
includes a computer 23 which comprises four major com-
ponents. The first of these is an input/output (I/O) circuit 22,
which is used to communicate information in appropriately
structured form to and from other portions of the computer
23. In addition, computer 20 includes a central processing
unit (CPU) 24 coupled to the I/O circuit 22 and to a memory
26. These elements are those typically found in most com-
puters and, in fact, computer 23 is intended to be represen-
tative of a broad category of data processing devices.

Also shown in FIG. 1 is a keyboard 30 for inputting data
and commands into computer 23 through the I/O circuit 22,
as is well known. Similarly, a CD ROM 34 is coupled to the
1/0 circuit 22 for providing additional programming capac-
ity to the system illustrated in FIG. 1. It will be appreciated
that additional devices may be coupled to the computer 20
for storing data, such as magnetic tape drives, buffer
memory devices, and the like. A device control 36 is coupled
to both the memory 26 and the I/O circuit 22, to permit the
computer 23 to communicate with multi-media system
resources. The device control 36 controls operation of the
multi-media resources to interface the multi-media
resources to the computer 23.

A display monitor 43 is coupled to the computer 20
through the I/O circuit 22. A cursor control device 45
includes switches 47 and 49 for signally the CPU 24 in
accordance with the teachings of the present invention. A
cursor control device 45 (commonly referred to a “mouse”
permits a user to select various command modes, modify
graphic data, and input other data utilizing switches 47 and
49. More particularly, the cursor control device 45 permits
a user to selectively position a cursor 39 at any desired
location on a display screen 37 of the display 43. It will be
appreciated that the cursor control device 45 and the key-
board 30 are examples of a variety of input devices which
may be utilized in accordance with the teachings of the
present invention. Other input devices, including for
example, trackballs, touch screens, data gloves or other
virtual reality devices may also be used in conjunction with
the invention as disclosed herein.

System Architecture

FIG. 2 is a block diagram of the information storage and
retrieval system of the present invention. As illustrated in the

10

15

20

25

30

35

40

45

50

55

60

65

6

Figure, the present invention includes an internal database
52 that further includes a record oriented database 74 and a
free-text database 76. The database 52 may receive data
from a plurality of external sources 50, including word
processing documents 58, spreadsheets 60 and database files
62. As will be described more fully below, the present
invention includes an application support system that inter-
faces the external sources 50 with the database 52.

To efficiently retrieve information stored in the database
52, a plurality of indexes 54 including a keyword index 78
and other types of indexes such as phonetic, special sorting
for other languages, and market specific such as chemical,
legal and medical, store sorted information provided by the
database 52. To organize the information in the indexes 54,
a knowledge system 56 links information existing in the
indexes 54.

The organization illustrated in FIG. 2 is for conceptual
purposes and, in actuality, the database 52, the indexes 54
and the knowledge system 56 are stored in the same table,
as will be described more fully below. This Specification
will first describe the structure and features of the database
52. Next, the Specification will describe the index 54 and its
implementation for searching the database 52. The Specifi-
cation will then describe the knowledge system 56 that
further enhances the index 54 by providing synonyms and
other elements. Finally, the Specification will describe an
interface between the external application programs 50 and
the database 52, including a novel structured word processor
and a novel password scheme.

FIG. 3 illustrates the storage and retrieval structure of the
present invention. The storage and retrieval structure of the
present invention comprises a table 100. The structure of the
table 100 is a logical structure and not necessarily a physical
structure. Thus, the memories 26 and 32 configured accord-
ing to the teachings of the present invention need not store
the table 100 contiguously.

The table 100 further comprises a plurality of rows 110
and a plurality of columns 120. A row corresponds to a
record while a column corresponds to an attribute of a record
and the defining characteristics of the column are stored in
arow 108. The intersection of a row and a column comprises
a particular cell.

Each row is assigned a unique object identification num-
ber (OID) stored in column 120 and each column also is
assigned a unique OID, indicated in brackets and stored in
row 108. For example, row 110 has an OID equal to 1100
while the column 122 has an OID equal to 101. As will be
described more fully below, the OID’s for both rows and
columns may be used as pointers and a cell 134 may store
an OID. The method for assigning the OID’s will also be
discussed below.

As illustrated in FIG. 3, each row, corresponding to a
record, may include information in each column. However,
a row need not, and generally will not, have data stored in
every column. For example, row 110 corresponds to a
company as shown in a cell 130. Since companies do not
have titles, cell 132 is unused.

The type of information associated with a column is
known as a ‘domain’. Standard domains supported in most
database systems include text, number, date, and Boolean.
The present invention includes other types of domains such
as the OID domain that points to a row or column. The
present invention further supports ‘user-defined’ domains,
whereby all the behavior of the domain can be determined
by a user or programmer. For example, a user may configure
a domain to include writing to and reading from a storage
medium and handling operations such as equality testing and
comparisons.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 33 of 81 Page ID #:40

6,151,604

7

According to the present invention, individual cells may
be accessed according to their row and column OID’s. Using
the cell as the unit of storage improves many standard data
management operations that previously required the entire
object or record. Such operations include versioning,
security, hierarchical storage management, appending to
remote partitions, printing, and other operations.

Column Definitions

Each column has an associated column definition, which
determines the properties of the column, such as the domain
of the column, the name of the column, whether the column
is required and other properties that may relate to a column.
The table 100 supports columns that include unstructured,
free text data.

The column definition is stored as a record in the table 100
of FIG. 3. For example, the “Employed By” column 126 has
a corresponding row 136. The addition or rows that corre-
spond to columns renders the table 100 self-referential. New
columns may be easily appended to the table 100 by creating
a new column definition record. The new column is then
immediately available for use in existing records.

Dates

Dates can be specified numerically and textually. An
example of a numerical date is “11/6/67” and an example of
a textual date is “November 6, 1967.” Textual entries are
converted to dates using standard algorithms and lookup
tables. A date value can store both original text and the
associated date to which the text is converted, which allows
the date value to be displayed in the format in which it was
originally entered.

Numbers

Numeric values are classified as either a whole number
(Integer) or fractional number. In the preferred embodiment,
Integers are stored as variable length structures, which can
represent arbitrarily large numbers. All data structures and
indexes use this format which ensures that there are no limits
in the system.

Fractional numbers are represented by a <numerator/
denominator> pair of variable length integers. As with dates,
a numeric value can store both the original text (“4%
inches”) and the associated number (4.5). This allows the
numeric value to be redisplayed in the format in which it was
originally entered.

Type Definitions

A record can be associated with a ‘record type’. The
record type can be used simply as a category, but also can
be used to determine the behavior of records. For example,
the record type might specify certain columns that are
required by all records of that type and, as with columns, the
type definitions are stored as records in the table 100. In FIG.
3, column 122 includes the type definition for each record.
The column 122 stores pointers to rows defining a particular
column type. For example, the row 136 is a “Field” type
column and contains a pointer in a cell 133 to a row 135 that
defines “Field” type columns. The “Type Column” 122 of
the row 135 points to a type called “Type,” which is defined
in a row 140. “Type” has a type column that points to itself.

Record types, as defined by their corresponding rows,
may constrain the values that a record of that type may
contain. For example, the record type ‘Person’ may require
that records of type ‘Person” have a valid value in the ‘Name’

10

15

20

25

30

35

40

45

50

55

60

65

8

column, the ‘Phone’ column, and any other columns. The
type of a record is an attribute of the record and thus may
change at any time.

Creating a Unique OID

As previously described, the system must generate a
unique OID when columns and rows are formed. FIG. 4 is
a flow chart of the method for assigning OID’s.

At block 200 of FIG. 4, the CPU 24 running the database
program stored in the memory 26 requests a timestamp from
the operating system. At block 210, the system determines
whether the received timestamp is identical to a previous
timestamp. If the timestamps are identical, block 210
branches to block 220 and a tiebreaker is incremented to
resolve the conflict between the identical timestamps. At
block 222, the system determines whether the tiebreaker has
reached its limit, and, if so, the system branches to block 200
to retrieve a new time stamp. Otherwise, the system
branches to block 214 where the system requests a session
identification which is unique to the user session.

In the preferred embodiment, the session identification is
derived from the unique serial number of the application
installed on the users machine. For certain OID’s which are
independent of any particular machine, the session identi-
fication may be used to determine the type of object. For
example, dates are independent of any particular machine,
and so an OID for a date may have a fixed session identi-
fication.

Returning to block 210, if the timestamps are not
identical, control passes to block 212 where the tiebreaker is
set to zero and control then passes to block 214. As previ-
ously described, at block 214, the system requests a session
identification which is unique to the user session. Control
then passes to block 216 where the session identification,
timestamp and tiebreaker are combined into a bit array,
which becomes the OID. Since the OID is a variable length
structure, any number of bits may be used, depending on the
precision required, the resolution of the operating system
clock, and the number of users. In the preferred
embodiment, the OID is 64 bits long where the timestamp
comprises the first 32 bits, the tiebreaker comprises the next
10 bits and the session identification comprises 22 bits.

The particular type of OID and its length is constant
throughout a single database but may vary between data-
bases. A flag indicating which type of OID to be used may
be embedded in the header of each database.

OD Domains

OID domains are used to store OID’s, which are pointers
to other records. An efficient query can use these OID’s to
go directly to another record, rather than searching through
columns.

If a user wishes to search a column to find a record or
records with a certain item in the column, and does not know
the OID of the item, the present invention includes a novel
technique for determining an OID from the textual descrip-
tion. Conversion from text to an OID may also be necessary
when a user is entering information into a record. For
exmaple, in FIG. 3, the user may be entering information in
the “Employed By” column 126, and wish to specify the text
“DEXIS” and have it converted to OID #1100. For this
purpose, special columns are required that provide a defi-
nition for how the search and conversion is performed.

FIG. 6 is a flow chart for searching the table 100 config-
ured according to the structure illustrated in FIG. 5. At block

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 34 of 81 Page ID #:41

6,151,604

9

150, a user enters text through the keyboard 30 or mouse 45
for a particular column that the user wishes to search. At
block 152, the system retrieves the search path for the
column to be searched from the information stored in
column 146 as illustrated in FIG. 5. Continuing with the
above example, a cell 146 in the row 136 contains the search
path information for the “Employed By” column 126 of FIG.
3. The search path information for the “Employed By” field
indicates that the folders called “\contacts” and “‘\depart-
ments” should be searched for a company with the dabel
“DEXIS.”

Returning to FIG. 5, the system searches the table 100
according to the retrieved search path information. For each
folder specified in the search path, the routine searches for
a record that has an entry in the label column 124 of FIG. 2
that is the same as the text being searched for, and is of the
same class, as indicated in column 122 of FIG. 3. Folders
will be further described below.

At block 156, the system determines whether it has found
any items matching the user’s search text. If no items have
been found, at block 158, the system prompts the user on the
display screen 37 to create a new record. If the user wishes
to create a new record, control passes to block 162 and the
system creates a new record. At block 164, the OID of the
new record is returned. If the user does not wish to create a
new record, a “NIL” string is returned, as shown at block
160.

If the system has located at least one item, the system
determines whether it has found more than one item, as
illustrated in block 166. If only one item has been located,
its OID is returned at block 168. If more than one item has
been located, the system displays the list of items to the user
at block 170 and the user selects a record from the list. At
block 172, the OID of the selected record is returned, which,
in the above example, is #1100, the OID of the record for the
company “DEXIS.”

In alternate embodiments, various features may be added
to the search mechanism as described with reference to FIG.
6. For example, further restrictions may be added to the
search; the search may be related by allowing prefix match-
ing or fuzzy matching instead of strict matching; and the
search may be widened by using the ‘associative search’
techniques described below.

Two Way Synchronized Links

Records may have interrelationships and it is often desir-
able to maintain consistency between interrelated records.
For example, a record including data for a company may
include information regard employees of that company, as
illustrated in row 110 of FIG. 3. Similarly, the employees
that work for that company may have a record that indicates,
by a pointer, their employer, as illustrated by row 138 of
FIG. 3. Thus, the employee column of a company should
point to employees whose employer column points to that
company. The present invention includes a synchronization
technique to ensure that whenever interrelated records are
added or removed, the interrelationships between the col-
umns are properly updated.

The system synchronizes interrelated records by adding a
“Synchronize With” column 144 to the table 100 as illus-
trated in FIG. 5. Since the value in the columns defines the
relatedness between records, the rows 136 and 139 corre-
sponding to columns contain information within the “Syn-
chronize With” column 144 that indicates which other
columns are to be synchronized with the columns corre-
sponding to rows 136 and 139. With reference to FIG. 5, the

10

15

20

25

30

35

40

45

50

55

60

65

10

“Employed By” column 126 is synchronized with the
“Employees™ column by an OID pointer in the “Synchronize
With” column 144 to the “Employees™ column, represented
by row 139. Similarly, the “Employees™” column is synchro-
nized with the “Employed By” column 136 by a pointer in
the “Synchronize With” column 144 to the “Employed by”
column 134, represented by row 136. Thus, whenever an
employee changes companies, such that the employee’s
“Employed By” column changes, the “Employee” column
of the previous employer is updated to eliminate the pointer
to the ex-employee and, correspondingly, the addition of the
employee in the “Employed By” field of the new employer.
Synchronization may need to occur whenever a column is
changed, whether by addition or subtraction of a reference
to another column, or when entire records are added or
eliminated from the table 100.

FIG. 7a is a flow chart for synchronizing records when a
user adds or deletes a record. At block 180, the system
makes a backup of the original list of references to other
rows, which are simply the OID’s of those other rows, so
that it can later determine which OIDS have been added or
removed. Only these changes need to be synchronized. At
block 182, the system generates a new list of references by
adding or deleting the specified OID. At block 184, the
system determines whether the relevant column is synchro-
nized with another column. If it is not, then the system
branches to block 186 and the update is complete. If the
column is synchronized with another column, the system
determines whether it is already in a synchronization rou-
tine. If this were not done, the routine would get into an
endless recursive loop. If the system is already in a syn-
chronization routine, the system branches to 190 and the
update is complete.

Otherwise, the system performs actual synchronization.
At block 192, the system finds an OID that has been added
or subtracted from the column (C1) of the record (R1) being
altered. The system retrieves the record (R2) corresponding
to the added or subtracted OID at block 194. The system
determines the synchronization column (C2) of the column
(C1) at block 196 and locates that field in the added or
subtracted OID. For example, if an employer is fired from a
job, and the employer’s “Employed By” field changed
accordingly, the system would look up the value of the
“Synchronize With” column 144 for the “Employees™ col-
umn which is contained in the cell 147 as illustrated in FIG.
5. Since cell 147 points to the “Employed By” field, the
system locates the “Employed By” field of the record for the
fired employee. At block 198 of FIG. 7a, the located cell,
(R2:C2), is updated by adding or subtracting the OID.
Continuing with the above example, the “Employed By”
field of the employee would be changed to no longer point
to the previous employer by simply removing the employ-
er’s OID from that field. The system branches back to block
192 to update any other OID additions or subtractions. If the
system has processed all of the OID’s, then the routine exits
as illustrated at blocks 200 and 202.

FIG. 7b illustrates the results of column synchronization
of the “Employed By” field and the “Employees” field. As
shown, the pointers in the records of these two columns are
consistent with one another.

Columns Within Columns

A column may contain within it a reference to another
column in the same record. For example, a ‘name’ column
may contain a reference to both a ‘first name’ and a ‘last
name’ column. The value of the ‘name’ column can then be

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 35 of 81 Page ID #:42

6,151,604

11

reconstructed from the values of the other two columns.
FIGS. 8a and 8b illustrate two possible implementations for
reconstructing a value from one or more columns within the
same record.

FIG. 8a illustrates a table 210 that includes a “First
Name” column 220, a “Last Name” column 222 and a
“Name” column 224. A record 226 for “John Smith” has the
first name “John” in the “First Name” column 220 and the
last name “Smith” in the column 222. The name field 224
returns the text “The name is John Smith” by referencing the
fields in brackets, according to the format <fieldRef field=
‘Column Name’> as shown in column 224.

FIG. 8b employs a variant of the referencing scheme
illustrated in FIG. 8a. FIG. 8a illustrates a table 230 that
includes a “First Name” column 232, a “Last Name” column
234 and a “Name” column 236. A record 238 for “John
Smith” has the first name “John” in the “First Name” column
232 and the last name “Smith” in the column 234. The name
field 236 returns the text “The name is John Smith” by
referencing the fields by defined variables ‘fn’ and ‘In’ as
shown in column 236. The variables are defined according
to the format variable :=fieldAt (parameter, ‘Column
Name’) and the variables may be referenced in a return
statement as shown in column 236.

Record Contents

As previously described, a given row may contain values
for any column. However, to determine all of the columns
that might be used by a record would involve scanning every
possible column. To avoid this problem, in the preferred
embodiment, the table 100 illustrated in FIG. 3 includes a
“RecordContents” column that indicates those columns
within which a particular record has stored values.

FIG. 9 illustrates the table 100 with a “RecordContents”
column 127 that includes pointers to the columns containing
values for a particular record. For example, the “Record-
Contents” column 127 for row 110 has pointers to the
column 124 and a column 125 but does not have a pointer
to the column 126 because the row 110 does not have a value
for the column 126. As previously described, since every
column has a corresponding row that defines the column, the
“RecordContents” column 127 has a defining row 129. Like
any cell, the cell containing the record contents can be
versioned, providing the ability to do record versioning.

Folders

To provide increased efficiency in managing information,
the table 100 includes a data type defined as a folder. FIG.
10 illustrates the structure of a folder. As illustrated in the
Figure, the table 100 includes a “Parent Folder” column 240
and a “Folder Children” column 242. A folder has a corre-
sponding record. For example, a folder entitled “Contacts”
has a corresponding row 244 as illustrated in FIG. 10. The
“Folder Children” column 242 of the “Contacts” folder
includes pointers to those records that belong to the folder.
Similarly, those records that belong to a folder include a
pointer to that folder in the “Parent Folder” column 240.

The folder structure illustrated in FIG. 10 facilitates
searching. As previously described, a column may be
searched according to a folder specified in the column
definition. If a folder is searched, the system accesses the
record corresponding to the folder and then searches all of
the records pointed to by that folder.

Further, the synchronization feature described above may
be used to generate the list of items in a folder. For example,

10

15

20

25

30

35

40

45

50

55

60

65

12

in FIG. 10, the ‘Folder Parent’ and ‘Folder Children’ col-
umns may be synchronized. When the ‘Folder Parent’ field
240 for record 138 is set to reference the ‘Contacts’ folder
represented by row 244, the list of items in the ‘Contacts’
folder (‘FolderChildren’) is automatically updated to store a
reciprocal reference to record represented by row 138 by
including its OID, 1100, in the “Folder Children™ column
242.

Text Indexing System

The present invention includes an indexing system that
provides for rapid searching of text included in any cell in
the table 100. Each key phrase is extracted from a cell and
stored in a list format according to a predefined hierarchy.
For example, the list may be alphabetized, providing for
very rapid searching of a particular name.

FIG. 11 illustrates the extraction of text from the table 100
to a list 250. The list 250 is shown separately from the table
100 for purposes of illustration but, in the preferred
embodiment, the list 250 comprises part of the table 100.
The list 250 stores cell identification numbers for each word
in the list where a cell identification number may be of the
format <record OID, column OID>. For example, the word
“Ventura” occurs in cells 252, 254 and 256 that correspond
to different rows and different columns. The word “Ventura”
in the list 250 contains a pointer, or cell identification
number, to cells 252, 254 and 256.

Similarly, each cell stores the references to the key
phrases within it using ‘anchors’. As illustrated in FIG. 12,
an anchor contains a location (such as the start and stop
offset within the text), and an identification number. Both the
text and the anchor are stored in the cell 252. Other kinds of
domains also support anchors. For example, graphical
images support the notion of ‘hot spots” where the anchor
position is a point on the image.

As previously described, each key phrase is stored as a
record in the database and the OID of the record equals the
identification number described with reference to FIG. 12.
One column stores the name of the key phrase and another
stores the list of cell identification numbers that include that
phrase. Key phrases may have comments of their own,
which may also be indexed.

