O &0 3 & n b

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

SPENCER HOSIE (CA Bar No. 101777)

shosie@hosielaw.com PR]G
DIANE S. RICE (CA Bar No. 118303) 4 L]N4
drice@hosielaw.com o E‘ C)L
DARRELL R. ATKINSON (CA Bar No. 280564) S 75
datkinson@hosielaw.com I?l" CHap x’ Q/J
HOSIE RICE LLP WogseRe (R0 | W g
th ’?/UB/S’ 8 ,ﬁif
600 Montgomery Street, 34" Floor s @é’f Im@
San Francisco, CA 94111 ’54//
(415) 247-6000 Tel. A
(415) 247-6001 Fax
Attorneys for Plaintiff
MASTEROBJECTS, INC.
DMR
UNITED STATES DISTRICT COURT
FOR THE NORTHERN DISTRICT 6 CALIF Oﬁ]ﬁﬁ 4 € @ 4
V do 4o
MASTEROBIJECTS, INC., Case No.
Plaintiff, COMPLAINT AND DEMAND FOR
JURY TRIAL
V.
GOOGLE INC,,
Defendant.

COMPLAINT AND JURY DEMAND

Case No.

o = T L S N S

N N NN NN e e e e e e e e

Plaintiff MasterObjects, Inc. (“MasterObjects™ or “Plaintiff”) hereby files its
complaint against defendant Google Inc. (“Google” or “Defendant™), for patent infringement.
For its complaint, Plaintiff alleges, on personal knowledge as to its own acts and on
information and belief as to all other matters, as follows:

PARTIES

1. MasterObjects is a corporation organized under the laws of the State of
Delaware, with its principal place of business in San Francisco, California, prior to January 1,
2010, and now Maarssen, Netherlands.

2. Google is a corporation organized under the laws of the State of Delaware,

with its principal place of business in Mountain View, California.

JURISDICTION AND VENUE

3. This complaint asserts a cause of action for patent infringement under the
Patent Act, 35 U.S.C. § 271. This Court has subject matter jurisdiction over this matter by
virtue of 28 U.S.C. § 1338(a). Venue is proper in this Court by virtue of 28 U.S.C. § 1391(b)
and (c) and 28 U.S.C. § 1400(b), in that Google may be found in this district, has committed
acts of infringement in this district, and a substantial part of the events giving rise to the
claim occurred in this district.

4. This Court has personal jurisdiction over Google because Google has a place
of business in, and provides infringing products and services in, the Northern District of
California.

INTRADISTRICT ASSIGNMENT

5. Pursuant to Civil LR 3-2(c), this case should be subject to district-wide

assignment because it is an Intellectual Property Action.

COMPLAINT AND JURY DEMAND 1 Case No.

O 00 NN A bW N

N N NN NN N N = e e e e e e ek e
g\]O\M-hWN’—‘O\OOO\]C\MAwN’—‘O

L STATEMENT OF FACTS

A. The Plaintiff MasterObjects and its Instant Search Technology

6. From the earliest days of Internet search, the search process has been
hampered by what is known as the “request-response loop.” The user would type a query
into a static input field, click a “submit™ or “search” button, wait for the query to be sent to a
remote database, wait for the result set to be returned to the server, wait for the server to
build an HTML page, wait for the page to load into the browser, and then wait for the client
window to be redrawn so that the result set could be viewed.

7. Inherent in the “request-response loop” is the pragmatic reality that, if the
result set did not match user expectations, the entire process had to be repeated, recursively,
until the results satisfied the user.

8. Iﬁ 2000, Mark Smit, the founder of Plaintiff MasterObjects, invented a novel
approach to search, an approach that solved the “request-response loop” problem. Smit
envisioned a system where a dynamic and inteiligent search field would immediately begin
submitting a search query as soon as the user began typing characters into the query field.
Using asynchronous communications technology, as the user typed more characters, the
results in the drop-down box would change dynamically, becoming increasingly relevant as
the string of characters lengthened. In essence, search would become effective and granular
at the character level, not the block request submit level. More, this would happen real-time,
as the user typed in characters, and not be dependent on hitting a “search” or “submit
button.”