The sorted list 250 as illustrated in FIG. 11 is stored as a
Folder, as illustrated in FIG. 13. A cell identification field
274 maintains the cells that include the term corresponding
to that record. The “Parent Folder” column 240 for each of
the terms on the list 250 indicates that the parent folder is an
index with a title “Natural.” The “Natural” folder has a row
276 that has pointers in the “Folder Children” column 242
to all of the terms in the list 250.

The “Natural” folder corresponds to an index sorted by a
specific type of algorithm. Computer programs generally
sort using a standard collating sequence such as ASCII. The
present invention provides an improvement over this type of
sorting and the improved sorting technique corresponds to
the “Natural” folder. Records in the “Natural” folder are
sorted according to the following rules:

1) Akey phrase may occur at more than one point in the list.

In particular:

1a) Key phrases may be permuted and stored under each

permutation. For example: ‘John Smith’ can be stored
under ‘John’ and also under ‘Smith’. Noise words such
as ‘a’ and ‘the’ are ignored in the permutation.

1b) Key phrases which are numeric or date oriented may

be stored under each possible location. For example:
‘1984’ can be stored under the digit ‘1984° and also
under ‘One thousand, nine hundred . . .”, and ‘nineteen
eighty four’.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 36 of 81 Page ID #:43

6,151,604

13

2) Numbers are sorted naturally. For example, ‘20’ comes
after ‘3’ and before ‘100°.

3) Prefixes in key phrases are ignored. For example, ‘The
Big Oak’ is sorted under ‘Big’.

4) Key phrases are stemmed, so that ‘Computers’ and
‘Computing’ map to the identical key phrase record.
The preferred embodiment of the routine for generating

positions for entering the key phrases into the ‘Natural’

folder is as follows:

1) Capitalize the key phrase to avoid case sensitivity prob-
lems. For example: ‘John Smith the 1st’ becomes ‘JOHN
SMITH THE 1ST".

2) Each word in the key phrases is stemmed using standard
techniques. Eg “COMPUTERS” becomes “COMPUT”.

3) Permute the key phrase. This results in a new set of
multiple key phrases based on the original key phrase. For
example ‘JOHN SMITH THE 1ST’ produces the set
{*JOHN SMITH THE 1ST’; ‘SMITH THE 1ST JOHN’;
‘THE 1ST JOHN SMITH’; ‘1ST JOHN SMITH THE’}.

4) Noise prefixes are eliminated. In the example above, the
third entry, ‘THE 1ST JOHN SMITH’, is eliminated. If no
phrases are left after elimination, the original phrase is
used. For example, an entry for ‘TO BE OR NOT TO BE”
would be preserved even if all noise words were elimi-
nated.

5) For each result, numbers and dates are expanded to all
possible text representations, and text representations are
converted to numeric. For example: ‘1ST JOHN SMITH
THE’ generates the set: {*1ST JOHN SMITH THE’;
‘FIRST JOHN SMITH THE’}

6) Finally, each modified key phrase is used to determine the
position of a reference to the main key phrase record, and
an entry is made in the folder accordingly. For example,
‘1ST JOHN SMITH THE’ is stored between ‘1’ and ‘2,
while ‘FIRST JOHN SMIT THE’ is stored after ‘FIR’ and
before ‘FIS.

FIG. 22a illustrates the results of a prior art sorting
algorithm while FIG. 22b illustrates the results of a sorting
alogrithm according to the present invention.

Extracting the Key Phrases

To generate a sorted list, the system must first extract the
key phrases or words from the applicable cells. The com-
bination of structured information and text allows various
combinations of key phrase extraction to be used. In full text
extraction, every word is indexed, which is typical for
standard text retrieval systems. In column extraction, the
whole contents of the column are indexed which corre-
sponds to a standard database system. According to a third
type of extraction, automatic analysis, the contents of the
text are analyzed and key phrases are extracted based on
matching phrases, semantic context, and other factors.
Finally, in manual selection extraction, the user or applica-
tion explicitly marks the key phrase for indexing.

Date Indexing System

The date indexing scheme is very similar to the text
indexing scheme as previously described. Important dates
are extracted from the text and added to an ‘Important Date’
list. Each important date is represented by a ‘Important Date’
record. The ‘Important Date’ records are stored in a ‘Impor-
tant Dates’ folder, which is sorted by date.

The important dates are extracted from the text. The
system may search for numeric dates, such as ‘4/5/94° or
date-oriented text, such as “Tomorrow”, “next Tuesday” or
“Christmas”. FIG. 23 illustrates the correspondence between
cells of the table of FIG. 2 and a sorted date index.

10

15

20

25

30

35

40

45

50

55

60

65

14

Important Date records are assigned special predeter-
mined OIDS since they always have the same identity in any
system. Assigning predetermined OID’s to dates allows
Important Dates to be shared across systems. The predeter-
mined OID is generated by using a special session identi-
fication number that signifies that the OID is an Important
Date. In this case, the timestamp represents the value of the
Important Date itself, not the time that it was created.

Associative Queries

As previously described, a sorted key word list is gener-
ated from the text in cells and list stored in a folder whose
records point to the text cells. The associations between the
list of records with text and the list of key phrases is two-way
since the cells that include text point to the key words. FIG.
14 illustrates this two way correspondence. Each record can
point to multiple key phrases, and each key phrase can point
to multiple records.

FIG. 15 is a graphical representation of the two way
association between records and the key word list. Each
record in a plurality of records 298 through 300 may point
to one or more important word entries 310 through 312.
Similarly, each important word entry may point to one or
more records. A single level search involves starting at one
node (on either side of the graph) and following the links to
the other side. For example, a user may wish to find the
records including the word “Shasta.” First, the important
word index would be accessed to find the word “Shasta” and
the records pointed to by this word would then be retrieved.
This search is indicated by the arrows 314 and 316 where
word “Shasta” corresponds to cell 318. Similarly, a user may
wish to locate all of the important words included in a
particular record, indicated by the arrows 320 and 322 in
FIG. 15.

The search can be extended by repeatedly following the
links back and forth to the desired level. FIG. 16a illustrates
this concept. As an example, the term “Shasta” may corre-
spond to a dog with extraordinary intelligence such that in
one record, “Shasta” is described as a dog and another
record, ‘Shasta’ is described as a genius. If the user wishes
to find the words associated with ‘Shasta’, the system locates
“Shasta” in the “Important Words” folder which points to the
records including the word “Shasta.” In turn, the records
pointed to contain pointers to the “Important Words™ list for
each indexed word in the record. Since “Shasta” appears
with “dog” and “genius” in the records, these words are
retrieved by the system.

This type of searching may be extended indefinitely. FIG.
16b illustrates an additional level of searching. Continuing
with the above example, the word “genius” may occur in
records referring to Dirac, and the word “dog™ associated
with “Checkers,” such that the multilevel search illustrated
in FIG. 16b results in a retrieval of “Dirac” and “Checkers”
when provided with the word “Shasta.”

A relevance ranking can be created based on weights
associated with each link and type of key word, and the
records can be displayed in order of descending relevance.
In the preferred embodiment, if two or more nodes are used
as the starting point, the relevance is based on the distance
from all nodes. In this way, only nodes which are near all the
initial nodes will have a high relevance. Many other rel-
evance rankings apart from distance may be used.

To refine the search, filters can be used to constrain the
links that are followed. For example, the search may be
filtered such that only the type “Person” is listed such that,
in the above example, Shasta will be associated with Dirac
but not Checkers.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 37 of 81 Page ID #:44

6,151,604

15
Knowledge Base and Thesaurus

The present invention includes a knowledge base and
thesaurus to further improve searching capabilities.

Each important word record (term) included within the
thesaurus contains a pointer to a ‘concept’ record. Each
concept record contains pointers to other concept records,
and to the terms that are included within the bounds of that
concept. FIG. 17 illustrates the structure of the thesaurus.
The table 100 includes a “Parent Concept” column 352, a
“Concept Name™ column 354, a “Synonyms” column 356, a
“More Specific Terms” column 358, a “More General
Terms” column 360 and a “See Also” column 362. A concept
record 350 defines the concept “IBM” and the Synonyms
column 356 points to records that are synonymous with
IBM, a record 364 with a label field with the value “IBM”
and a record 366 with a label field with the value “Interna-
tional Business Machines.” The records 364 and 366 have
pointers in the “parent concept” field that point to the parent
concept record 350.

The thesaurus structure illustrated in FIG. 17 provides for
greater flexibility than exact synonyms. The “More Specific
Terms” column 358 of the concept record 350 associated
with “IBM” points to a concept record 368 associated with
the IBM PC with an assigned weight of 100%, where the
weight percentage reflects the similarity between the initial
term “IBM” and the related term “IBM PC.” Similarly, the
“More General Terms” column 360 of the concept record
350 associated with “IBM” points to a concept record 372
associated with Computer Companies with an assigned
weight of 60%. The “See also” column points to a record
associated with the concept “Microsoft” with a weight of
70%, where the weight percentage reflects the similarity
between the initial term “IBM” and the related term “IBM
pPC”

The Thesaurus illustrated in FIG. 17 enhances the search-
ing mechanisms previously described with reference to
FIGS. 14-16b. The system first locates the record associated
with a key word and locates the parent concept record
pointed to by the key word record. The system may then
follow some or all of the pointers in the columns 356, 358,
360 and 352 and return of the OID’s stored in the ‘Concept
Name’ column 354.

Since key phrases and concepts are stored as records in
this system, any other columns may be used to extend the
knowledge and information stored therein. In particular,
through the use of OID’s, the system can store any kind of
relationship, including relationsihps other than thesaural
relationships, between key phrases, concepts and other
records.

Application Support

The database of the present invention has been described
without reference to its interface with applications that may
use the invention as their primary storage and retrieval
system. As previously described with reference to FIG. 2,
the present database includes an interface to support appli-
cations programs. Components in the application support
system include external document support, hypertext, docu-
ment management and workflow, calendaring and
scheduling, security and other features.

Further, the present invention includes various user inter-
face components that allow have been developed to provide
full access to the structure of the database of the present
invention. In particular, a new kind of structured word
processor will be presented. The Specification will describe
each component of the application support system sepa-
rately.

10

15

20

25

30

35

40

45

50

55

60

65

16
External Documents

The present invention supports indexing of external docu-
ments. The table 100 stores the filenames of documents,
such as word processor documents, where the contents of the
files are not directly stored in the database. The documents
names may be stored in a column with a specialized “Exter-
nal Document” domain. The external documents may reside
in the mass memory 32 or on a multi-source that interfaces
with the system through device control 36.

To index documents external to the table 100, prior to
processing, an external document is converted into a plain
text format. Key phrases are then extracted as previously
described. In particular, fields in the text can be determined
and mapped to fields within the database. For example, a
‘Memo’ document may contain the text: ‘To: John Smith.
From: Mary Doe’. This text can be mapped to the fields
called ‘to’ and ‘from’, and the values of these fields set
accordingly. The analysis of the text in this way can be
changed for different types of external documents such as
memos, legal documents, spread sheets, computer source
code and any other type of document. For each extracted key
phrase, a start and stop point within the text is determined.
A list of anchors of the format previously described, <start,
stop, key phrase> is generated by the parser and stored
within the table 100 under the external document domain.

Viewing External Documents

When a user views an external document on the display
screen 37, the stored anchors are overlaid on top of the
document such that it appears that the external document has
been marked with hypertext. When the user clicks the
switches 45 or 47 of the mouse 50 on a section of the
external document display, the corresponding anchor is
determined from the various start and stop coordinates. The
OID of the key phrase corresponding to the anchor is stored
within the anchor, and can be used for the purposes of
retrieving the key phrase record or initiating a query as
previously described.

Dynamic Hypertext

The present invention supports Hypertext. Hypertext sys-
tems typically associate a region of text with a pointer to
another record, as illustrated in FIG. 18. This creates a
‘hard-coded’ link between the source and the target. When
s user clicks on the source region, the target record is loaded
and displayed. If the target record is absent, the hypertext
jump will fail, possibly with serious consequences.

The present system uses a new approach based on a
dynamic association between records. In the preferred
embodiment, each hypertext region is associated with a key
phrase, not a normal record. When the user clicks the
switches 45 or 47 of the mouse 50 on the source region, all
the records associated with the key phrase are retrieved and
ranked using any of the associative search techniques pre-
viously described. As illustrated in FIG. 19, the application
can then display on the display screen 37 either the highest
ranked item, or present all the retrieved items and allow the
user to pick the one to access.

In certain applications, the user may want to access a
single ‘default’ item. This item can be determined
automatically, by picking the item at the top of the dynami-
cally generated list, or manually, by letting the user pick the
item explicitly and then preserving this choice in the anchor
itself.

The Generic Word Processor

The database of the present invention includes a novel
Structured Word Processor that may be used in conjunction
with the table 100.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 38 of 81 Page ID #:45

6,151,604

17

The structured word processor of the present invention
uses the “boxes and glue” paradigm introduced by Donald
Knuth in Tz X. According to this paradigm, a page of text is
created by starting with individual characters and concat-
enating the characters to form larger units, called “boxes,”
and then combining these boxes into yet larger boxes. FIG.
20a illustrates three character boxes 400, 402 and 404
concatenated to form a word box 406. FIG. 205 illustrates
four word boxes 410, 412, 414 and the word box 406
combined to form a horizontal line box 408. Horizontal
boxes are used for words and other text tokens that are
spaced horizontally inside another box, such as a line (or
column width). FIG. 20c illustrates the combination of the
horizontal line box 408 with another horizontal line box
4242 to form a vertical box 420. Vertical boxes are used for
paragraphs and other objects that are spaced vertically inside
other boxes, such as page height.

Boxes may be attached to other boxes with “glue.” The
glue can stretch or shrink, as needed. For example, in a
justified sentence, the white space between words is
stretched to force the words to line up at the right edge of the
column. Glue can be used for between-character (horizontal)
spacing, between-word (horizontal) spacing including “tab”
glue, that “sticks” to tab markings. Glue may also be used
for between-line (vertical) spacing and between-paragraph
(vertical) spacing.

When a record of the table 100 is edited, each word and
field definition is converted into boxes. The system orga-
nizes these boxes into a tree structure of line boxes and
paragraph boxes, as illustrated in FIG. 21. Shown there is a
record hierarchy 460, corresponding to the hierarchy of a
record, and a layout hierarchy 470, corresponding to the
hierarchy of a layout such as a document generated accord-
ing to the word processor described with reference to FIGS.
20a-20c. The record structure hierarchy 460 represents the
record structure of the table 100 where a record 462 corre-
sponds to a row in the table 100 and the record 462 includes
a plurality of attributes, including attribute 464, that corre-
spond to the columns of the table 100. In turn, the attributes
may include a variety of items. For example, the attribute
464 includes text, represented by block 466, field references
represented by block 468 and other items as shown.

The layout hierarchy 470 comprises a document 472
which in turn comprises a plurality of pages, including page
474. The page 474 comprises a plurality of paragraphs
including paragraphs 430 and 431 and the paragraph 430
comprises a plurality of lines, including lines 432 and 434.
The paragraph 431 includes line 436.

The word processor of the present invention allows the
document 472 to be inserted into the record 462 by provid-
ing a plurality of boxes, including boxes 438, 440 and 442,
common to both the record structure hierarchy 460 and the
layout hierarchy 470. For example, the box 438 corresponds
to part of the line 432 and comprises part of the text of
attribute 464 as illustrated by block 466. Similarly, the box
440 corresponds to part of the line 434 and may comprise a
field reference as indicated by block 468. Thus, the shared
box structure as illustrated in FIG. 21 allows any type of
word processing document to interface with any record in
the table 100.

Conceptually, each box is kept as a bitmap, and its height
and width are known, so the system displays the tree
structure 450 by displaying all of the bitmaps corresponding
to the boxes in the tree. If the tree is changed, for example,
by adding a new word, only the new word box and a
relatively small number of adjacent boxes need be recalcu-

10

15

20

25

30

35

45

50

55

60

65

18

lated. Similarly, line breaks or restructuring of a paragraph
does not alter most of the word boxes, which may be reused,
and only the lineboxes need be recalculated.

To edit the tree structure 450 as illustrated in FIG. 21, a
user may click a cursor on a part of the text. The system
locates the word box or glue that is being edited by a
recursively descending through the tree structure 450.

The word processor supports multiple fonts and special
effects such as subscripts, dropcaps and other features
including graphic objects. A word in a different font than a
base font is in a different box and may have a different height
from other boxes on a line. The height of a linebox the height
of the largest wordbox within it. Effects within a word can
be handled by breaking a word into subboxes with no glue
between them. Again, the height of a wordbox is the height
of the largest box within it. Graphic objects, such as bitmaps,
may be treated and formatted as a fixed width box.

The word processor of the present invention may be used
to edit records in the table 100. The text associated with each
field in a record can be considered a “paragraph” for the
purposes of inter-field spacing, text flow within a field, and
other formatting parameters. Storing all the fields in the
same way during text-editing allows the movement of text
and “flow” to appear natural.

As previously described, the text being edited is divided
into fields, with each field corresponding to a column in the
underlying database. Unlike a traditional static data entry
form, the positions and sizes of the attributes are not fixed
but are dynamic and all the features of a word-processor
such as fonts and embedded graphics are available to edit the
record fields.

Similarly, all of the features of a database such as lookups
and mailmerge are available to the word processor. All of the
attributes that apply to data entry for a particular field are
enforced by the word processor. Such attributes might
include a mask (such as ##H#-##i##), existence requirements,
range and value constraints, etc. The fields can be explicitly
labelled, or hidden and implied.

The word processor of the present invention allows exist-
ing fields to be added by typing the prefix of a field name and
pressing a button. The system then completes the rest of the
field name automatically.

The word processor of the present invention supports
other database features. For example, new fields can be
created by a user by using a popup dialog box. Similarly,
references to other records or important words can be added
by a dialog box. With particular regard to the table 100 of the
present invention, OID references may support fields within
other fields and a particular field within other fields supports
the use of ‘templates,” where a template is a list of field
references embedded in text. For example, the template
“Enter the first name here <fieldref id =firstName> and the
last name here <fieldref id=lastName>" would appear to the
user as “Enter the first name here: John and the last name
here: Doe.” Templates allow a user to build dynamic forms
quickly and easily without having to use complicated form
drawing tools.

The user interface for the word processor of the present
invention allows a user to switch between two modes of data
entry. The word-processor of the present invention is used
for flexible entry into one record at a time, while a columnar
view is used for entering data in columns. The user can
switch back and forth between these two views with no loss
of data and switching from the word processor to the
columnar view will cause the fields that were entered in the
single item to become the columns to be displayed in the
columnar view.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 39 of 81 Page ID #:46

6,151,604

19

Finally, the ‘fields within fields’ that are apparent in the
word processor view become separated into columns in a
columnar view. The user can then make changes in columnar
mode, and then, when switching back to the word processor
view, the columns become combined once again.

Passwords

It is often required that access to particular data items be
restricted to certain users. In order to apply these
restrictions, an information management system must deter-
mine the identity of the user requesting access. This is
currently done in two ways, physically measuring a unique
quality of the uses of requesting information from the user,
most current information management systems rely on the
second approach, by using ‘passwords’. However, to avoid
security problems with a password system, three guidelines
are applied to passwords:

a) the password should not be made of common words,
because an aggressor can use a brute force approach
and a dictionary to guess the password;

b) the password should be longer rather than shorter; and

¢) the password should be changed often, so that even if
is stolen it will not be valid for long.

Finally, a password should never be written down or embed-
ded into a login script and should always be interactive.

According to the present password system, a user’s iden-
tity is determined through an extensive question and answer
session. The responses to certain personal questions very
quickly identify the user with high accuracy. Even an
accurate mimic will eventually fail to answer correctly if the
question and answer session is prolonged.

For example, sample questions might be: ‘What is your
favorite breakfast cereal?’; ‘Where were you in April 19907°
‘What color is your toothbrush?’. These questions are wide
ranging and hard to mimic. Furthermore, the correct
responses are natural English sentences, with an extremely
large solution space, so that a brute force approach is
unlikely to be successful.

To improve the effectiveness of the response, an exact
matching of user response and stored answer is not required
and ‘fuzzy’ and ‘associative’ matching can be used accord-
ing to the synonym, thesaurus and other features of the
present invention.

According to the password system of the present
invention, the user creates the list of questions and corre-
sponding answers, which are then stored. Because the user
has complete control over the questions, the user may find
the process of creating the questions and answers enjoyable,
and as a result, change the questions and answer list more
frequently, further enhancing system security.

According to the preferred embodiment, a user creates a
list of 50-100 questions and answers that are encrypted and
stored. The questions can be entirely new, or can be based
on a large database of interesting questions. When the user
logs on the system, the system randomly selects one of the
questions related to that user and presents the question to the
user. The user then types in a response, which is matched
against the correct answer. The matching can be fuzzy and
associative, as described above. If the response matches
correctly, access is allowed.

In an alternate embodiment, more security may be pro-
vided by repeatedly asking questions until a certain risk
threshold is reached. For example, if the answer to ‘What
color is your toothbrush?’ is the single word ‘Red’, then
brute force guessing may be effective in this one case. In this
scenario, repeatedly asking questions will diminish the
probability of brute force success.

10

25

30

35

40

45

50

55

60

65

20

Summary

While the invention has been described in conjunction
with the preferred embodiment, it is evident that numerous
alternatives, modifications, variations and uses will be
apparent to those skilled in the art in light of the foregoing
description. Many other adaptations of the present invention
are possible.

We claim:
1. A data storage and retrieval system for a computer
memory, comprising:

means for configuring said memory according to a logical

table, said logical table including:

a plurality of logical rows, each said logical row having
an object identification number (OID) to identify
each said logical row, each said logical row corre-
sponding to a record of information;

a plurality of logical columns intersecting said plurality
of logical rows to define a plurality of logical cells,
each said logical column having an OID to identify
each said logical column; and wherein

at least one of said logical rows has an OID equal to the
OID of a corresponding one of said logical columns,
and at least one of said logical rows includes logical
column information defining each of said logical
columns.

2. The system of claim 1 wherein said logical column
information defines one of said logical columns to contain
information for enabling determination of OIDs from text
entry.

3. The system of claim 1 wherein said one of said logical
columns contains information including a search path that
references a folder, said folder including a group of logical
rows of a similar type.

4. The system of claim 1 wherein:

said logical column information defines one of said logi-
cal columns to contain information for synchronizing
two logical columns reciprocally.

5. The system of claim 4 wherein said one of said logical
columns contains information including reciprocal pointers
to said two logical columns.

6. The system of claim 1 wherein:

at least one of said plurality of logical rows includes
information defining the type of a different logical row;
and

at least one of said plurality of logical rows includes a
logical cell that contains a pointer to said logical row
including logical row type information.

7. The system of claim 1 wherein at least one of said
logical columns defines logical cells that include a plurality
of pointers to other logical columns within the same record,
said pointers indicating those logical columns within the
same record that contain defined values.

8. The system of claim 1 wherein at least one of said
logical rows is a folder type logical row, said folder type
logical row including at least one logical cell that contains
data and a plurality of pointers to a plurality of other logical
rows included within said folder.

9. The system of claim 8 wherein said plurality of other
logical rows included within said folder each includes a
logical cell that contains a pointer to said folder type logical
[OW.

10. The system of claim 1 wherein said OID’s are variable
length and include data related to a session identification
number and a timestamp.

Case 2:12-cv-07360-JAK-MRW Document 1

Filed 08/27/12 Page 40 of 81 Page ID #:47

6,151,604

21

11. A data storage and retrieval system for a computer
memory, comprising:

means for configuring said memory according to a logical

table, said logical table including:

a plurality of logical rows, each said logical row
including an object identification number (OID) to
identify each said logical row, each said logical row
corresponding to a record of information;

a plurality of logical columns intersecting said plurality
of logical rows to define a plurality of logical cells,
each said logical column including an OID to iden-
tify each said logical column; and wherein

at least one of said plurality of logical rows contains a
logical cell that contains a pointer to a different
logical row and at least one of said plurality of
logical rows includes information defining the type
of a different logical row; and

means for searching said table for said pointer.

12. A data storage and retrieval system for a computer
memory, comprising:

means for configuring said memory according to a logical

table, said logical table including:

a plurality of logical rows, each said logical row
including an object identification number (OID) to
identify each said logical row, each said logical row
corresponding to a record of information;

a plurality of logical columns intersecting said plurality
of logical rows to define a plurality of logical cells,
each said logical column including an OID to iden-
tify each said logical column; and wherein

at least one of said logical rows contains a logical cell
that contains a pointer to a different logical row and
at least one of said logical rows includes logical
column information defining each of said logical
columns; and

means for searching said table for said pointer.

13. The system of claim 12 wherein at least one of said
logical columns defines logical cells that include a plurality
of pointers to other logical columns within the same record,
said pointers indicating those logical columns within the
same record that contain defined values.

14. The system of claim 12 wherein at least one of said
logical rows is a folder type logical row, said folder type
logical row including at least one logical cell that contains
data and a plurality of pointers to a plurality of other logical
rows included within said folder.

15. The system of claim 14 wherein said plurality of other
logical rows included within said folder each includes a
logical cell that contains a pointer to said folder type logical
[OW.

16. A data storage and retrieval system for a computer
memory, comprising:

means for configuring said memory according to a logical

table, said logical table including:

a plurality of logical rows, each said logical row
including an object identification number (OID) to
identify each said logical row, each said logical row
corresponding to a record of information; and

a plurality of logical columns intersecting said plurality
of logical rows to define a plurality of logical cells,
each said logical column including an OID to iden-
tify each said logical column, wherein said OID’s are
variable length.

17. A data storage and retrieval system for a computer
memory, comprising:

means for configuring said memory according to a logical

table, said logical table including:

22

a plurality of logical rows, each said logical row
including an object identification number (OID) to
identify each said logical row, each said logical row
corresponding to a record of information;

5 a plurality of logical columns intersecting said plurality
of logical rows to define a plurality of logical cells,
each said logical column including an OID to iden-
tify each said logical column; and

means for indexing data stored in said table.

18. The system of claim 17 wherein said means for
indexing further comprises:

means for searching a plurality of logical cells within said

table for a key word, said means capable of searching

a logical column containing unstructured text and a

logical column containing structured data; and

means for inserting a logical row corresponding to said

key word into said table.

19. The system of claim 18 wherein:

said inserted logical row includes a logical cell that

contains a pointer to a searched logical cell that con-

tains the keyword corresponding to said inserted logical
row; and

said searched logical cell that contains a keyword corre-

sponding to said inserted logical row contains a pointer

to said inserted logical row.

20. The system of claim 19 wherein said pointer to said
searched logical cell includes the OID’s of the logical
column and logical row defining said searched logical cell.

21. The system of claim 19 wherein said searched logical
cell includes an anchor that marks said key word.

22. The system of claim 17 wherein one of said plurality
of logical rows of said table includes a folder type logical
row that includes at least one pointer to said key word.

23. The system of claim 18 wherein said searching means
further includes:

means for searching for every word in a text logical cell;

means for searching for every entry in a logical column;

means for searching for data based on automatic analysis;
and

means for searching for data marked by a user.

24. A data storage and retrieval system for a computer
memory, comprising:

means for configuring said memory according to a logical

table, said logical table including:

a plurality of logical rows, each said logical row
including an object identification number (OID) to
identify each said logical row, each said logical row
corresponding to a record of information;

a plurality of logical columns intersecting said plurality
of logical rows to define a plurality of logical cells,
each said logical column including an OID to iden-
tify each said logical column; and wherein

at least one of said logical cells includes a pointer to an
index record; and

means for indexing data stored in said table.

25. The system of claim 24 wherein said indexing means
further comprises:

means for searching said table for a key word; and

means for creating an index record for said key word, said

index record including one or more pointers to a logical
cell in said table that contains said key word.

26. The system of claim 25 further including querying
65 means, said querying means further including:

means for locating said index record according to the

query of a user;

10

20

25

30

35

40

50

55

60

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 41 of 81 Page ID #:48

6,151,604

23

means for retrieving at least one logical cell in said table

pointed to by said located index record.

27. The system of claim 26 wherein said index locating
means includes means for locating said index record pointed
to by said at least one retrieved logical cell.

28. The system of claim 27 wherein said index locating
means and said record retrieval means each includes weigh-
ing means for weighing key words and retrieved logical cells
according to pre-defined search criteria.

29. The system of claim 27 wherein said index locating
means and said record retrieval means each includes filtering
means for filtering key words and retrieved logical cells
according to pre-defined search criteria.

30. The system of claim 25 wherein said indexing means
further includes means for indexing external documents.

31. A method for storing and retrieving data in a computer
memory, comprising the steps of:

configuring said memory according to a logical table, said

logical table including:

a plurality of logical rows, each said logical row
including an object identification number (OID) to
identify each said logical row, each said logical row
corresponding to a record of information;

a plurality of logical columns intersecting said plurality
of logical rows to define a plurality of logical cells,
each said logical column including an OID to iden-
tify each said logical column; and wherein

at least one of said logical rows has an OID equal to the
OID to a corresponding one of said logical columns,
and at least one of said logical rows includes logical
column information defining each of said logical
columns.

32. The method of claim 31 wherein said logical column
information defines one of said logical columns to contain
information for enabling determination of OIDs from text
entry.

33. The method of claim 31 wherein one of said logical
columns contains information including a search path that
references a folder, said folder including a group of logical
rows of a similar type.

34. The method of claim 31 wherein:

said logical column information defines one of said logi-

cal columns to contain information for synchronizing

two logical columns reciprocally.

35. The method of claim 34 wherein said one of said
logical columns contains information including reciprocal
pointers to said two logical columns.

36. The method of claim 31 wherein:

at least one of said plurality of logical rows includes

information defining the type of a different logical row;

and

at least one of said plurality of logical rows includes a

logical cell that contains a pointer to said logical row

including logical row type information.

37. The method of claim 31 wherein at least one of said
logical columns defines logical cells that include a plurality
of pointers to other logical columns within the same record,
said pointers indicating those logical columns within the
same record that contain defined values.

38. The method of claim 37 wherein at least one of said
logical rows is a folder type logical row, said folder type
logical row including at least one logical cell that contains
data and a plurality of pointers to a plurality of other logical
rows included within said folder.

39. The method of claim 38 wherein said plurality of other
logical rows included within said folder each includes a
logical cell that contains a pointer to said folder type logical
[OW.

5

10

15

20

25

30

35

45

50

55

60

65

24

40. The method of claim 31 wherein said OID’s are
variable length and include data related to a session identi-
fication number and a timestamp.

41. A method for storing and retrieving data in a computer
memory, comprising the steps of:

configuring said memory according to a logical table, said
logical table including:

a plurality of logical rows, each said logical row
including an object identification number (OID) to
identify each said logical row, each said logical row
corresponding to a record of information;

a plurality of logical columns intersecting said plurality
of logical rows to define a plurality of logical cells,
each said logical column including an OID to iden-
tify each said logical column; and wherein

at least one of said logical rows contains a logical cell
that contains a pointer to a different logical row and
at least one of said plurality of logical rows includes
information defining the type of a different logical
row; and

means for searching said table for said pointer.
42. A method for storing and retrieving data in a computer
memory, comprising the steps of:

configuring said memory according to a logical table, said
logical table including:

a plurality of logical rows, each said logical row
including an object identification number (OID) to
identify each said logical row, each said logical row
corresponding to a record of information;

a plurality of logical columns intersecting said plurality
of logical rows to define a plurality of logical cells,
each said logical column including an OID to iden-
tify each said logical column; and wherein

at least one of said logical rows contains a logical cell
that contains a pointer to a different logical row and
at least one of said logical rows includes logical
column information defining each of said logical
column; and

searching said table for said pointer.

43. The method of claim 42 wherein at least one of said
logical columns defines logical cells that include a plurality
of pointers to other logical columns within the same record,
said pointers indicating those logical columns within the
same record that contain defined values.

44. The method of claim 42 wherein at least one of said
logical rows is a folder type logical row, said folder type
logical row including at least one logical cell that contains
data and a plurality of pointers to a plurality of other logical
rows included within said folder.

45. The method of claim 44 wherein said plurality of other
logical rows included within said folder each includes a
logical cell that contains a pointer to said folder type logical
[OW.

46. A method for storing and retrieving data in a computer
memory, comprising the steps of:

configuring said memory according to a logical table, said
logical table including:

a plurality of logical rows, each said logical row
including an object identification number (OID) to
identify each said logical row, each said logical row
corresponding to a record of information; and

a plurality of logical columns intersecting said plurality
of logical rows to define a plurality of logical cells,
each said logical column including an OID to iden-
tify each said logical column, wherein said OID’s are
variable length.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 42 of 81 Page ID #:49

6,151,604

25

47. A method for storing and retrieving data in a computer
memory, comprising the steps of:

configuring said memory according to a logical table, said
logical table including:

a plurality of logical rows, each said logical row
including an object identification number (OID) to
identify each said logical row, each said logical row
corresponding to a record of information;

a plurality of logical columns intersecting said plurality
of logical rows to define a plurality of logical cells,
each said logical column including an OID to iden-
tify each said logical column; and

indexing data stored in said table.
48. The method of claim 47 wherein said step of indexing
data further comprises the steps of:

searching a plurality of logical cells within said table for
a key word, said searching element capable of search-
ing a logical column containing unstructured text and a
logical column containing structured data; and

inserting a logical row corresponding to said key words
into said table.
49. The method of claim 48 wherein:

said inserted logical row includes a logical cell that
contains a pointer to a searched logical cell that con-
tains the keyword corresponding to said inserted logical
row; and

said searched logical cell that contains a keyword corre-

sponding to said inserted logical row contains a pointer
to said inserted logical row.

50. The method of claim 49 wherein said pointer to said
searched logical cell includes the OID’s of the logical
column and logical row defining said searched logical cell.

51. The method of claim 49 wherein said searched logical
cell includes an anchor that marks said key word.

52. The method of claim 48 wherein one of said plurality
of logical rows of said table includes a folder type logical
row that includes at least one pointer to said key word.

53. The method of claim 48 wherein said step of searching
a plurality of cells within said table for a key word further
comprises the steps of:

searching for every word in a text logical cell;

searching for every entry in a logical column;

searching for data based on automatic analysis; and

searching for data marked by a user.

10

20

25

30

35

40

45

26

54. A method for storing and retrieving data in a computer
memory, comprising the steps of:
configuring said memory according to a logical table, said
logical table including:

a plurality of logical rows, each said logical row
including an object identification number (OID) to
identify each said logical row, each said logical row
corresponding to a record of information;

a plurality of logical columns intersecting said plurality
of logical rows to define a plurality of logical cells,
each said logical column including an OID to iden-
tify each said logical column; and wherein

at least one of said logical cells includes a pointer to an
index record; and

indexing data stored in said table.
55. The method of claim 54 wherein said step of indexing
data further comprises the steps of:
searching said table for a key word; and
creating an index record for said key word, said index
record having one or more pointers to a logical cell in
said table that contains said key word.
56. The method of claim 55 further comprising the steps
of:

locating said index record according to the query of a
user;
retrieving at least one logical cell in said table pointed to
by said located index record.
57. The method of claim 56 wherein said step of locating
said index record further comprises:
locating said index record pointed to by said at least one
retrieved logical cell.
58. The method of claim 57 wherein said step of locating
said index record further comprises:
weighing key words and retrieved logical cells according
to pre-defined search criteria.
59. The method of claim 57 wherein said step of locating
said index record further comprises:
filtering key words and retrieved logical cells according to
pre-defined search criteria.
60. The method of claim 54 wherein said step of indexing
data further comprises the step of:

indexing external documents.

#* #* #* #* #*

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 43 of 81 Page ID #:50

EXHIBIT B

e A e SRR AL AU ARCSEREAT>*

US006163775A
United States Patent [(1] Patent Number: 6,163,775
Wlaschin et al. 451 Date of Patent: *Dec. 19, 2000
[54] METHOD AND APPARATUS CONFIGURED 5,375,237 12/1994 Tamaka et al.c.cccoeeeceneunenene 395/650
ACCORDING TO A LOGICAL TABLE 5,421,012 5/1995 Khoyi et al. ...oovviiiiiiiiinne 395/650
HAVING CELL AND ATTRIBUTES 5,459,860 10/1995 Burnett et al.ccocevvveveereennne 707/100
5,537,501 /1996 OKA wooveoovoeeeeeeeeomeeersesers e 707/100
CONTAINING ADDRESS SEGMENTS 5,537,633 7/1996 Suzuki et al. ...c.cccoeeveececnennne 707/100
[75] Inventors: Scott Wlaschin; Robert M. Gordon, 2’223’%5 g/ 1996 Li €tal. oo 395/148
: ; 557, /1996 Shin et al. .vveeeeeeererreeeeeeserrnne 707/3
both of Los Angeles; Louise J. 5.560.005 9/1996 HoOVEr et al. w.oovoooerrsroovrorsrne 70773
Wannier, La Canada, all of Calif.; Clay 5,564,046 1071996 Nemoto et al. wooeeeoorevevveererrreeseen 70711
Gordon, New York, N.Y. 5,729,730 3/1998 Wlaschin et al.cccocevvverrrenne 707/3
[73] Assignee: Enfish, Inc., Pasadena, Calif. Primary Examiner—Thomas G. Black
Assistant Examiner—Frantz Coby
[*] Notice: This patent is subject to a terminal dis- Anorney, Agent, or Firm—Morrison & Foerster, LLP
claimer. [57] ABSTRACT
[21] Appl. No.: 09/035,187 The information management and database system of the
) present invention comprises a flexible, self-referential table
[22] Filed: Mar. 5, 1998 that stores data. The table of the present invention may store
L any type of data, both structured and unstructured, and
Related U.S. Application Data provides an interface to other application programs. The
o o table of the present invention comprises a plurality of rows
[63] g;’tntglgag(%gg‘;%phcamn No. 08/383,752, Mar. 28, 1995, and columns. Each row has an object identification number
T T (OID) and each column also has an OID. A row corresponds
[51] Int. CL7 oo GO6F 17/30 to a record and a column corresponds to a field such that the
[52] US.CL ... 707/3; 707/1; 707/4; 707/100 intersection of a row and a column comprises a cell that may
[58] Field of Searchcoovvennenn 707/3,4,1,100 contain data for a particular record related to a particular
field, a cell may also point to another record. To enhance
[56] References Cited searching and to provide for synchronization between
columns, columns are entered as rows in the table and the
U.S. PATENT DOCUMENTS record corresponding to a column contains various informa-
5,201,046 4/1993 Goldberg et al. oooovovvvvvverrrrreern. 707/1 tion about the column. The table includes an index structure
5,295,256 3/1994 Bapat 707/500 for extended queries.
5,305,380 4/1994 PalMer ..ovveoecovooovveeeeeeeeerreeeree 382/1
5,359,724 10/1994 Earle ...cccoevevivererenrereererenennns 395/425 60 Claims, 17 Drawing Sheets
120 122 130 124 134 126 132 100
/] |/ I /
108~ TYPE [#1012] ADDRESS EMPLOYED BY | [TITILE AUTHOR
OBJECT I [# 101] LABFL [#1013] [#1019] [#1033] [#1032]
110 #1020 117 EAST
~ #noo [COMPANY] DEXIS COLORADO I N/A N/A
138 #1010 scorr #1100
~ #nol [PERSON] WLASCHIN [DEXTS] N/A /A
#1030
#1118 [BOOK] #1122
#1050
#1122 [uEwo] #1122
#1060 C:\WORD\ PROJECT
#1271 roocumen] PROJ.DOC PLAN #1101
136 # 210 EMPLOYED
~ #00 [FIELD] By
135 # 111
~ # 210 ITvPe] } COLUMN
140 # 111
~ # 111 [vPE] IYPE
I

133

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 45 of 81 Page ID #:52

U.S. Patent Dec. 19, 2000 Sheet 1 of 17 6,163,775
S
d
A [
S
N
V-
§ N
3
’ 0
T~ - O
X S S S
D = = S
= Q3 &= = \
. & & > X S
=20 = - X]| S A
O NS © S v W S
I~ & =) = &) §
Ll\ Y NS E]
~
S <
! \ T 7| ¢
~ N N N M

J
255

f
7

|
(]
S ——
&

57—

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 46 of 81 Page ID #:53

6,163,775

Sheet 2 of 17

Dec. 19, 2000

U.S. Patent

-7/
ISvaviva R

[108 =374 | %
-89
199
T~79
SIS ISvavivg L
ISvavIva a9

~o/ GUNIIHO N=py

INITHOITY
SIIHSAIHSS (N
SININNIOG

INISSID04d G4OM | T=85
S ™ ™ ™
J90TMONY 95 SIXFONI PG ISVAVIVO TONYIINT 2 TNSTLXT 05

c Ol

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 47 of 81 Page ID #:54

6,163,775

Sheet 3 of 17

Dec. 19, 2000

U.S. Patent

£

T \ \\.WMEM HEE on

NHN100 \ \\wwﬁ 01z # fgp

00 \Q&w@\ 6L0IF o5
| e i g |
zzf Lonsn] 2zl
21t biooe] 81114

& N \%mmm\ s \%w&w\ it r~gpy

o o \ i B I N P

|]| S| s |z | [aoee
/ [_ / [/ [
001 751 § o ol 08 7z oz

¢ Ol

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 48 of 81 Page ID #:55

6,163,775

Sheet 4 of 17

Dec. 19, 2000

U.S. Patent

@x\% 118 3K z%t@/m 17

!