0. MasterObjects’ U.S. Patent No. 8,539,024 (the ““024 Patent™), entitled
“System and Method for Asynchronous Client Server Session Communication,” issued on

September 17, 2013. Under the claims, a client object sends query messages to the server

COMPLAINT AND JURY DEMAND 2 Case No.

O &0 N N AW e

NN NN N N e e e e et e e e e e

system, with the term “query messages” being explicitly defined by the language of the
claims themselves as a lengthening string of characters. See Claim 1, ‘024 Patent (“a server
system, including one or more computers, which is configured to receive query messages
frbm a client object . . . whereby the query messages represent the lengthening string).
A true and correct copy of the ‘024 patent is attached hereto as Exhibit A. MasterObjects
makes and sells products that practice the ‘024 patent, and MasterObjects has been selling
these products from approximately 2004 forward. MasterObjects remains a going concern
today, selling products that practice its patented technology.

B. The Infringing Google Products.

10. Google products infringe the claims of MasterObjects’ ‘024 patent as set out
below.

Google Instant

11. On September 8, 2010, Google launched Google “Instant.” Google
introduced Google Instant “as a new search enhancement that shows results as you type.”
Unlike the prior technology, where “you had to type a full search term, hit return, and hope
for the right result,” Google Instant uses asynchronous communication technology to begin
sending results to the user as the user types, character-by-character. Google describes the
benefit of Google Instant as follows:

The most obvious change is that you get to the right content
much faster than before because you don’t have to finish
typing your full search term, or even press “search.”
Another shift is that seeing results as you type helps you
formulate a better search term by providing instant
feedback. You can now adapt your search on the fly until
the results match exactly what you want. In time, we may

wonder how search ever worked in any other way.

Google: About Google Instant, http://www.google.com/instant.

COMPLAINT AND JURY DEMAND 3 Case No.

O 0 3 N R W

NN N N N N NN N /= e s e s s
0 I N N bW RO YO N R W RO

12. In this fashion, Google Instant provides search results to users as the users
type the queries. Search results are changed based on the additional characters inputted by
the user, that is, as the query character string lengthens.

13. Google executives described Google Instant as representing “a fundamental
shift in search,” and otherwise recognized the innovative features of Google Instant in its
release in September 2010.

Google Suggest

14. Google Suggest anticipates a user’s query as the user types in individual
characters in the query box, and asynchronously suggests complete queries that match the
partial query being typed. As the user starts typing in the search box, the client
asynchronously communicates with the server, and the server surveys records of previous
searches to suggest potentially matching queries to the user.

15. Google describes its Google Suggest functionality as follows:

As you type, Google’s algorithm predicts and displays
search queries based on other users’ search activities.
These searches are algorithmically determined based on a
number of purely objective factors (including popularity of
search terms) without human intervention. All of the
predicted queries shown have been typed previously by
Google users.

Google Web Search: Features: Autocomplete.

16. The benefits provided by Google Suggest parallel those provided by Google
Instant, e.g., speeding the search process, lessening user typing, catching mistakes mid-query,

and otherwise increasing user efficiency.

Google Client Access Points for Search

17. Google makes, sells and distributes numerous client applications and

platforms to provide access to its search products, including search suggestions. These

COMPLAINT AND JURY DEMAND 4 Case No.

O &0 1 N A~ W

NN N N N o e e e e e e e d e
gggn‘ﬁbww»—toom\]mmaww»—o

include the Chrome web browser, the Chrome operating system, the Android operating
system, the Google Toolbar web browser application for Internet Explorer and Firefox, and
Google Search applications for the iOS and Windows Phone platforms. Each of these client
applications and platforms forms part of systems and methods that infringe the ‘024 Patent
by, for example, returning increasingly relevant search suggestions in response to
lengthening query strings input by a user.