AVYHY 118 V OINI
NV NOISS3S INIGW0D

YINVIHEILL ONY IWVISINIT ~q; 7

ON

¢
LIATT
AFHIVIY HIAVIHETLL
SVH

YIMYIHEILL INIWIHONT

[

0ce

a7 NOISS3S HIIFH

vic

0437 01 ¥INFSEILL 135 7,7

¢
d3HIL 35

JHL dWVISINII
SI

dWVISINIL HOLF4

ar 193rg0 31v340

dWVIS JNIL 1SYT SV IS

00c

v Ol

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 49 of 81 Page ID #:56

6,163,775

Sheet 5 of 17

Dec. 19, 2000

U.S. Patent

adnd

q/ Ol
vy [S1x3a] 00114 || 4FINNVM 3SINOT | 204 1#
v [Six3a] 001143 | NIHOSYIM 11005 | 10414 ey
[YTINNYM FSINOT] 20114 “[NIHOSYIM 1100S] 101 1# 7 SIX3a | 00114
[SIU0TaNT] £2014 | [48 GUOTMI] 61014 [¢ | a0 | O
X./N 991 ~
[Ag aU0TNI] 6101# NOSY3d [43a704 1008]\ SIUOTINT | £201#)
[STU0TINT] £201# ANVINOO (430704 100Y]\ | A8 GOTMNT | 61014 ~g
[HIIM IZINOYHINAS] zzz# | [FdAL 0L 10141S3] czz# | [Hivd Howv3s] 1zz# | [13avifziol# | a11o3rgo 7!
. G 9l

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 50 of 81 Page ID #:57

U.S. Patent Dec. 19, 2000 Sheet 6 of 17 6,163,775
INPUT TEXT |} 150
FETCH ‘SEARCH PATH’ AND
RELATED OPTIONS FROM — 152
ASSOCIATED COLUMN DEFINITION
SEARCH FOLDERS FTC.. FOR | _ 454
RECORD MATCHING SPECIFIED TEXT
158 160

ASK USER:

CREATE A NEW RECORD
?l

NO ITEMS FOUND RETURN NIL
?

164

1) FETCH DEFAULT CREATION

MORE

THAN ONE ITEMS
FOUND
?

162~

COLUMN DEFINITION
2) CREATE RECORD WITH
THESE VALUES

VALUES FROM ASSOCIATED

RETURN 0ID
OF NEW
RECORD

YES PRESENT LIST TO USER

|AND ASK USER TO PICK ONE

RETURN 0ID
OF SELECTED
RECORD

\
170

172

RETURN 0ID
OF FOUND
RECORD

168

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 51 of 81 Page ID #:58

U.S. Patent Dec. 19, 2000

Sheet 7 of 17

6,163,775

ADD AN 0ID T0 THIS CELL

REMOVE AN OID FROM THIS CELL

™~ e

MAKE A BACKUP OF THE ORIGINAL LIST OF 0IDS

L~ 180

]

CHANGE THE LIST TO THE A NEW LIST
AS REQUIRED BY THE ADD OR DELETE ACTION

L~ 182

184

Is

THIS FIELD (F1)

SYNCHRONIZED WITH ANOTHER

FIELD (F2)
?

188

ARE

WE ALREADY

INSIDE A ACTIVE SYNCHRONIZATION

PROCESS
?

C DETERMINE THE LIST OF

OIDS THAT HAS CHANGED COMPARED
T0 THE ORIGINAL LIST.
FOR EACH OID (02) IN THIS LIST..

FIND THE RECORD (R2)
CORRESPONDING T0 THE 0ID (02).

1

FIND THE CELL CORRESPONDING T0 THE
RECORD RZ AND SYNCHRONIZATION FIELD F2.

!

ADD OR REMOVE THE CURRENT
0ID (01) FROM THE R2:F2 CELL

!

w 0IDS PROCESSED

L~ 198

200

(upoare comprere }-202

|~ 194

186
/

UPDATE C OMPL@

190
/

UPDATE COMPLE a

192

FIG. 7a

|_— 7196

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 52 of 81 Page ID #:59

6,163,775

Sheet 8§ of 17

Dec. 19, 2000

U.S. Patent

05 =]

NIHOSYIH r5¢
VNN A= |
NOINA NIHISYIM 11095 |81
17SNNS)
P 09310 NVS AV NOINA $09% INIAYT NHOP
09710 NVS . S ——
o STIFINY SOT | aA78 VIRINTA Z5+0) HLINS NHOr
AW - NI 1S NIVW 00! 300 AW
NIVH ' .
S3199MY So7| | 962 INIAYT |'0AT8 GOOMATION #1%1 300 NHOr
e STV SOT | 0AT8 L3NS 0S#Z1 | VeInINGT TIvHOIN [~ zc7
aoom wmm\ ALID SSIYaay TN
SOYOM INVISOIHT \ \ \
097 857 A
(u+ uf + ST INVN FHL.) N3Ny
(GWYN ISVT 477S) +V Q1911 = Y/
(GWW 1SY[4 413S) +V G317 = U HLINS NHOr [Ngez
I NN LSYT | IV 1Sy14
/ / /
057 9z oA AV
TN 1SV,
= (13[4 474 G174 X NN ISYIS
= Q7311 434 G7314 ST IWWN FH! HL IS NHOr [N-9z7
TN I 1Syl | I 1Sy
/ / / /
017 A 1A A

Ll Ol
98 Ol4
by 9O/

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 53 of 81 Page ID #:60

6,163,775

Sheet 9 of 17

Dec. 19, 2000

U.S. Patent

001"

VA, 9z! Gzl $7) A
[INIWHOI] # “[yoHINY] Zcoi 71111] €501
1430704 INFSVL] 105 Tl 101 138v] 2 7 W PO6I| NOO08 |81 11#
| %
UOTNI] 6101 [INTWWOI] # [FIVIS] G101
Tura] vior [ssiyaav] sio1 Iw] 2101
1430704 INFSV] 105 Tk 10t [138vT] 2 0001# | §FUSTHD N £4/ |NIHOSYIM 11095 NOS¥Id | 10114651
[INIWWOO] # [INOHA] /101
L3vis] sior {1l #101 Jss3daav] €101
SSINISNE 40 FdhL] £201 LANVaW0I] 220!
1530704 INFSVL] 108 Fdi 101 139vT] 4 w 1 oav0100 7 Z14 SIXIA| ANVIN0D | 001 1 4| 041
_ SININO? [
\ v Wy G¥003Y| N0 ¢ 084 [62!
[SINTINGD G40074] |V[4g aF40Tan3] | [ssayaav] [13av] | [F441] g
1084 6101# CI01# #l 1oig |l aio[0¢!

35N NI NANT09 \
SINIINOIGHOIFY

N0 SINIINOOGYH0JFY 4O+ NOILINIAIT l\

6 9Ol

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 54 of 81 Page ID #:61

6,163,775

Sheet 10 of 17

Dec. 19, 2000

U.S. Patent

193180 430704
vV 40 JINAlyiLy

NY SV ISn NI
NISTTIHINITTO4 7 0%
\ / /
\ 213 [HIINNVM FSIN0T] 2011 L
INIHOSYIM 1109S] 1011 [six3al 0oi1 7 SIOVINOD | §7a704 | oL0if | THPC
[S1oviNoD] |
v 0L01# | NIHOSYIM 1100S| NOSY¥3d | 10114 | 851
[S1ovinod]
7 0/01# SIX3A | ANVIHOD 0011 #
7 W | NIYTTIHINITTOS ariLs 0Cs#
7 W | §30704 INFSVd | § ODILS [OS#
[INFHATIHINITT04] | [430704 INTSVA] [13gv1] | | [Faud]
0ZSH# JOS# ZE | 101 | anodrgo
SNANT0O GALYIFY 30704 YOS SNOLLINIZIO l\

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 55 of 81 Page ID #:62

6,163,775

Sheet 11 of 17

Dec. 19, 2000

U.S. Patent

001 =

ve 0¥ p/7 A (Y24
/ / / / /
[0S IH 10214 9021 # N 7 WonIw | §30704 0£9#
W | TN A\XIONI\ | 2101101 1# NIHISY M WYL 10SI# i
W vnIYWA\XIONI\ | 2001 vZ1Z# VYNINA eI BT E 3 P B Dy e
W | VNN \XTONI\ | 20013114 NOINN W43 9021 # vy
[NF¥aTIHD 430704] | [¥30704 INFSY] | [sar 1179] [138v1] [GdAl]
0Zs# LO5# 0294 ¥ 1014 aro
p# = (I WYIL ‘S1 = dJOIS ‘6 = 1VIS
_o 40y U9 g J 2D YOI W NN Q\I..\
252 -7
Sl vl £ ZI 11 0l 6 8 /9SFE

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 56 of 81 Page ID #:63

6,163,775

Sheet 12 of 17

Dec. 19, 2000

U.S. Patent

28 0z¢
oir cie 008
yip 8IE
-,] .
<= Gl Ol
O
- 1]
0lf \OZ/m%
THOM INVIHOIWT SaH093Y
([1X15344H] 90Z1# ‘c8-p2)
W]l zozi# 6~1)
AL 2ANE 3 NIH WYFL | L0Z1# b SYOHINY
2004421 1 | IXTLYTAH WL | 9021 # XIS IdAH ' | 7/
Y01 GHVONVIS V ST TWIH JION| #Ci1#
[sar 1179] [139vi] [ar ssvio]
0294 # [01#] aIo [3ion] \[ar ssv19]
2001 # 101 # aio

/&)

ID #:64

ge 57 of 81 Page

Filed 08/27/12 Pa

K-MRW Document 1

v-07360-JA

6,163,775

13 of 17

Sheet

Dec. 19, 2000

U.S. Patent

¢ = HIdId " | = Hid30
I

[
ST S SIS NS N 2N
-l R A S

(SGHOM INVIHOGNT) @%&% (SQ¥OM INVINOINI) (S04093) (Sa¥OM INVISOSNT)
S1INSTY FIVIGINYTINI FIVIGINGIFINT FIVIGINETINT 1IS
gl 94
(STHOM INVIHOINI) (Sa40974) (SOHOM INVISOINT)
SLINSFY IIVIGINYTINI 19VIS

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 58 of 81 Page ID #:65

6,163,775

Sheet 14 of 17

Dec. 19, 2000

U.S. Patent

29¢ 09¢ foloy 96¢ pGE 268 24 i e |
/ / / / / / / / /
%001 =1HILIM STINYINOD
Twarl oosi# INGN0I | 1dIINOI | 05!
%0/ =IHIIIM
Twar] oos1# 1H0S04IIN | 1dFINOD | Z05]
%05=1HTM M -
Inai] oosi# Jd WEI| IdFONOJ| 1051 4=
[SINTHOWA e
%09=1H9IIM SSINISNE 05t
%0/ =1HIIIM [STINVINOD || 2001 =1HIIIM | TYNOLIYNYIINT] |
1140S049I0] S3LNdn0I] [0 waI] vozZI 4 [war] =
| oriF I cosi#F |\ t0ci# W8I Sozi# | cozi# War| 1439809 | 0051
SINIHOVW
[war] SSINISNE - 990
0051 # | TYNOLLYNSIINT WYL | $OZ | 4o
[nai]
— 00514 Hal WL | £02 1= Yo
[swy3t [Fnww | [1d3oN0D
[os1v 33S] | [swyal TvyINT9 IA03dS | [SHANONAST | 1dToN0a] | INF¥Vd] [138v1] | [ar ssv19]
SOL# FHOW] vOL# | FNOW] soLF Z0L# 10/ 1294 s [0I#] a0
/
/1 Ol

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 59 of 81 Page ID #:66

U.S. Patent Dec. 19, 2000 Sheet 15 of 17 6,163,775

FIG. 18 prior aer

(RECORD #1103
HIML IS A STANDARD FOR HYPERTEXT

J START=1, STOP=5 RECORDID=#1107

RECORD #1107 ==-

TITLE: ABOUT HIML
HIML _STANDS FOR HYPERTEXT MARKUP LANGUAGE

.
-
RECORD #1103
HIML IS A STANDARD FOR HYPERTEXT
START=1, STOP=5 TERMID=#1207
TERM #1207
(ABEL: CELLIDS
4 —= HIML: #1107:2: #1108:1002:

RECORD #1107

TITLE: ABOUT HIML ==
HIML STANDS FOR HYPERTEXT MARKUP [ANGUAGE

RECORD #1108
ANOTHER NOTE ABOUT HIMI ==

FIG. 19

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 60 of 81 Page ID #:67

U.S. Patent Dec. 19, 2000 Sheet 16 of 17 6,163,775
FIG. 20q erioe 4 FIG. 20Db erior a1
406 408
/ /
D G Shasta /s a Dog
I\ A\ \ \ 3 3, \
1 1 \ 1 1 \ \
400 402 404 410 412 414 406
420
/
FIG. 20c - 408
PRIOR ART
424
| RECORD RECORD STRUCTURE HIERARCHY |
\ |ATIRIBUTE] |ATTRIBUTE| |ATIRIBUTE |
: x §
b I | | I | !
| FIELD | \HYPERTEXT |
| TEXT | | mertrencel ivege. || 6rRapHIC || sutron || Text |
[- ?
| — |
OSSN uuoures PRI RSN NN FUNSN SN S VU SN — B
gox| | Box| | Box| | Box| | Box] | Box] [sox] [Box) [Box] [Box] [Box
A |/ |/ L
95 0 ac =
LINE}- 432 LINE} 434 LNE-436 [une] |
i [] [] !
| | !
i PARAGRAPH | 430 PARAGRAPH |
5 I !
| l I !
! PAGE !
| I |
| LAYOUT HIERARCHY DOCUMENT] |

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 61 of 81 Page ID #:68

U.S. Patent Dec. 19, 2000 Sheet 17 of 17 6,163,775

KEY PHRASE SORTED UNDER
100 ‘7’

/L‘ /G 2 20 1984 '‘1', THEN ‘9’

PRIOR ART 20 2, THEN 0’
3 3
JOHN SMITH v
THE BIG OAK | T’

KEY PHRASE | SORTED UNDER
3 3
20 20
100 100
1984 1984
THE BIG OAK | B'~BIG
JOHN SITH /"_JOHN
FIG. 22pb [ies N'-NINETEEN EIGHTY FOUR
THE BIG 0AK | 0'~0AK
100 0"-ONE HUNDRED
1984 '0'—ONE THOUSAND NINE HUNDRED..
JOHN SHITH ‘S SHITH
J T~ THREE
20 T—TWENTY
2 TTHO
FIG. 23
T T IMPORTANT DATES
12/1/94 = DEC 1
MEET WITH JOHN NEXT MONDAY ggg §§
CHRISTMAS == ! DEC 30
CALL TOMORROW SN T
SN [~

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 62 of 81 Page ID #:69

6,163,775

1

METHOD AND APPARATUS CONFIGURED
ACCORDING TO A LOGICAL TABLE
HAVING CELL AND ATTRIBUTES
CONTAINING ADDRESS SEGMENTS

RELATED APPLICATIONS

This is a continuation of application Ser. No. 08/383,752,
filed Mar. 28, 1995, now U.S. Pat. No. 5,729,730, issued
Mar. 17, 1998.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to a method and
apparatus for storing, retrieving, and distributing various
kinds of data, and more particularly, to an improved database
architecture and method for using the same.

2. Art Background

Over the past 30 years, computers have become increas-
ingly important in storing and managing information. Dur-
ing this time, many database products have been developed
to allow users to store and manipulate information and to
search for desired information. The continuing growth of the
information industry creates a demand for more powerful
databases.

The database products have evolved over time. Initially,
databases comprised a simple “flat file” with an associated
index. Application programs, as opposed to the database
program itself, managed the relationships between these
files and a user typically performed queries entirely at the
application program level. The introduction of relational
database systems shifted many tasks from applications pro-
grams to database programs. The currently existing database
management systems comprise two main types, those that
follow the relational model and those that follow the object
oriented model.

The relational model sets out a number of rules and
guidelines for organizing data items, such as data normal-
ization. A relational database management system
(RDBMS) is a system that adheres to these rules. RDBMS
databases require that each data item be uniquely classified
as a particular instance of a ‘relation’. Each set of relations
is stored in a distinct ‘table’. Each row in the table represents
a particular data item, and each column represents an
attribute that is shared over all data items in that table.

The pure relational model places number of restrictions
on data items. For example, each data item cannot have
attributes other than those columns described for the table.
Further, an item cannot point directly to another item.
Instead, ‘primary keys’ (unique identifiers) must be used to
reference other items. Typically, these restrictions cause
RDBMS databases to include a large number of tables that
require a relatively large amount of time to search. Further,
the number of tables occupies a large amount of computer
memory.

The object oriented database model, derived from the
object-oriented programming model, is an alternative to the
relational model. Like the relational model, each data item
must be classified uniquely as belonging to a single class,
which defines its attributes. Key features of the object-
oriented model are: 1) each item has a unique system-
generated object identification number that can be used for
exact retrieval; 2) different types of data items can be stored
together; and 3) predefined functions or behavior can be
created and stored with a data item.

Apart from the limitations previously described, both the
relational and object oriented models share important limi-

10

15

20

25

30

35

40

45

50

55

60

65

2

tations with regard to data structures and searching. Both
models require data to be input according to a defined field
structure and thus do not completely support full text data
entry. Although some databases allow records to include a
text field, such text fields are not easily searched. The
structural requirements of current databases require a pro-
grammer to predefine a structure and subsequent date entry
must conform to that structure. This is inefficient where it is
difficult to determine the structure of the data that will be
entered into a database.

Conversely, word and image processors that allow
unstructured data entry do not provide efficient data retrieval
mechanisms and a separate text retrieval or data manage-
ment tool is required to retrieve data. Thus, the current
information management systems do not provide the capa-
bility of integrating full text or graphics data entry with the
searching mechanisms of a database.

The separation of database from other programs such as
word processors has created a large amount of text and other
files that cannot be integrated with current databases. Vari-
ous database, spreadsheet, image, word processing, elec-
tronic mail and other types of files may not currently be
accessed in a single database that contains all of this
information. Various programs provide integration between
spreadsheet, word processing and database programs but, as
previously described, current databases do not support effec-
tive searching in unstructured files.

The present invention overcomes the limitations of both
the relational database model and object oriented database
model by providing a database with increased flexibility,
faster search times and smaller memory requirements and
that supports text attributes. Further, the database of the
present invention does not require a programmer to precon-
figure a structure to which a user must adapt data entry.
Many algorithms and techniques are required by applica-
tions that deal with these kinds of information. The present
invention provides for the integration, into a single database
engine, of support for these techniques, and shifts the
programming from the application to the database, as will be
described below. The present invention also provides for the
integration, into a single database, of preexisting source files
developed under various types of application programs such
as other databases, spreadsheets and word processing pro-
grams. In addition, the present invention allows users to
control all of the data that are relevant to them without
sacrificing the security needs of a centralized data repository.

SUMMARY OF THE INVENTION

The present invention improves upon prior art informa-
tion search and retrieval systems by employing a flexible,
self-referential table to store data. The table of the present
invention may store any type of data, both structured and
unstructured, and provides an interface to other application
programs such as word processors that allows for integration
of all the data for such application programs into a single
database. The present invention also supports a variety of
other features including hypertext.

The table of the present invention comprises a plurality of
rows and columns. Each row has an object identification
number (OID) and each column also has an OID. A row
corresponds to a record and a column corresponds to an
attribute such that the intersection of a row and a column
comprises a cell that may contain data for a particular record
related to a particular attribute. A cell may also point to
another record. To enhance searching and to provide for
synchronization between columns, columns are entered as

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 63 of 81 Page ID #:70

6,163,775

3

rows in the table and the record corresponding to a column
contains various information about the column. This renders
the table self referential and provides numerous advantages,
as will be discussed in this Specification.

The present invention includes an index structure to allow
for rapid searches. Text from each cell is stored in a key
word index which itself is stored in the table. The text cells
include pointers to the entries in the key word index and the
key word index contains pointers to the cells. This two way
association provides for extended queries. The invention
further includes weights and filters for such extended que-
ries.

The present invention includes a thesaurus and knowledge
base that enhances indexed searches. The thesaurus is stored
in the table and allows a user to search for synonyms and
concepts and also provides a weighting mechanism to rank
the relevance of retrieved records.

An application support layer includes a word processor, a
password system, hypertext and other functions. The novel
word processor of the present invention is integrated with
the table of the present invention to allow cells to be edited
with the word processor. In addition, the table may be
interfaced with external documents which allows a user to
retrieve data from external documents according to the
enhanced retrieval system of the present invention.

These and numerous other advantages of the present
invention will be apparent from the following description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram illustrating one
possible computer system incorporating the teachings of the
present invention.

FIG. 2 is a block diagram illustrating the main compo-
nents of the present invention.

FIG. 3 illustrates the table structure of the database of the
present invention.

FIG. 4 is a flow chart for a method of computing object
identification numbers (OID’s) that define rows and columns
in the table of FIG. 1.

FIG. § is a part of the table of FIG. 2 illustrating the
column synchronization feature of the present invention.

FIG. 6 is a flow chart for a method of searching the table
of FIG. 2.

FIG. 7a is a flow chart for synchronizing columns of the
table of FIG. 2.

FIG. 7b illustrates the results of column synchronization.

FIG. 8a illustrates a reference within one column to
another column.

FIG. 8b illustrates an alternate embodiment for referring
to another column within a column.

FIG. 9 illustrates a “Record Contents” column of the
present invention that indicates which columns of a particu-
lar record have values.

FIG. 10 illustrates a folder structure that organizes
records. The folder structure is stored within the table of
FIG. 2.

FIG. 11 illustrates the correspondence between cells of
the table of FIG. 2 and a sorted key word index.

FIG. 12 illustrate the “anchors” within a cell that relate a
word in a cell to a key word index record.

FIG. 13 illustrates key word index records stored in the
table of FIG. 2.

FIG. 14 illustrates the relationship between certain data
records and key word index records.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 15 illustrates the relationship of FIG. 14 in graphical
form.

FIG. 16a illustrates an extended search in graphical form.

FIG. 16b illustrates a further extended search in graphical
form.

FIG. 17 illustrates the thesaurus structure of the present
invention stored in the table of FIG. 2.

FIG. 18 illustrates prior art hypertext.

FIG. 19 illustrates the hypertext features of the present
invention.

FIG. 204 illustrates a character and word box structure of
the word processor of the present invention.

FIG. 20b illustrates the word and horizontal line box
structure of the word processor of the present invention.

FIG. 20c illustrates the vertical box structure of the word
processor of the present invention.

FIG. 21 illustrates the box tree structure of the word
processor of the present invention.

FIG. 22a illustrates the results of a prior art sorting
algorithm.

FIG. 22b illustrates the results of a sorting algorithm
according to the present invention.

FIG. 23 illustrates the correspondence between cells of
the table of FIG. 2 and a sorted date index.

NOTATION AND NOMENCLATURE

The detailed descriptions which follow are presented
largely in terms of algorithms and symbolic representations
of operations on data bits within a computer memory. These
descriptions and representations are the means used by those
skilled in the data processing arts to most effectively convey
the substance of their work to others skilled in the art.

An algorithm is here, and generally, conceived to be a
self-consistent sequence of steps leading to a desired result.
These steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It proves convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like. It should be borne in mind, however,
that all of these and similar terms are to be associated with
the appropriate physical quantities and are merely conve-
nient labels applied to these quantities.

Further, the manipulations performed are often referred to
in terms, such as adding or comparing, which are commonly
associated with mental operations performed by a human
operator. No such capability of a human operator is
necessary, or desirable in most cases, in any of the opera-
tions described herein which form part of the present inven-
tion; the operations are machine operations. Useful
machines for performing the operations of the present inven-
tion include general purpose digital computers or other
similar digital devices. In all cases there should be borne in
mind the distinction between the method operations in
operating a computer and the method of computation itself.
The present invention relates to method steps for operating
a computer in processing electrical or other (e.g.,
mechanical, chemical) physical signals to generate other
desired physical signals.

The present invention also relates to apparatus for per-
forming these operations. This apparatus may be specially
constructed for the required purposes or it may comprise a

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 64 of 81 Page ID #:71

6,163,775

5

general purpose computer as selectively activated or recon-
figured by a computer program stored in the computer. The
algorithms presented herein are not inherently related to a
particular computer or other apparatus. In particular, various
general purpose machines may be used with programs
written in accordance with the teachings herein, or it may
prove more convenient to construct more specialized appa-
ratus to perform the required method steps. The required
structure for a variety of these machines will appear from the
description given below.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention discloses methods and apparatus
for data storage, manipulation and retrieval. Although the
present invention is described with reference to specific
block diagrams, and table entries, etc., it will be appreciated
by one of ordinary skill in the art that such details are
disclosed simply to provide a more thorough understanding
of the present invention. It will therefore be apparent to one
skilled in the art that the present invention may be practiced
without these specific details.

System Hardware

Referring to FIG. 1, the hardware configuration of the
present invention is conceptually illustrated. FIG. 1 illus-
trates an information storage and retrieval system structured
in accordance with the teachings of the present invention. As
illustrated, the information storage and retrieval system
includes a computer 23 which comprises four major com-
ponents. The first of these is an input/output (I/O) circuit 22,
which is used to communicate information in appropriately
structured form to and from other portions of the computer
23. In addition, computer 20 includes a central processing
unit (CPU) 24 coupled to the I/O circuit 22 and to a memory
26. These elements are those typically found in most com-
puters and, in fact, computer 23 is intended to be represen-
tative of a broad category of data processing devices.

Also shown in FIG. 1 is a keyboard 30 for inputting data
and commands into computer 23 through the I/O circuit 22,
as is well known. Similarly, a CD ROM 34 is coupled to the
1/0 circuit 22 for providing additional programming capac-
ity to the system illustrated in FIG. 1. It will be appreciated
that additional devices may be coupled to the computer 20
for storing data, such as magnetic tape drives, buffer
memory devices, and the like. A device control 36 is coupled
to both the memory 26 and the I/O circuit 22, to permit the
computer 23 to communicate with multi-media system
resources. The device control 36 controls operation of the
multi-media resources to interface the multi-media
resources to the computer 23.

A display monitor 43 is coupled to the computer 20
through the I/O circuit 22. A cursor control device 45
includes switches 47 and 49 for signally the CPU 24 in
accordance with the teachings of the present invention. A
cursor control device 45 (commonly referred to a “mouse”
permits a user to select various command modes, modify
graphic data, and input other data utilizing switches 47 and
49. More particularly, the cursor control device 45 permits
a user to selectively position a cursor 39 at any desired
location on a display screen 37 of the display 43. It will be
appreciated that the cursor control device 45 and the key-
board 30 are examples of a variety of input devices which
may be utilized in accordance with the teachings of the
present invention. Other input devices, including for
example, trackballs, touch screens, data gloves or other

10

15

20

25

30

35

40

45

50

55

60

65

6

virtual reality devices may also be used in conjunction with
the invention as disclosed herein.

System Architecture

FIG. 2 is a block diagram of the information storage and
retrieval system of the present invention. As illustrated in the
Figure, the present invention includes an internal database
52 that further includes a record oriented database 74 and a
free-text database 76. The database 52 may receive data
from a plurality of external sources 50, including word
processing documents 58, spreadsheets 60 and database files
62. As will be described more fully below, the present
invention includes an application support system that inter-
faces the external sources 50 with the database 52.

To efficiently retrieve information stored in the database
52, a plurality of indexes 54 including a keyword index 78
and other types of indexes such as phonetic, special sorting
for other languages, and market specific such as chemical,
legal and medical, store sorted information provided by the
database 52. To organize the information in the indexes 54,
a knowledge system 56 links information existing in the
indexes 54.

The organization illustrated in FIG. 2 is for conceptual
purposes and, in actuality, the database 52, the indexes 54
and the knowledge system 56 are stored in the same table,
as will be described more fully below. This Specification
will first describe the structure and features of the database
52. Next, the Specification will describe the index 54 and its
implementation for searching the database 52. The Specifi-
cation will then describe the knowledge system 56 that
further enhances the index 54 by providing synonyms and
other elements. Finally, the Specification will describe an
interface between the external application programs 50 and
the database 52, including a novel structured word processor
and a novel password scheme.

FIG. 3 illustrates the storage and retrieval structure of the
present invention. The storage and retrieval structure of the
present invention comprises a table 100. The structure of the
table 100 is a logical structure and not necessarily a physical
structure. Thus, the memories 26 and 32 configured accord-
ing to the teachings of the present invention need not store
the table 100 contiguously.

The table 100 further comprises a plurality of rows 110
and a plurality of columns 120. A row corresponds to a
record while a column corresponds to an attribute of a record
and the defining characteristics of the column are stored in
arow 108. The intersection of a row and a column comprises
a particular cell.

Each row is assigned a unique object identification num-
ber (OID) stored in column 120 and each column also is
assigned a unique OID, indicated in brackets and stored in
row 108. For example, row 110 has an OID equal to 1100
while the column 122 has an OID equal to 101. As will be
described more fully below, the OID’s for both rows and
columns may be used as pointers and a cell 134 may store
an OID. The method for assigning the OID’s will also be
discussed below.

As illustrated in FIG. 3, each row, corresponding to a
record, may include information in each column. However,
a row need not, and generally will not, have data stored in
every column. For example, row 110 corresponds to a
company as shown in a cell 130. Since companies do not
have titles, cell 132 is unused.

The type of information associated with a column is
known as a ‘domain’. Standard domains supported in most
database systems include text, number, date, and Boolean.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 65 of 81 Page ID #:72

6,163,775

7

The present invention includes other types of domains such
as the OID domain that points to a row or column. The
present invention further supports ‘user-defined’ domains,
whereby all the behavior of the domain can be determined
by a user or programmer. For example, a user may configure
a domain to include writing to and reading from a storage
medium and handling operations such as equality testing and
comparisons.

According to the present invention, individual cells may
be accessed according to their row and column OID’s. Using
the cell as the unit of storage improves many standard data
management operations that previously required the entire
object or record. Such operations include versioning,
security, hierarchical storage management, appending to
remote partitions, printing, and other operations.

Column Definitions

Each column has an associated column definition, which
determines the properties of the column, such as the domain
of the column, the name of the column, whether the column
is required and other properties that may relate to a column.
The table 100 supports columns that include unstructured,
free text data.

The column definition is stored as a record in the table 100
of FIG. 3. For example, the “Employed By” column 126 has
a corresponding row 136. The addition or rows that corre-
spond to columns renders the table 100 self-referential. New
columns may be easily appended to the table 100 by creating
a new column definition record. The new column is then
immediately available for use in existing records.

Dates

Dates can be specified numerically and textually. An
example of a numerical date is “11/6/67” and an example of
a textual date is “Nov. 6, 1967.” Textual entries are con-
verted to dates using standard algorithms and lookup tables.
A date value can store both original text and the associated
date to which the text is converted, which allows the date
value to be displayed in the format in which it was originally
entered.

Numbers

Numeric values are classified as either a whole number
(Integer) or fractional number. In the preferred embodiment,
Integers are stored as variable length structures, which can
represent arbitrarily large numbers. All data structures and
indexes use this format which ensures that there are no limits
in the system.

Fractional numbers are represented by a <numerator/
denominator> pair of variable length integers. As with dates,
a numeric value can store both the original text (“4%
inches”) and the associated number (4.5). This allows the
numeric value to be redisplayed in the format in which it was
originally entered.

Type Definitions

A record can be associated with a ‘record type’. The
record type can be used simply as a category, but also can
be used to determine the behavior of records. For example,
the record type might specify certain columns that are
required by all records of that type and, as with columns, the
type definitions are stored as records in the table 100. In FIG.
3, column 122 includes the type definition for each record.
The column 122 stores pointers to rows defining a particular
column type. For example, the row 136 is a “Field” type

10

15

20

25

30

40

45

50

55

60

65

8

column and contains a pointer in a cell 133 to a row 135 that
defines “Field” type columns. The “Type Column” 122 of
the row 135 points to a type called “Type,” which is defined
in a row 140. “Type™ has a type column that points to itself.

Record types, as defined by their corresponding rows,
may constrain the values that a record of that type may
contain. For example, the record type ‘Person’ may require
that records of type ‘Person” have a valid value in the ‘Name’
column, the ‘Phone’ column, and any other columns. The
type of a record is an attribute of the record and thus may
change at any time.

Creating a Unique OID

As previously described, the system must generate a
unique OID when columns and rows are formed. FIG. 4 is
a flow chart of the method for assigning OID’s.

At block 200 of FIG. 4, the CPU 24 running the database
program stored in the memory 26 requests a timestamp from
the operating system. At block 210, the system determines
whether the received timestamp is identical to a previous
timestamp. If the timestamps are identical, block 210
branches to block 220 and a tiebreaker is incremented to
resolve the conflict between the identical timestamps. At
block 222, the system determines whether the tiebreaker has
reached its limit, and, if so, the system branches to block 200
to retrieve a new time stamp. Otherwise, the system
branches to block 214 where the system requests a session
identification which is unique to the user session.

In the preferred embodiment, the session identification is
derived from the unique serial number of the application
installed on the users machine. For certain OID’s which are
independent of any particular machine, the session identi-
fication may be used to determine the type of object. For
example, dates are independent of any particular machine,
and so an OID for a date may have a fixed session identi-
fication.

Returning to block 210, if the timestamps are not
identical, control passes to block 212 where the tiebreaker is
set to zero and control then passes to block 214. As previ-
ously described, at block 214, the system requests a session
identification which is unique to the user session. Control
then passes to block 216 where the session identification,
timestamp and tiebreaker are combined into a bit array,
which becomes the OID. Since the OID is a variable length
structure, any number of bits may be used, depending on the
precision required, the resolution of the operating system
clock, and the number of users. In the preferred
embodiment, the OID is 64 bits long where the timestamp
comprises the first 32 bits, the tiebreaker comprises the next
10 bits and the session identification comprises 22 bits.

The particular type of OID and its length is constant
throughout a single database but may vary between data-
bases. A flag indicating which type of OID to be used may
be embedded in the header of each database.

OID Domains

OID domains are used to store OID’s, which are pointers
to other records. An efficient query can use these OID’s to
go directly to another record, rather than searching through
columns.

If a user wishes to search a column to find a record or
records with a certain item in the column, and does not know
the OID of the item, the present invention includes a novel
technique for determining an OID from the textual descrip-
tion. Conversion from text to an OID may also be necessary

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 66 of 81 Page ID #:73

6,163,775

9

when a user is entering information into a record. For
example, in FIG. 3, the user may be entering information in
the “Employed By” column 126, and wish to specify the text
“DEXIS” and have it converted to OID #1100. For this
purpose, special columns are required that provide a defi-
nition for how the search and conversion is performed.

FIG. 6 is a flow chart for searching the table 100 config-
ured according to the structure illustrated in FIG. §. At block
150, a user enters text through the keyboard 30 or mouse 45
for a particular column that the user wishes to search. At
block 152, the system retrieves the search path for the
column to be searched from the information stored in
column 146 as illustrated in FIG. 5. Continuing with the
above example, a cell 146 in the row 136 contains the search
path information for the “Employed By” column 126 of FIG.
3. The search path information for the “Employed By” field
indicates that the folders called “\contacts” and “‘\depart-
ments” should be searched for a company with the label
“DEXIS.”

Returning to FIG. 5, the system searches the table 100
according to the retrieved search path information. For each
folder specified in the search path, the routine searches for
a record that has an entry in the label column 124 of FIG. 2
that is the same as the text being searched for, and is of the
same class, as indicated in column 122 of FIG. 3. Folders
will be further described below.

At block 156, the system determines whether it has found
any items matching the user’s search text. If no items have
been found, at block 158, the system prompts the user on the
display screen 37 to create a new record. If the user wishes
to create a new record, control passes to block 162 and the
system creates a new record. At block 164, the OID of the
new record is returned. If the user does not wish to create a
new record, a “NIL” string is returned, as shown at block
160.

If the system has located at least one item, the system
determines whether it has found more than one item, as
illustrated in block 166. If only one item has been located,
its OID is returned at block 168. If more than one item has
been located, the system displays the list of items to the user
at block 170 and the user selects a record from the list. At
block 172, the OID of the selected record is returned, which,
in the above example, is #1100, the OID of the record for the
company “DEXIS.”

In alternate embodiments, various features may be added
to the search mechanism as described with reference to FIG.
6. For example, further restrictions may be added to the
search; the search may be related by allowing prefix match-
ing or fuzzy matching instead of strict matching; and the
search may be widened by using the ‘associative search’
techniques described below.

Two Way Synchronized Links

Records may have interrelationships and it is often desir-
able to maintain consistency between interrelated records.
For example, a record including data for a company may
include information regard employees of that company, as
illustrated in row 110 of FIG. 3. Similarly, the employees
that work for that company may have a record that indicates,
by a pointer, their employer, as illustrated by row 138 of
FIG. 3. Thus, the employee column of a company should
point to employees whose employer column points to that
company. The present invention includes a synchronization
technique to ensure that whenever interrelated records are
added or removed, the interrelationships between the col-
umns are properly updated.

10

15

20

30

35

40

45

50

55

60

65

10

The system synchronizes interrelated records by adding a
“Synchronize With” column 144 to the table 100 as illus-
trated in FIG. 5. Since the value in the columns defines the
relatedness between records, the rows 136 and 139 corre-
sponding to columns contain information within the “Syn-
chronize With” column 144 that indicates which other
columns are to be synchronized with the columns corre-
sponding to rows 136 and 139. With reference to FIG. 5, the
“Employed By” column 126 is synchronized with the
“Employees™ column by an OID pointer in the “Synchronize
With” column 144 to the “Employees™ column, represented
by row 139. Similarly, the “Employees™” column is synchro-
nized with the “Employed By” column 136 by a pointer in
the “Synchronize With” column 144 to the “Employed by”
column 134, represented by row 136. Thus, whenever an
employee changes companies, such that the employee’s
“Employed By” column changes, the “Employee” column
of the previous employer is updated to eliminate the pointer
to the ex-employee and, correspondingly, the addition of the
employee in the “Employed By” field of the new employer.
Synchronization may need to occur whenever a column is
changed, whether by addition or subtraction of a reference
to another column, or when entire records are added or
eliminated from the table 100.