Quick Search Box For Google Android

18. In October 2009, Google released an instant search functionality for its
Android mobile phone platform, known as the “Quick Search Box.”
19. As Google describes the function benefits of its quick search box:

Since keystrokes are at a premium when you’re typing on
your phone, Quick Search Box provides suggestions as you
type, making it easy to access whatever you’re looking for
by typing just a few characters. Rather than giving you one
search box for the web and another for your phone, QSB
provides one single search box to let you search content on
your phone, including apps, contacts, and browser history,
as well as content from the web, like personalized search
suggestions, local business listings, stock quotes, weather,
and flight status, all without opening the browser.

http://googlemobile.blogspot.com/2009/10/quick-search-box-for-android-search.html

Google Knew Of The MasterObjects Patent

20. In June of 2008, MasterObjects patent counsel sent to Marissa Mayer, a
Google Vice-President responsible for Google search products, and Kent Walker, Google’s
General Counsel, a letter introducing Google to MasterObjects. A full and complete copy of
this letter is attached as Exhibit B. The letter outlined MasterObjects’ business, described
MasterObjects’ technology, referenced MasterObjects’ website, and, included as

attachments, then pending MasterObjects’ applications. The letter closed by referencing a

COMPLAINT AND JURY DEMAND 5 Case No.

O 00 NN N b W -

N N N N NN e e e e e e e e e

potential merger or acquisition opportunity, or, failing that, a license.

21. Google forwarded this notice letter to senior in-house patent counsel, Laura
Majerus. In 2008, Ms. Majerus was one of an intimate group of in-house Google patent
prosecution lawyers. She received responsibility for Google “personalized search” patent
applications in 2008. In this capacity, she worked with two other Google in-house patent
lawyers, Tim Pham and Ben Lee. Mr. Pham and Mr. Lee also had responsibility for search
patent applications at Google in 2008. All three were on the same e-mail alias, and all three
received e-mails sent to this group alias.

22. Ms. Majerus reviewed MasterObjects’ letter, clicked through to the
MasterObjects website and reviewed its contents. She also reviewed the attached patent
applications. She then forwarded the letter to in-house business development executive Mary
Himinkool. The transmittal email summarized work that Google should do in connection
with evaluatiné the MasterObjects purchase opportunity.

23. Shortly after receiving the erﬁail, Ms. Himinkool forwarded the material to
senior Google business development executive Mike Pearson, and copied Ms. Majerus on
this response.

24. In 2008, Ms. Majerus became the in—hou_se Google patent lawyer responsible
for personal search patent prosecutions. Google Suggest, and ultimately Google Instant,
were search applications, and Ms. Majerus was the Google lawyer responsible for the
prosecution of related Google search patent applications for at least part of calendar year
2008 through at least 2010.

25. InJanuary 2011, Elspeth White joined Google as an in-house patent lawyer.
She inherited responsibility for several existing Google search patent applications, and

authorized the filing of numerous additional Google search applications, including three

COMPLAINT AND JURY DEMAND 6 Case No.

O 0 3 N hA W e

NN NN N N N N = e e e e e e e e e
g\]O\U’I-&wNHO\OOO\]O\U’IAUJNHO

explicitly relating to Google Instant, as set out below.

26. Asthe responsible in-house patent lawyers, Ms. Majerus and Ms. White
supervised outside Google patent prosecution on the personalized search patents, including
Gary S. Williams of the Morgan Lewis & Bockius firm and Paul E. Franz of the Fish &
Richardson firm.

27. In2004, Google filed an application for a predictive search technology,
known as “Anticipated Query Generation and Processing in a Search Ehgine,” now issued as
U.S. Patent No. 7,836,044. Google employee Sep Kamvar was the lead inventor. Mr.
Williams filed and prosecutéd this application.

28. On August 28, 2008, just weeks after Ms. Majerus reviewed the
MasterObjects applications and materials, Mr. Williams amended the claims in the then long
outstanding and static Kamvar application. With this amendment, Google emphasized
“Instant search,” i.e., retrieving instant search results on the basis of partial and predicted
queries. This is exactly the technology covered by the MasterObjects letter and applications,
reviewed by Google counsel mere weeks earlier. Prior to that time, the claims in the Kamvar
patent had remained largely unchanged in substance for four years.

29. By late February 2012, Google had filed four additional Kamvar applications,
all covéring aspects of “instant search.” In these prosecutions, Google filed numerous
Information Disclosure Statements. Prior to April 2012, Google did not disclose to the PTO
the existence of the prior MasterObjects references.