FIG. 7a is a flow chart for synchronizing records when a
user adds or deletes a record. At block 180, the system
makes a backup of the original list of references to other
rows, which are simply the OID’s of those other rows, so
that it can later determine which OIDS have been added or
removed. Only these changes need to be synchronized. At
block 182, the system generates a new list of references by
adding or deleting the specified OID. At block 184, the
system determines whether the relevant column is synchro-
nized with another column. If it is not, then the system
branches to block 186 and the update is complete. If the
column is synchronized with another column, the system
determines whether it is already in a synchronization rou-
tine. If this were not done, the routine would get into an
endless recursive loop. If the system is already in a syn-
chronization routine, the system branches to 190 and the
update is complete.

Otherwise, the system performs actual synchronization.
At block 192, the system finds an OID that has been added
or subtracted from the column (C1) of the record (R1) being
altered. The system retrieves the record (R2) corresponding
to the added or subtracted OID at block 194. The system
determines the synchronization column (C2) of the column
(C1) at block 196 and locates that field in the added or
subtracted OID. For example, if an employer is fired from a
job, and the employer’s “Employed By” field changed
accordingly, the system would look up the value of the
“Synchronize With” column 144 for the “Employees™ col-
umn which is contained in the cell 147 as illustrated in FIG.
5. Since cell 147 points to the “Employed By” field, the
system locates the “Employed By” field of the record for the
fired employee. At block 198 of FIG. 7a, the located cell,
(R2:C2), is updated by adding or subtracting the OID.
Continuing with the above example, the “Employed By”
field of the employee would be changed to no longer point
to the previous employer by simply removing the employ-
er’s OID from that field. The system branches back to block
192 to update any other OID additions or subtractions. If the
system has processed all of the OID’s, then the routine exits
as illustrated at blocks 200 and 202.

FIG. 7b illustrates the results of column synchronization
of the “Employed By” field and the “Employees” field. As
shown, the pointers in the records of these two columns are
consistent with one another.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 67 of 81 Page ID #:74

6,163,775

11

Columns Within Columns

A column may contain within it a reference to another
column in the same record. For example, a ‘name’ column
may contain a reference to both a ‘first name’ and a ‘last
name’ column. The value of the ‘name’ column can then be
reconstructed from the values of the other two columns.
FIGS. 8a and 8b illustrate two possible implementations for
reconstructing a value from one or more columns within the
same record.

FIG. 8a illustrates a table 210 that includes a “First
Name” column 220, a “Last Name” column 222 and a
“Name” column 224. A record 226 for “John Smith” has the
first name “John” in the “First Name” column 220 and the
last name “Smith” in the column 222. The name field 224
returns the text “The name is John Smith” by referencing the
fields in brackets, according to the format <fieldRef field=
‘Column Name’> as shown in column 224.

FIG. 8b employs a variant of the referencing scheme
illustrated in FIG. 8a. FIG. 8a illustrates a table 230 that
includes a “First Name” column 232, a “Last Name” column
234 and a “Name” column 236. A record 238 for “John
Smith” has the first name “John” in the “First Name” column
232 and the last name “Smith” in the column 234. The name
field 236 returns the text “The name is John Smith” by
referencing the fields by defined variables ‘fn’ and ‘In’ as
shown in column 236. The variables are defined according
to the format variable:=field At (parameter, ‘Column Name”)
and the variables may be referenced in a return statement as
shown in column 236.

Record Contents

As previously described, a given row may contain values
for any column. However, to determine all of the columns
that might be used by a record would involve scanning every
possible column. To avoid this problem, in the preferred
embodiment, the table 100 illustrated in FIG. 3 includes a
“RecordContents” column that indicates those columns
within which a particular record has stored values.

FIG. 9 illustrates the table 100 with a “RecordContents”
column 127 that includes pointers to the columns containing
values for a particular record. For example, the “Record-
Contents” column 127 for row 110 has pointers to the
column 124 and a column 125 but does not have a pointer
to the column 126 because the row 110 does not have a value
for the column 126. As previously described, since every
column has a corresponding row that defines the column, the
“RecordContents” column 127 has a defining row 129. Like
any cell, the cell containing the record contents can be
versioned, providing the ability to do record versioning.

Folders

To provide increased efficiency in managing information,
the table 100 includes a data type defined as a folder. FIG.
10 illustrates the structure of a folder. As illustrated in the
Figure, the table 100 includes a “Parent Folder” column 240
and a “Folder Children” column 242. A folder has a corre-
sponding record. For example, a folder entitled “Contacts”
has a corresponding row 244 as illustrated in FIG. 10. The
“Folder Children” column 242 of the “Contacts” folder
includes pointers to those records that belong to the folder.
Similarly, those records that belong to a folder include a
pointer to that folder in the “Parent Folder” column 240.

The folder structure illustrated in FIG. 10 facilitates
searching. As previously described, a column may be
searched according to a folder specified in the column

10

15

20

25

30

35

40

45

50

55

60

65

12

definition. If a folder is searched, the system accesses the
record corresponding to the folder and then searches all of
the records pointed to by that folder.

Further, the synchronization feature described above may
be used to generate the list of items in a folder. For example,
in FIG. 10, the ‘Folder Parent’ and ‘Folder Children’ col-
umns may be synchronized. When the ‘Folder Parent’ field
240 for record 138 is set to reference the ‘Contacts’ folder
represented by row 244, the list of items in the ‘Contacts’
folder (‘FolderChildren’) is automatically updated to store a
reciprocal reference to record represented by row 138 by
including its OID, 1100, in the “Folder Children™ column
242.

Text Indexing System

The present invention includes an indexing system that
provides for rapid searching of text included in any cell in
the table 100. Each key phrase is extracted from a cell and
stored in a list format according to a predefined hierarchy.
For example, the list may be alphabetized, providing for
very rapid searching of a particular name.

FIG. 11 illustrates the extraction of text from the table 100
to a list 250. The list 250 is shown separately from the table
100 for purposes of illustration but, in the preferred
embodiment, the list 250 comprises part of the table 100.
The list 250 stores cell identification numbers for each word
in the list where a cell identification number may be of the
format <record OID, column OID >. For example, the word
“Ventura” occurs in cells 252, 254 and 256 that correspond
to different rows and different columns. The word “Ventura”
in the list 250 contains a pointer, or cell identification
number, to cells 252, 254 and 256.

Similarly, each cell stores the references to the key
phrases within it using ‘anchors’. As illustrated in FIG. 12,
an anchor contains a location (such as the start and stop
offset within the text), and an identification number. Both the
text and the anchor are stored in the cell 252. Other kinds of
domains also support anchors. For example, graphical
images support the notion of ‘hot spots” where the anchor
position is a point on the image.

As previously described, each key phrase is stored as a
record in the database and the OID of the record equals the
identification number described with reference to FIG. 12.
One column stores the name of the key phrase and another
stores the list of cell identification numbers that include that
phrase. Key phrases may have comments of their own,
which may also be indexed.

The sorted list 250 as illustrated in FIG. 11 is stored as a
Folder, as illustrated in FIG. 13. A cell identification field
274 maintains the cells that include the term corresponding
to that record. The “Parent Folder” column 240 for each of
the terms on the list 250 indicates that the parent folder is an
index with a title “Natural.” The “Natural” folder has a row
276 that has pointers in the “Folder Children” column 242
to all of the terms in the list 250.

The “Natural” folder corresponds to an index sorted by a
specific type of algorithm. Computer programs generally
sort using a standard collating sequence such as ASCII. The
present invention provides an improvement over this type of
sorting and the improved sorting technique corresponds to
the “Natural” folder. Records in the “Natural” folder are
sorted according to the following rules:

1) A key phrase may occur at more than one point in the

list. In particular:
1a) Key phrases may be permuted and stored under
each permutation. For example: ‘John Smith’ can be

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 68 of 81 Page ID #:75

6,163,775

13

stored under ‘John’ and also under ‘Smith’. Noise
words such as ‘a’ and ‘the’ are ignored in the
permutation.

1b) Key phrases which are numeric or date oriented
may be stored under each possible location. For
example: ‘1984 can be stored under the digit ‘1984°
and also under ‘One thousand, nine hundred. . .”, and
‘nineteen eighty four’.

2) Numbers are sorted naturally. For example, ‘20’ comes
after ‘3’ and before ‘100°.

3) Prefixes in key phrases are ignored. For example, ‘The
Big Oak’ is sorted under ‘Big’.

4) Key phrases are stemmed, so that ‘Computers’ and
‘Computing’” map to the identical key phrase record.
The preferred embodiment of the routine for generating
positions for entering the key phrases into the ‘Natural’

folder is as follows:

1) Capitalize the key phrase to avoid case sensitivity
problems. For example: ‘John Smith the 1st’ becomes
‘JOHN SMITH THE 1ST".

2) Each word in the key phrases is stemmed using
standard techniques. Eg “COMPUTERS” becomes
“COMPUT”.

3) Permute the key phrase. This results in a new set of
multiple key phrases based on the original key phrase.
For example ‘JOHN SMITH THE 1ST’ produces the
set {*JOHN SMITH THE 1ST’; ‘SMITH THE 1ST
JOHN’; ‘THE 1ST JOHN SMITH’; ‘1ST JOHN
SMITH THE’}.

4) Noise prefixes are eliminated. In the example above,
the third entry, ‘THE 1ST JOHN SMITH’, is elimi-
nated. If no phrases are left after elimination, the
original phrase is used. For example, an entry for ‘TO
BE OR NOT TO BE” would be preserved even if all
noise words were eliminated.

5) For each result, numbers and dates are expanded to all
possible text representations, and text representations
are converted to numeric. For example: ‘1ST JOHN
SMITH THE’ generates the set: {*1ST JOHN SMITH
THE’; ‘FIRST JOHN SMITH THE’}

6) Finally, each modified key phrase is used to determine
the position of a reference to the main key phrase
record, and an entry is made in the folder accordingly.
For example, ‘1ST JOHN SMITH THE’ is stored
between ‘1’ and ‘2°, while ‘FIRST JOHN SMIT THE’
is stored after ‘FIR’ and before ‘FIS.

FIG. 22a illustrates the results of a prior art sorting

algorithm while FIG. 22b illustrates the results of a sorting
alogrithim according to the present invention.

Extracting the Key Phrases

To generate a sorted list, the system must first extract the
key phrases or words from the applicable cells. The com-
bination of structured information and text allows various
combinations of key phrase extraction to be used. In full text
extraction, every word is indexed, which is typical for
standard text retrieval systems. In column extraction, the
whole contents of the column are indexed which corre-
sponds to a standard database system. According to a third
type of extraction, automatic analysis, the contents of the
text are analyzed and key phrases are extracted based on
matching phrases, semantic context, and other factors.
Finally, in manual selection extraction, the user or applica-
tion explicitly marks the key phrase for indexing.

Date Indexing System

The date indexing scheme is very similar to the text
indexing scheme as previously described. Important dates

10

20

30

35

40

45

50

55

60

65

14

are extracted from the text and added to an ‘Important Date’
list. Each important date is represented by a ‘Important Date’
record. The ‘Important Date’ records are stored in a ‘Impor-
tant Dates’ folder, which is sorted by date.

The important dates are extracted from the text. The
system may search for numeric dates, such as ‘4/5/94° or
date-oriented text, such as “Tomorrow”, “next Tuesday” or
“Christmas”. FIG. 23 illustrates the correspondence between
cells of the table of FIG. 2 and a sorted date index.

Important Date records are assigned special predeter-
mined OIDS since they always have the same identity in any
system. Assigning predetermined OID’s to dates allows
Important Dates to be shared across systems. The predeter-
mined OID is generated by using a special session identi-
fication number that signifies that the OID is an Important
Date. In this case, the timestamp represents the value of the
Important Date itself, not the time that it was created.

Associative Queries

As previously described, a sorted key word list is gener-
ated from the text in cells and list stored in a folder whose
records point to the text cells. The associations between the
list of records with text and the list of key phrases is two-way
since the cells that include text point to the key words. FIG.
14 illustrates this two way correspondence. Each record can
point to multiple key phrases, and each key phrase can point
to multiple records.

FIG. 15 is a graphical representation of the two way
association between records and the key word list. Each
record in a plurality of records 298 through 300 may point
to one or more important word entries 310 through 312.
Similarly, each important word entry may point to one or
more records. A single level search involves starting at one
node (on either side of the graph) and following the links to
the other side. For example, a user may wish to find the
records including the word “Shasta.” First, the important
word index would be accessed to find the word “Shasta” and
the records pointed to by this word would then be retrieved.
This search is indicated by the arrows 314 and 316 where
word “Shasta” corresponds to cell 318. Similarly, a user may
wish to locate all of the important words included in a
particular record, indicated by the arrows 320 and 322 in
FIG. 15.

The search can be extended by repeatedly following the
links back and forth to the desired level. FIG. 16a illustrates
this concept. As an example, the term “Shasta” may corre-
spond to a dog with extraordinary intelligence such that in
one record, “Shasta” is described as a dog and another
record, ‘Shasta’ is described as a genius. If the user wishes
to find the words associated with ‘Shasta’, the system locates
“Shasta” in the “Important Words” folder which points to the
records including the word “Shasta.” In turn, the records
pointed to contain pointers to the “Important Words™ list for
each indexed word in the record. Since “Shasta” appears
with “dog” and “genius” in the records, these words are
retrieved by the system.

This type of searching may be extended indefinitely. FIG.
16b illustrates an additional level of searching. Continuing
with the above example, the word “genius” may occur in
records referring to Dirac, and the word “dog™ associated
with “Checkers,” such that the multilevel search illustrated
in FIG. 16b results in a retrieval of “Dirac” and “Checkers”
when provided with the word “Shasta.”

A relevance ranking can be created based on weights
associated with each link and type of key word, and the
records can be displayed in order of descending relevance.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 69 of 81 Page ID #:76

6,163,775

15

In the preferred embodiment, if two or more nodes are used
as the starting point, the relevance is based on the distance
from all nodes. In this way, only nodes which are near all the
initial nodes will have a high relevance. Many other rel-
evance rankings apart from distance may be used.

To refine the search, filters can be used to constrain the
links that are followed. For example, the search may be
filtered such that only the type “Person” is listed such that,
in the above example, Shasta will be associated with Dirac
but not Checkers.

Knowledge Base and Thesaurus

The present invention includes a knowledge base and
thesaurus to further improve searching capabilities.

Each important word record (term) included within the
thesaurus contains a pointer to a ‘concept’ record. Each
concept record contains pointers to other concept records,
and to the terms that are included within the bounds of that
concept. FIG. 17 illustrates the structure of the thesaurus.
The table 100 includes a “Parent Concept” column 352, a
“Concept Name™ column 354, a “Synonyms” column 356, a
“More Specific Terms” column 358, a “More General
Terms” column 360 and a “See Also” column 362. A concept
record 350 defines the concept “IBM” and the Synonyms
column 356 points to records that are synonymous with
IBM, a record 364 with a label field with the value “IBM”
and a record 366 with a label field with the value “Interna-
tional Business Machines.” The records 364 and 366 have
pointers in the “parent concept” field that point to the parent
concept record 350.

The thesaurus structure illustrated in FIG. 17 provides for
greater flexibility than exact synonyms. The “More Specific
Terms” column 358 of the concept record 350 associated
with “IBM” points to a concept record 368 associated with
the IBM PC with an assigned weight of 100%, where the
weight percentage reflects the similarity between the initial
term “IBM” and the related term “IBM PC.” Similarly, the
“More General Terms” column 360 of the concept record
350 associated with “IBM” points to a concept record 372
associated with Computer Companies with an assigned
weight of 60%. The “See also” column points to a record
associated with the concept “Microsoft” with a weight of
70%, where the weight percentage reflects the similarity
between the initial term “IBM” and the related term “IBM
pPC”

The Thesaurus illustrated in FIG. 17 enhances the search-
ing mechanisms previously described with reference to
FIGS. 14-16b. The system first locates the record associated
with a key word and locates the parent concept record
pointed to by the key word record. The system may then
follow some or all of the pointers in the columns 356, 358,
360 and 352 and return of the OID’s stored in the ‘Concept
Name’ column 354.

Since key phrases and concepts are stored as records in
this system, any other columns may be used to extend the
knowledge and information stored therein. In particular,
through the use of OID’s, the system can store any kind of
relationship, including relationships other than thesaural
relationships, between key phrases, concepts and other
records.

Application Support

The database of the present invention has been described
without reference to its interface with applications that may
use the invention as their primary storage and retrieval

10

15

20

25

30

35

40

45

50

55

60

65

16

system. As previously described with reference to FIG. 2,
the present database includes an interface to support appli-
cations programs. Components in the application support
system include external document support, hypertext, docu-
ment management and workflow, calendaring and
scheduling, security and other features.

Further, the present invention includes various user inter-
face components that allow have been developed to provide
full access to the structure of the database of the present
invention. In particular, a new kind of structured word
processor will be presented. The Specification will describe
each component of the application support system sepa-
rately.

External Documents

The present invention supports indexing of external docu-
ments. The table 100 stores the filenames of documents,
such as word processor documents, where the contents of the
files are not directly stored in the database. The documents
names may be stored in a column with a specialized “Exter-
nal Document” domain. The external documents may reside
in the mass memory 32 or on a multi-source that interfaces
with the system through device control 36.

To index documents external to the table 100, prior to
processing, an external document is converted into a plain
text format. Key phrases are then extracted as previously
described. In particular, fields in the text can be determined
and mapped to fields within the database. For example, a
‘Memo’ document may contain the text: ‘To: John Smith.
From: Mary Doe’. This text can be mapped to the fields
called ‘to’ and ‘from’, and the values of these fields set
accordingly. The analysis of the text in this way can be
changed for different types of external documents such as
memos, legal documents, spread sheets, computer source
code and any other type of document. For each extracted key
phrase, a start and stop point within the text is determined.
A list of anchors of the format previously described, <start,
stop, key phrase> is generated by the parser and stored
within the table 100 under the external document domain.

Viewing External Documents

When a user views an external document on the display
screen 37, the stored anchors are overlaid on top of the
document such that it appears that the external document has
been marked with hypertext. When the user clicks the
switches 45 or 47 of the mouse 50 on a section of the
external document display, the corresponding anchor is
determined from the various start and stop coordinates. The
OID of the key phrase corresponding to the anchor is stored
within the anchor, and can be used for the purposes of
retrieving the key phrase record or initiating a query as
previously described.

Dynamic Hypertext

The present invention supports Hypertext. Hypertext sys-
tems typically associate a region of text with a pointer to
another record, as illustrated in FIG. 18. This creates a
‘hard-coded’ link between the source and the target. When
user clicks on the source region, the target record is loaded
and displayed. If the target record is absent, the hypertext
jump will fail, possibly with serious consequences.

The present system uses a new approach based on a
dynamic association between records. In the preferred
embodiment, each hypertext region is associated with a key
phrase, not a normal record. When the user clicks the

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 70 of 81 Page ID #:77

6,163,775

17

switches 45 or 47 of the mouse 50 on the source region, all
the records associated with the key phrase are retrieved and
ranked using any of the associative search techniques pre-
viously described. As illustrated in FIG. 19, the application
can then display on the display screen 37 either the highest
ranked item, or present all the retrieved items and allow the
user to pick the one to access.

In certain applications, the user may want to access a
single ‘default’ item. This item can be determined
automatically, by picking the item at the top of the dynami-
cally generated list, or manually, by letting the user pick the
item explicitly and then preserving this choice in the anchor
itself.

The Generic Word Processor

The database of the present invention includes a novel
Structured Word Processor that may be used in conjunction
with the table 100.

The structured word processor of the present invention
uses the “boxes and glue” paradigm introduced by Donald
Knuth in Tz X. According to this paradigm, a page of text is
created by starting with individual characters and concat-
enating the characters to form larger units, called “boxes,”
and then combining these boxes into yet larger boxes. FIG.
20a illustrates three character boxes 400, 402 and 404
concatenated to form a word box 406. FIG. 20b illustrates
four word boxes 410, 412, 414 and the word box 406
combined to form a horizontal line box 408. Horizontal
boxes are used for words and other text tokens that are
spaced horizontally inside another box, such as a line (or
column width). FIG. 20c illustrates the combination of the
horizontal line box 408 with another horizontal line box
4242 to form a vertical box 420. Vertical boxes are used for
paragraphs and other objects that are spaced vertically inside
other boxes, such as page height.

Boxes may be attached to other boxes with “glue.” The
glue can stretch or shrink, as needed. For example, in a
justified sentence, the white space between words is
stretched to force the words to line up at the right edge of the
column. Glue can be used for between-character (horizontal)
spacing, between-word (horizontal) spacing including “tab”
glue, that “sticks” to tab markings. Glue may also be used
for between-line (vertical) spacing and between-paragraph
(vertical) spacing.

When a record of the table 100 is edited, each word and
field definition is converted into boxes. The system orga-
nizes these boxes into a tree structure of line boxes and
paragraph boxes, as illustrated in FIG. 21. Shown there is a
record hierarchy 460, corresponding to the hierarchy of a
record, and a layout hierarchy 470, corresponding to the
hierarchy of a layout such as a document generated accord-
ing to the word processor described with reference to FIGS.
20a-20c. The record structure hierarchy 460 represents the
record structure of the table 100 where a record 462 corre-
sponds to a row in the table 100 and the record 462 includes
a plurality of attributes, including attribute 464, that corre-
spond to the columns of the table 100. In turn, the attributes
may include a variety of items. For example, the attribute
464 includes text, represented by block 466, field references
represented by block 468 and other items as shown.

The layout hierarchy 470 comprises a document 472
which in turn comprises a plurality of pages, including page
474. The page 474 comprises a plurality of paragraphs
including paragraphs 430 and 431 and the paragraph 430
comprises a plurality of lines, including lines 432 and 434.
The paragraph 431 includes line 436.

10

15

20

25

30

35

40

45

50

55

60

65

18

The word processor of the present invention allows the
document 472 to be inserted into the record 462 by provid-
ing a plurality of boxes, including boxes 438, 440 and 442,
common to both the record structure hierarchy 460 and the
layout hierarchy 470. For example, the box 438 corresponds
to part of the line 432 and comprises part of the text of
attribute 464 as illustrated by block 466. Similarly, the box
440 corresponds to part of the line 434 and may comprise a
field reference as indicated by block 468. Thus, the shared
box structure as illustrated in FIG. 21 allows any type of
word processing document to interface with any record in
the table 100.

Conceptually, each box is kept as a bitmap, and its height
and width are known, so the system displays the tree
structure 450 by displaying all of the bitmaps corresponding
to the boxes in the tree. If the tree is changed, for example,
by adding a new word, only the new word box and a
relatively small number of adjacent boxes need be recalcu-
lated. Similarly, line breaks or restructuring of a paragraph
does not alter most of the word boxes, which may be reused,
and only the lineboxes need be recalculated.

To edit the tree structure 450 as illustrated in FIG. 21, a
user may click a cursor on a part of the text. The system
locates the word box or glue that is being edited by a
recursively descending through the tree structure 450.

The word processor supports multiple fonts and special
effects such as subscripts, dropcaps and other features
including graphic objects. A word in a different font than a
base font is in a different box and may have a different height
from other boxes on a line. The height of a linebox the height
of the largest wordbox within it. Effects within a word can
be handled by breaking a word into subboxes with no glue
between them. Again, the height of a wordbox is the height
of the largest box within it. Graphic objects, such as bitmaps,
may be treated and formatted as a fixed width box.

The word processor of the present invention may be used
to edit records in the table 100. The text associated with each
field in a record can be considered a “paragraph” for the
purposes of inter-field spacing, text flow within a field, and
other formatting parameters. Storing all the fields in the
same way during text-editing allows the movement of text
and “flow” to appear natural.

As previously described, the text being edited is divided
into fields, with each field corresponding to a column in the
underlying database. Unlike a traditional static data entry
form, the positions and sizes of the attributes are not fixed
but are dynamic and all the features of a word-processor
such as fonts and embedded graphics are available to edit the
record fields.

Similarly, all of the features of a database such as lookups
and mailmerge are available to the word processor. All of the
attributes that apply to data entry for a particular field are
enforced by the word processor. Such attributes might
include a mask (such as ##H#-##i##), existence requirements,
range and value constraints, etc. The fields can be explicitly
labelled, or hidden and implied.

The word processor of the present invention allows exist-
ing fields to be added by typing the prefix of a field name and
pressing a button. The system then completes the rest of the
field name automatically.

The word processor of the present invention supports
other database features. For example, new fields can be
created by a user by using a popup dialog box. Similarly,
references to other records or important words can be added
by a dialog box. With particular regard to the table 100 of the
present invention, OID references may support fields within

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 71 of 81 Page ID #:78

6,163,775

19

other fields and a particular field within other fields supports
the use of ‘templates,” where a template is a list of field
references embedded in text. For example, the template
“Enter the first name here <fieldref id=firstName> and the
last name here <fieldref id=lastName>" would appear to the
user as “Enter the first name here: John and the last name
here: Doe.” Templates allow a user to build dynamic forms
quickly and easily without having to use complicated form
drawing tools.

The user interface for the word processor of the present
invention allows a user to switch between two modes of data
entry. The word-processor of the present invention is used
for flexible entry into one record at a time, while a columnar
view is used for entering data in columns. The user can
switch back and forth between these two views with no loss
of data and switching from the word processor to the
columnar view will cause the fields that were entered in the
single item to become the columns to be displayed in the
columnar view.

Finally, the ‘fields within fields’ that are apparent in the
word processor view become separated into columns in a
columnar view. The user can then make changes in columnar
mode, and then, when switching back to the word processor
view, the columns become combined once again.

Passwords

It is often required that access to particular data items be
restricted to certain users. In order to apply these
restrictions, an information management system must deter-
mine the identity of the user requesting access. This is
currently done in two ways, physically measuring a unique
quality of the uses of requesting information from the user,
most current information management systems rely on the
second approach, by using ‘passwords’. However, to avoid
security problems with a password system, three guidelines
are applied to passwords:

a) the password should not be made of common words,
because an aggressor can use a brute force approach
and a dictionary to guess the password;

b) the password should be longer rather than shorter; and

¢) the password should be changed often, so that even if
is stolen it will not be valid for long.

Finally, a password should never be written down or embed-
ded into a login script and should always be interactive.

According to the present password system, a user’s iden-
tity is determined through an extensive question and answer
session. The responses to certain personal questions very
quickly identify the user with high accuracy. Even an
accurate mimic will eventually fail to answer correctly if the
question and answer session is prolonged.

For example, sample questions might be: ‘What is your
favorite breakfast cereal?’; ‘Where were you in April 19907°
‘What color is your toothbrush?’. These questions are wide
ranging and hard to mimic. Furthermore, the correct
responses are natural English sentences, with an extremely
large solution space, so that a brute force approach is
unlikely to be successful.

To improve the effectiveness of the response, an exact
matching of user response and stored answer is not required
and ‘fuzzy’ and ‘associative’ matching can be used accord-
ing to the synonym, thesaurus and other features of the
present invention.

According to the password system of the present
invention, the user creates the list of questions and corre-
sponding answers, which are then stored. Because the user
has complete control over the questions, the user may find

10

15

20

25

30

35

40

45

50

55

60

65

20

the process of creating the questions and answers enjoyable,
and as a result, change the questions and answer list more
frequently, further enhancing system security.

According to the preferred embodiment, a user creates a
list of 50-100 questions and answers that are encrypted and
stored. The questions can be entirely new, or can be based
on a large database of interesting questions. When the user
logs on the system, the system randomly selects one of the
questions related to that user and presents the question to the
user. The user then types in a response, which is matched
against the correct answer. The matching can be fuzzy and
associative, as described above. If the response matches
correctly, access is allowed.

In an alternate embodiment, more security may be pro-
vided by repeatedly asking questions until a certain risk
threshold is reached. For example, if the answer to ‘What
color is your toothbrush?’ is the single word ‘Red’, then
brute force guessing may be effective in this one case. In this
scenario, repeatedly asking questions will diminish the
probability of brute force success.

Summary

While the invention has been described in conjunction
with the preferred embodiment, it is evident that numerous
alternatives, modifications, variations and uses will be
apparent to those skilled in the art in light of the foregoing
description. Many other adaptations of the present invention
are possible.

What is claimed is:

1. A data storage and retrieval system for a computer
having a memory, a central processing unit and a display,
comprising:

means for configuring said memory according to a logical

table, said logical table including:

a plurality of cells, each said cell having a first address
segment and a second address segment;

a plurality of attribute sets, each said attribute set
including a series of cells having the same second
address segment, each said attribute set including an
object identification number (OID) to identify each
said attribute set; and

a plurality of records, each said record including a
series of cells having the same first address segment,
each said record including an OID to identify each
said record, wherein at least one of said records has
an OID equal to the OID of a corresponding one of
said attribute sets, and at least one of said records
includes attribute set information defining each of
said attribute sets.

2. The system of claim 1 wherein said attribute set
information defines one of said attribute sets to contain
information for enabling determination of OIDs from text
entry.

3. The system of claim 1 wherein said one of said attribute
sets contains information including a search path that ref-
erences a folder, said folder including a group of records of
a similar type.

4. The system of claim 1, wherein said attribute set
information defines one of said attribute sets to contain
information for synchronizing two attribute sets recipro-
cally.

5. The system of claim 4 wherein said one of said attribute
sets contains information including reciprocal pointers to
said two attribute sets.

6. The system of claim 1 wherein:

at least one of said plurality of records includes informa-

tion defining the type of a different record; and

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 72 of 81 Page ID #:79

6,163,775

21

at least one of said plurality of records includes a cell that

contains a pointer to said record including record type

information.

7. The system of claim 1 wherein at least one of said
attribute sets defines cells that include a plurality of pointers
to other attribute sets within the same record, said pointers
indicating those attribute sets within the same record that
contain defined values.

8. The system of claim 1 wherein at least one of said
records is a folder type record, said folder type record
including at least one cell that contains data and a plurality
of pointers to a plurality of other records included within
said folder.

9. The system of claim 8 wherein said plurality of other
records included within said folder each includes a cell that
contains a pointer to said folder type record.

10. The system of claim 1 wherein said OID’s are variable
length and include data related to a session identification
number and a timestamp.

11. A data storage and retrieval system for a computer
having a memory, a central processing unit and a display,
comprising:

means for configuring said memory according to a logical

table, said logical table including:

a plurality of cells, each said cell having a first address
segment and a second address segment;

a plurality of attribute sets, each said attribute set
including a series of cells having the same second
address segment, each said attribute set including an
object identification number (OID) to identify each
said attribute set;

a plurality of records, each said record including a
series of cells having the same first address segment,
each said record including an OID to identify each
said record, at least one of said records contains a
cell having a pointer to a different record and at least
one of said records includes attribute set information
defining each of said attribute sets; and

means for searching said table for said pointer.

12. The system of claim 11 wherein at least one of said
attribute sets defines cells that include a plurality of pointers
to other attribute sets within the same record, said pointers
indicating those attribute sets within the same record that
contain defined values.

13. The system of claim 11 wherein at least one of said
records is a folder type record, said folder type record
including at least one cell that contains data and a plurality
of pointers to a plurality of other records included within
said folder.

14. The system of claim 13 wherein said plurality of other
records included within said folder each includes a cell that
contains a pointer to said folder type record.

15. A data storage and retrieval system for a computer
having a memory, a central processing unit and a display,
comprising:

means for configuring said memory according to a logical

table, said logical table including:

a plurality of cells, each said cell having a first address
segment and a second address segment;

a plurality of attribute sets, each said attribute set
including a series of cells having the same second
address segment, each said attribute set including an
object identification number (OID) to identify each
said attribute set;

a plurality of records, each said record including a
series of cells having the same first address segment,
each said record including an OID to identify each

10

15

20

25

30

35

40

50

55

60

65

22

said record, at least one of said plurality of records
contains a cell having a pointer to a different record
and at least one of said plurality of records includes
information defining the type of a different record;
and

means for searching said table for said pointer.

16. A data storage and retrieval system for a computer
having a memory, a central processing unit and a display,
comprising:

means for configuring said memory according to a logical

table, said logical table including:

a plurality of cells, each said cell having a first address
segment and a second address segment;

a plurality of attribute sets, each said attribute set
including a series of cells having the same second
address segment, each said attribute set including an
object identification number (OID) to identify each
said attribute set; and

a plurality of records, each said record including a
series of cells having the same first address segment,
each said record including an OID to identify each
said record, wherein said OID’s are variable length.

17. A data storage and retrieval system for a computer
having a memory, a central processing unit and a display,
comprising:

means for configuring said memory according to a logical

table, said logical table including:

a plurality of cells, each said cell having a first address
segment and a second address segment;

a plurality of attribute sets, each said attribute set
including a series of cells having the same second
address segment, each said attribute set including an
object identification number (OID) to identify each
said attribute set;

a plurality of records, each said record including a
series of cells having the same first address segment,
each said record including an OID to identify each
said record; and

means for indexing data stored in said table.

18. The system of claim 17 wherein said indexing means
further comprises:

means for searching a plurality of cells within said table

for a key word, said searching means capable of

searching a attribute set containing unstructured text
and a attribute set containing structured data; and

means for inserting into said table a record corresponding
to said key word.

19. The system of claim 18 wherein:

said inserted record includes a cell that contains a pointer

to a searched cell that contains the keyword corre-

sponding to said inserted record; and

said searched cell that contains a keyword corresponding

to said inserted record contains a pointer to said

inserted record.

20. The system of claim 19 wherein said pointer to said
searched cell includes the OID’s of the attribute set and
record defining said searched cell.

21. The system of claim 19 wherein said searched cell
includes an anchor that marks said key word.

22. The system of claim 18 wherein one of said plurality
of records of said table includes a folder type record that
includes at least one pointer to said key word.

23. The system of claim 18 wherein said searching means
further includes:

means for searching for every word in a text cell;

means for searching for every entry in a attribute set;

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 73 of 81 Page ID #:80

6,163,775

23

means for searching for data based on automatic analysis;

and

means for searching for data marked by a user.

24. A data storage and retrieval system for a computer
having a memory, a central processing unit and a display,
comprising:

means for configuring said memory according to a logical

table, said logical table including:

a plurality of cells, each said cell having a first address
segment and a second address segment, at least one
of said cells includes a pointer to an index record;

a plurality of attribute sets, each said attribute set
including a series of cells having the same second
address segment, each said attribute set including an
object identification number (OID) to identify each
said attribute set;

a plurality of records, each said record including a
series of cells having the same first address segment,
each said record including an OID to identify each
said record; and

means for indexing data stored in said table.

25. The system of claim 24 wherein said indexing means
further comprises:

means for searching said table for a key word; and

means for creating an index record for said key word, said

index record including one or more pointers to a cell in
said table that contains said key word.

26. The system of claim 25 further including querying
means, said querying means further including:

index look-up means for locating said index record

according to the query of a user; and

record retrieval means for retrieving at least one cell in

said table pointed to by said located index record.

27. The system of claim 26 wherein said index look-up
means includes means for locating said index record pointed
to by said at least one retrieved cell.

28. The system of claim 27 wherein said index look-up
means and said record retrieval means each includes weigh-
ing means for weighing key words and retrieved cells
according to pre-defined search criteria.

29. The system of claim 27 wherein said index look-up
means and said record retrieval means each includes filtering
means for filtering key words and retrieved cells according
to pre-defined search criteria.

30. The system of claim 25 wherein said indexing means
further includes means for indexing external documents.

31. A method for storing and retrieving data in a computer
system having a memory, a central processing unit and a
display, comprising the steps of:

configuring said memory according to a logical table, said

logical table including:

a plurality of cells, each said cell having a first address
segment and a second address segment;

a plurality of attribute sets, each said attribute set
including a series of cells having the same second
address segment, each said attribute set including an
object identification number (OID) to identify each
said attribute set; and

a plurality of records, each said record including a
series of cells having the same first address segment,
each said record including an OID to identify each
said record, wherein at least one of said records has
an OID equal to the OID of a corresponding one of
said attribute sets, and at least one of said records
includes attribute set information defining each of
said attribute sets.

10

15

20

25

30

35

40

45

50

55

60

65

24

32. The method of claim 31 wherein said attribute set
information defines one of said attribute sets to contain
information for enabling determination of OIDs from text
entry.

33. The method of claim 31 wherein said one of said
attribute sets contains information including a search path
that references a folder, said folder including a group of
records of a similar type.

34. The method of claim 31 wherein said attribute set
information defines one of said attribute sets to contain
information for synchronizing two attribute sets recipro-
cally.

35. The method of claim 34 wherein said one of said
attribute sets contains information including reciprocal
pointers to said two attribute sets.

36. The method of claim 31 wherein:

at least one of said plurality of records includes informa-

tion defining the type of a different record; and

at least one of said plurality of records includes a cell that

contains a pointer to said record including record type

information.

37. The method of claim 31 wherein at least one of said
attribute sets defines cells that include a plurality of pointers
to other attribute sets within the same record, said pointers
indicating those attribute sets within the same record that
contain defined values.

38. The method of claim 37 wherein at least one of said
records is a folder type record, said folder type record
including at least one cell that contains data and a plurality
of pointers to a plurality of other records included within
said folder.

39. The method of claim 38 wherein said plurality of other
records included within said folder each includes a cell that
contains a pointer to said folder type record.

40. The method of claim 31 wherein said OID’s are
variable length and include data related to a session identi-
fication number and a timestamp.

41. A method for storing and retrieving data in a computer
system having a memory, a central processing unit and a
display, comprising the steps of:

configuring said memory according to a logical table, said

logical table including:

a plurality of cells, each said cell having a first address
segment and a second address segment;

a plurality of attribute sets, each said attribute set
including a series of cells having the same second
address segment, each said attribute set including an
object identification number (OID) to identify each
said attribute set;

a plurality of records, each said record including a
series of cells having the same first address segment,
each said record including an OID to identify each
said record, wherein at least one of said records has
an OID equal to the OID of a corresponding one of
said attribute sets, and at least one of said records
includes attribute set information defining each of
said attribute sets; and

searching said table for said pointer.

42. The method of claim 41 wherein at least one of said
attribute sets defines cells that include a plurality of pointers
to other attribute sets within the same record, said pointers
indicating those attribute sets within the same record that
contain defined values.

43. The method of claim 41 wherein at least one of said
records is a folder type record, said folder type record
including at least one cell that contains data and a plurality
of pointers to a plurality of other records included within
said folder.

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 74 of 81 Page ID #:81

6,163,775

25

44. The method of claim 43 wherein said plurality of other
records included within said folder each includes a cell that
contains a pointer to said folder type record.

45. A method for storing and retrieving data in a computer
system having a memory, a central processing unit and a
display, comprising the steps of:

configuring said memory according to a logical table, said

logical table including:

a plurality of cells, each said cell having a first address
segment and a second address segment;

a plurality of attribute sets, each said attribute set
including a series of cells having the same second
address segment, each said attribute set including an
object identification number (OID) to identify each
said attribute set; and

a plurality of records, each said record including a
series of cells having the same first address segment,
each said record including an OID to identify each
said record, wherein at least one of said records
contains a cell that contains a pointer to a different
record and at least one of said plurality of records
includes information defining the type of a different
record; and

searching said table for said pointer.

46. A method for storing and retrieving data in a computer
system having a memory, a central processing unit and a
display, comprising the steps of:

configuring said memory according to a logical table, said

logical table including:

a plurality of cells, each said cell having a first address
segment and a second address segment;

a plurality of attribute sets, each said attribute set
including a series of cells having the same second
address segment, each said attribute set including an
object identification number (OID) to identify each
said attribute set; and

a plurality of records, each said record including a
series of cells having the same first address segment,
each said record including an OID to identify each
said record, wherein said OID’s are variable length.

47. A method for storing and retrieving data in a computer
system having a memory, a central processing unit and a
display, comprising the steps of:

configuring said memory according to a logical table, said

logical table including:

a plurality of cells, each said cell having a first address
segment and a second address segment;

a plurality of attribute sets, each said attribute set
including a series of cells having the same second
address segment, each said attribute set including an
object identification number (OID) to identify each
said attribute set;

a plurality of records, each said record including a
series of cells having the same first address segment,
each said record including an OID to identify each
said record; and

indexing data stored in said table.

48. The method of claim 47 wherein the step of indexing
data stored in said table further comprises:

searching a plurality of cells within said table for a key

word, said cells containing unstructured text or struc-

tured data; and

inserting a record into said table corresponding to said key

words.

49. The method of claim 48 wherein:

said inserted record includes a cell that contains a pointer
to a searched cell that contains the keyword corre-
sponding to said inserted record; and

10

15

20

25

30

35

40

45

50

55

60

65

26

said searched cell that contains a keyword corresponding

to said inserted record contains a pointer to said

inserted record.

50. The method of claim 49 wherein said pointer to said
searched cell includes the OID’s of the attribute set and
record defining said searched cell.

51. The method of claim 49 wherein said searched cell
includes an anchor that marks said key word.

52. The method of claim 48 wherein one of said plurality
of records of said table includes a folder type record that
includes at least one pointer to said key word.

53. The method of claim 48 wherein said step of searching
a plurality of cells within said table for a key word further
comprises the steps of:

searching for every word in a text cell;

searching for every entry in a attribute set;

searching for data based on automatic analysis; and

searching for data marked by a user.

54. A method for storing and retrieving data in a computer
system having a memory, a central processing unit and a
display, comprising the steps of:

configuring said memory according to a logical table, said

logical table including:

a plurality of cells, each said cell having a first address
segment and a second address segment, at least one
of said cells includes a pointer to an index record;

a plurality of attribute sets, each said attribute set
including a series of cells having the same second
address segment, each said attribute set including an
object identification number (OID) to identify each
said attribute set;

a plurality of records, each said record including a
series of cells having the same first address segment,
each said record including an OID to identify each
said record; and

indexing data stored in said table.

55. The method of claim 54 wherein said step of indexing
data further comprises the steps of:

searching said table for a key word; and

creating an index record for said key word, said index

record including one or more pointers to a cell in said

table that contains said key word.

56. The method of claim 55 further comprising the steps
of:

locating said index record according to the query of a

user; and

retrieving at least one cell in said table pointed to by said

located index record.

57. The method of claim 56 wherein said step of locating
said index record further comprises the step of:

locating said index record pointed to by said at least one

retrieved cell.

58. The method of claim 57 wherein said step of locating
said index record further comprises the step of:

weighing key words and retrieved cells according to

pre-defined search criteria.

59. The method of claim 57 wherein said step of locating
said index record further comprises the step of:

filtering key words and retrieved cells according to pre-

defined search criteria.

60. The method of claim 54 wherein said step of indexing
data further comprises the step of:

indexing external documents.

#* #* #* #* #*

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 75 of 81 Page ID #:82

UNITED STATES DISTRICT COURT
CENTRAL DISTRICT OF CALIFORNIA

NOTICE OF ASSIGNMENT TO UNITED STATES MAGISTRATE, JUDGE FOR DISCOVERY

This case has been assigned to District Judge Dolly Gee and the assigned discovery
Magistrate Judge is Michael Wilner.

The case number on all documents filed with the Court should read as follows:

Cvl2- 7360 DMG (MRWx)

Pursuant to General Order 05-07 of the United States District Court for the Central

District of California, the Magistrate Judge has been designated to hear discovery related
motions,

All discovery related motions should be noticed on the calendar of the Magistrate Judge

NOTICE TO COUNSEL

A copy of this notice must be served with the summons and complaint on all defendants (if a removaf action is
filed, & capy of this notice must be served on all plaintiffs).

Subsefquent’documems must be filed at theifollowiné Iocaﬁon:

Western Division [_] Southern Division L] Eastern Division
312 N. Spring St., Rm. G-8 411 West Fourth St., Rm. 1-053 3470 Twelfth St., Rm. 134
Los Angeles, CA 90012 Santa Ana, CA 92701-4516 Riverside, CA 92501

Failure to file at the proper location will result in your documents being returned to you,

CV-18 (03/06) NCTICE OF ASSIGNMENT TO UNITED STATES MAGISTRATE JUDGE FOR DISCOVERY

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 76 of 81 Page ID #:83

AQ 440 (Rev, 06/12) Summons in a Civil Action

UNITED STATES DISTRICT COURT

for the
Central District of California

Plah:.m Cn%Acuquy 12 7 3 6 0 bm 6

MICROSOFT CORPORATION; FISERVY, INC.;
INTUIT, INC.; SAGE SOFTWARE, INC.; and JACK
HENRY & ASSOCIATES pni¢

R A g W RV N N N N e e

Defendani(s)
SUMMONS IN A CIVIL ACTION

To: (Defendant’s name and address)

A lawsuit has been ﬁled against you.

Wit@ays after service of this summons on you (not counting the day you received it) — or 60 days if you
are the United Stafes or a United States agency, or an officer or employee of the United States described in Fed. R. Civ.
P. 12 {a)(2) or (3} — you must serve on the plaintiff an answer to the attached complaint or 2 motion under Rule 12 of

the Federal Rules of Civil Procedure. The answer or motion must be served on the plaintiff or plaintiff’s attoraey,

whose name and address are:” Thomas J. Friel, Jr. {tfriel@coaley.com)
COOLEY LLP
101 California Street, Fifth Floor
San Francisco, CA 94111-5800

If you fail to respond, judgment by defanlt will be entered against you for the relief demanded in the complaint.
You also must file your answer or motion with the court,

CLERK OF COURT

AUG 27 202 /
Date: : : &‘/I/LL {1,

ngndture af Clerk or Deputy Clerk

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 77 of 81 Page ID #:84

AQ 440 (Rev, 06/12) Summons in a Clvil Action (Page 2)

Civil Action No.

: PROOF OF SERVICE]
(This section should not be filed with the court unless required by Fed, R. Civ. P. 4 () ':

This summons for (name of individual and title, if any)

was received by me on date)

[T I personally served the summons on the individual at (piace)

on (date) ; or

7 I left the summons at the individual’s residence or usual place of abode with (rame}

, a person of suitable age and discretion who resides there,

on (date) , and mailed a copy to the individual’s last known address; or

- (O 1 served the summons on ¢hame of individual) , who is

designated by law to accept service of process on behalf of (name of organization)

on (date) ;ar
3 T returned the suminons unexecuted because ;or
171 Other (specifiy):
My fees are $ for travel and § for services, for a total of § - 0.00

I declare under penalty of perjury that this information is true.

Date:

Server's signature

Printed name and title

Server’s address

Additional information regarding attempted service, efc:

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 78 of 81

AO 440 (Rev. 06/12) Summons in a Civil Action

Page ID #:85

UNITED STATES DISTRICT COURT

for the
Central District of California

ENFISH, LLC
Plaintifi{s) b &y 12@! 7 3
V. Civil Actio

MICROSOFT CORPORATION; FISERV, INC,;
INTUIT, INC.; SAGE SOFTWARE, INC.; and JACK
HENRY & ASSOCIATES; We

S S S N Nt e e N N N S N

Defendani(s)
SUMMONS IN A CIVIL ACTION

To: (Defendant’s name and address)

A lawsuit has been filed against you.

W@ays after service of this summons on you (hot counting the day you received it) — or 60 days if you
are the United Stafes or a United States agency, or an officer or employee of the United States described in Fed. R. Civ.
P. 12 (a)(2) or (3) — you must serve on the plaintiff an answer to the attached complaint or a motion under Rule 12 of

the Federal Rules of Civil Procedure. The answer or motion must be served on the plaintiff or plaintiff’s attorney,

whose name and address are: Thomas J. Friel, Jr. {tiriel@cooley.com)
COOLEY LLP
101 Caiifornia Street, Fifth Floor
San Francisco, CA 94111-5800

If you fail to respond, judgment by default will be entered against you for the relief demanded in the complaint..

You also must file your answer or motion with the court,

CLERK OF COURT

AUG 27 2012 MARILYN DAVIS

Date:

Signature of Cler :

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 79 of 81 Page ID #:86

AQ 440 (Rev. 06/12) Summons in a Civil Action (Page 2)

Civil Action No,

PROOF OF SERVICE
(This section should not be filed with the court unless required by Fed. R. Civ. P. 4 (1))

This summons for @ame of individual and title, if any)

was received by me on (dare)

Date:

0 1 personally served the summons on the individual at (piace)

on (date) ;or

(O Ileft the summons at the individual’s residence or usual place of abode with (rame)

, a person of suitable age and discretion who resides there,

o1l (date) , and mailed a copy to the individual’s last known address; or

O 1 served the summons on (rame of individual) , who is

designated by law to accept service of process on behalf of (rame of organization)

on (date} ; or
(3 I returned the summons unexecuted because Jor
(3 Other (specify):
My fees arc § for travel and § for services, for a total of § 0.00

I declare under penalty of perjury that this information is true,

Server’s signature

Printed name and title

Server's address

Additional information regarding attempted service, etc:

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 80 of 81 Page ID #:87

e sl

UNITED STATES DISTRICT COURT, CENTRAIL DISTRICT OF CALIFORNIA
CIVIL COVER SHEET

1{#) PLAINTIFFS (Check box if you are representing yoursalf 1)

ENFISH, LLC

DEFENDANTS
MICROSOFT CORPORATION, FISERY, INC,; INTUIT, INC,; SAGE

SOFTWARE, INC.; and JACK HENRY & ASSOCIATES

(b) Atwrneys (Firm Name, Address and Telephone Number, If vou are representing

yourself, provide same.)

Thomas J. Friet, Jr. (Cooley LLP, 101 California Street, Fifth Floor, San

Francisco, CA 94111-5800, (415) 693-2000)

Aftorneys (If Known)

Il. BASIS OF JURISDICTION {Place an X in one box only)

01 1.8 Government Plaintiff

02 U.5. Government Defendant

E!J Federal Question {U.S,
Government Not a Party)

004 Diversity {Indicate Citizenship

of Parties in Item 1)

IIl. CITIZENSHIP OF PRINCIPAL PARTIES - For Diversity Cases Only
(Place an X in one box for plaintiff and one for defendant.)

Citizen of This State

Citizen of Another §

PTF
a1

tate a2

Citizen or Subject of & Foreign Country (J 3

DEF
0l

a2

03

Incorporated or Principal Place

PTF
04

DEF
14

of Business in this Siate

Incorporated and Principal Place O3

s

of Business in Another State

Forgign Nation

0s 06

V., ORIGIN (Place an X in one box only.)

o1 Original
Proceeding

Appeilate Court

(32 Removed from D13 Remanded from 04 Reinstated or
State Court

Reopened

[J5 Transferred from another district (specifyy:. (16 Multi-
District
Litigation

7 Appeal to District
Judge from
Magisirate Judge

V. REQUESTED TN COMPLAINT: JURY DEMAND:; E{Yes {1 No (Check *Yes’ only if demanded in complaint,).
CLASS ACTION under FR.C.P, 23 Oes {No

3 MONLY DEMANDED IN COMPLAINT: §

VL CAUSE OF ACTION (Cite the U.S. Civil Statute under which you are filing and write a brief statement of cause. Do not cite jurisdictional statutes unless diversity.)
35U8.C §1 e seq.

VII, NATURE OF SUIT (Place an X in one box only.)

State Reapportionment

Insurance

PERSONAL INJURY

PERSONAL

N

O 71¢ Fair Labor Standards

D410 Antitrust 0120 Marine 0310 Airplane PROPERTFY 1510 Motions to Act

3430 Banks and Banking 0130 Miller Act 315 Airplane Product 3370 Other Fraud Vacate Sentence |1 720 Labor/Mgmt.

0450 Commerce/ICC [140 Negotiable Instrument Liability C}37! Trath in Lending Habeas Corpus Relations
Rates/ete. 0150 Recavery of D320 Assoult. Libel& |0 380 Other Petsonal |0 530 General (1730 Lebor/Mgmt,

(3460 Deportation Overpayment & Slander , Property Damage (1 535 Death Penaity Reporting &

[0 470 Racketeer Influcnced Enforcement of [133C Fed, Employers {1385 Property Damage {0 540 Mandamus/ Disclosure Act
and Corrupt Judgment Liability P Liabili Other 00740 Railway Labor Act
Organizations 1151 Medicare Act g gj(s) mar!nep duet il [{0550 Civil Rights 1790 Other Labor

(1480 Consumer Credit (3152 Recovery of Defaulted I i:gi]]if: Tocus (1422 Appeal 28 USC |0 555 Prison Condition Litigation

01490 Cable/Sat TV Student Loan {Excl. 0350 P:Ttxtor \B;ehicle 158 : 0791 Empl Ret, Inc.

810 Selective Service Yeterans) 0355 Motor Vehicle 0423 Withdrawal 28 .. Seeuri

(1850 Securities/Commodities/ |[[1 153 Recovery of Product Liability) SC 157 0610 Agriculture Te)x
Exchange Overpayment of 00360 Other Personal STV 00620 Other Food & {3,820 Copyrighus

{1875 Customer Challenge 12 Vetzran’s Benefits Injury 0441 Voting Drug E!(830 Patent
USC 3410 1160 Stockholders’ Suits (1362 Personal Injury. |C 442 Employment 1625 Drug Related

1890 Other Statutory Actions |01 190 Other Contract Med Malpractice | 443 Housing/Aceo- Seizure of

(1891 Agricultural Act [1 195 Contract Product [1365 Personal Injury- mmadations Property 21 USC |[J 861 HIA (139565

[0 892 Tconomic Stabilization Liability - Product Linbility {[J 444 Welfare 881 (3862 Black Lung (923)
Act Franchi 1368 Asbestos Persoral |0 445 American with |01 630 Liquor Laws 863 DIWC/DIWW

00893 Environmental Matters g Tmjury Product Disabilities - 0640 R.R. & Truck {405(g))

(] 894 Energy Allocation Aet 0210 Land Condemnation Liabilit Employment 1650 Airline Regs 1864 SSID Title XV1

(1895 Freedom of Info. Act |0 220 Foreclosure (ELE; 5|00 446 American with |1 660 Oceupational 1865 RSI(405(g))

[1900 Appeal of Fee Determi- |0 230 Rent Lease & Ejectment aturalization Disabilitics - Safety /Health in
nation Under Equal {1240 Torts to Land Application Other 1690 Other (1870 Taxes (U.S. Plaintiff
Access to Justice 01245 Tort Product Lighility {3463 Habeas Corpus- {1440 Other Civil or Defendant)

01950 Constitutionality of |1290 Al Other Real Property Alien Detaines Rights [J 871 IRS-Third Party 26
Siate Statutes 0463 Other Iminigration USC 7609

Aclions
b
'3
FOR OFFICE USE ONLY: Case Number: . » .
AFTER COMPLETING THE FRONT SIPE OF FORM CV-71, COMPLETE THE INFORMATION REQUESTED BELOW,
CV-71 (05/08) CIVIL COVER SHEET Page 1 0f 2

Case 2:12-cv-07360-JAK-MRW Document 1 Filed 08/27/12 Page 81 of 81 Page ID #:88

UNITED STATES DISTRICT COURT, CENTRAL MSTRICT OF CALIFORNIA
CIVIL COVER SHEET

VIII(a). IDENTICAL CASES: Has this action been previcusly filed in this eourt and dismissed, remanded or closed? ®@No O Yes
If yes, list case number(s):

VIII(b), RELATED CASES: Have any cases been previously filed in this court that are relaied to the present case? o O Yes
If yes, list case number(s):

A
Civil cases are deemed refated if' a previously filed case and the present case:. /" N

{Check all boxes thatapply) {J A. Arise from the same or closely related transactions, happenings, or events; or
{3 B. Call fer determination of the same or substantially relaled or similar questions of law and fact; or
O C. For other reasons would entail substantial duplication of tabor if heard by different judges; or
(1 D. -Invelve the same patent, trademark or copyright, and one of the factors identified above ina, b or ¢ also is present.

IX. VENUE: (When completing the following information, use an additional sheet if necessary.)

(a) List the County in this District; California County outside of this District, State if other than Califomnia; or Foreign Country, in which EACH named plaintiff resides.
(3 Check here if the government, its agencies or employees is a named olaintiff, [f this box is checked, go to item (b).

County in this District:* California County outside of this District; State, if other than California; or Foreign Country

Los Angeles Caunty

(b) List the County in this District, Catifornia County outside of this District; State if other than Catifornia; or Foreign Country, in which EACH named defendant resides.
0 Check here if the government, its agencies or employees is a named defendant, If this box is chocked, go to item {c).

County in this District:* California County outside of this District, State, if other than California; or Foreign Country

= B, RS
““Tm"l‘tiu‘\g: Ko y!

{c} Ldist the County in this District, California County outside of this District; State if other than (,ahfomi—%rgretgi*&”
Note: In land cendemuation cases, use the locativn of the traet of land invelved,

County in this Distriet:* California County outside of this Distriet; State, if other than California; or Fereign Couritry

Los pnaeLes Cauwty /

* Los Angeles, Orange, San Bernnrdino, 1 ?Fﬁig«:, Vez‘urg Santa ()T ara, or Sitn Luis Obispe Couaties
Note: In land condesnation cases, use the Ibcation of the Jract of land inyolyed ﬁ

X. §IGNATURE OF ATTORNEY (OR P% PER): \E /{;MAMX g /{/ 3 Date August 24, 2012

Notive to Connsel/Parties: The CV-7 IX(JS#TJ{’:WH Cover Sheet un(hhe information-contained herein neither replace nor supplement the filing and service of pleadings

or other papers as required by law. This form, approved by the Judicial Conference of the United States in September 1974, is required pursuant to Local Rule 3-1 is not filed

but is used by the Clerk of the Court for the purpose of statistics, venue and initiating the civil docket sheet. (For more detailed instructions, see separate instructions sheet.)
L

Key to Statistical codes relating to Social Security Cases:

Nature of Suit Code Abbreviation Substantive Stuiement of Cause of Action

861 HilA All cluims for heaith insurance benefits (Medicare) under Title 18, Part A, of the Social Security Act, a3 amended.
Also, include claims by hospitals, skilled nursing facilities, ete., for certification as providers of services under the
program. (42 U.5.C. 1935FF(5))

862 BL All claims for “Blat.k Lung” benefits under Title 4, Part B, of the Federal Coal MmeIIcalth and Safety Act ol 1969.
(30 0.8.C. 923)

863 DIwe All claims filed by insured workers for disability insurance benefits under Title 2 of the Social Security Act, as
amended; plus all claims fited for child’s insurance benefits based on disability. (42 U.5.C. 403(g))

863 DIWW Al claims filed for widows or widowers insuranee benefits based on disabiiity under Title 2 of the Social Seourity
Aci, as amended, (42 U.S.C 405(g))

864 851D All claims for supplemental security income payments based upon disability filed under Title 16 of the Social Security
Acl, aa amended. .

865 RS1 All claims for.retirement (old age) and survivors benefits under Title 2 of the Social Securily Act, as amended, (42
US.C. (g))

CV-71 (05/08) CIVIL COVER SHEET . Page 2 of 2

	001- 2012-09-27 12-7360 Enfish Complaint
	002- 12-7360 Exhibit A
	003- 12-7360 Exhibit B
	004- 12-7360 Notice to Counsel re Assignment
	005- 12-7360 DMG (MRWx) Summons
	006- 12-7360 Civil Cover Sheet