30. Google did not forward to its outside personal search prosecution counsel,
Gary S. Williams, the June 2008 MasterObjects letter. Mr. Williams saw that letter for the
first time when MasterObjects’ counsel marked it as an exhibit at Mr. Williams’ deposition

in January 2013. Nor did Google counsel inform Mr. Williams about the MasterObjects

COMPLAINT AND JURY DEMAND 7 Case No.

O 0 0 N U A W=

N N NN N NN = e e e e e e
S)OSO\M-BWNHO\DOO\]O\U’IAUJN)—‘O

references prior to April 2012.

31. Mr. Williams, in fact, first learned of the MasterObjects references on April
23,2012, when Google in-house patent lawyer Elspeth White told him about the by then
three MasterObjects patents, and asked Williams to file an IDS in a continuing examination
on the very next day on an “urgent” basis. Ms. White knew about the MasterObjects patents
and patent litigation, and knew the litigation related to instant search, no later than early
April 2012. Mr. Williams testified that he would have disclosed the MasterObjects
references long earlier had he been aware of those references. After being told of the
references, a lawyer in Mr. Williams’ firm, David Sanker, reviewed the patents, concluded
that they were material, and outside counsel disclosed the references in a series of IDS’s filed
in pending Kamvar family applications on April 30, 2012 (but only the Kamvar family).

32. In August 2010, Google filed a new provisional captioned “Predictive Query
Completion and Predictive Search Results.” The first named inventor was Othar Hansson,
who was a principal engineer on the Google Instant project. This application followed from
work Hansson and others had done on Google Instant.

33. In August 2011, Google filed three new patent applications depending from
the 2010 “Predictive Query” Google Instant provisional.

34. TFrom the date of the August 2011 filing through the end of calendar year
2012, Google filed numerous Information Disclosure Statements in the three Google Instant
applications. None of these Information Disclosure Statements disclosed the MasterObjects
patents, although the Google lawyer supervising the prosecutions, Ms. Elspeth White, was
fully aware of the references and indeed the underlying MasterObjects instant search patent
litigation, no later than early April 2012.

35. Google outside counsel conducted an applicant initiated interview summary

COMPLAINT AND JURY DEMAND 8 Case No.

E- N VS)

O 0 N N W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

with the PTO examiner on November 6, 2012 in the *134 and 135 applications, two of .the
Google Instant applications. In this twin application interview, as set forth in the PTO
interview summary, Google counsel emphasized that none of the disclosed prior art revealed
the novel elements of the claim. The MasterObjects references, which Google had carefully
not disclosed to the Office, however explicitly described and anticipated the claimed Google
technology.

36. The PTO issued Notices of Allowances in these two of the Google Instant
applications in December 2012, calling out the points of novelty communicated by Google
counsel in prior Office responses and the examiner interview. The allowance date was set as
of March 25, 2013.

37. After considerable debate, Google agreed to produce Ms. Elspeth White for
deposition on Tuesday, March 19, 2013. On the Thursday and Friday of the week prior,
March 14 and March 15 respectively, Google outside counsel Paul E. Franz filed a Request
for Continuing Examination and a new IDS form in two of the three Google Instant
applications, specifically, the two allowed in December. For the first time, this post-
allowance IDS disclosed the MasterObjects references.

38. Inprosecuting its five Kamvar applications, several of which have now issued
as patents, and the three Hansson Google Instant applications, Google represented to the PTO
that its instant search claims were novel and patentable over all prior art, including the central
piece of prior art Google now asserts as invalidating against the long prior but substantially
identical MasterObjects patents.

39. Atno time did in-house Google patent counsel responsible for the Kamvar

and Hansson prosecution assess or consider whether Google Instant infringed the long-prior

COMPLAINT AND JURY DEMAND 9 Case No.

O 0 N N B W

NN N NN N N = e e e e e e e e
QBO\UIAU)N'—‘O\DOO\]O\UIAUJN'—‘O

MasterObjects patents. Instead, they willfully turned a blind eye to that possibility, and
instead vigorously pursued competitive Google claims.
COUNT I

PATENT INFRINGEMENT
(The ‘024 Patent)

40. MasterObjects incorporates and re-alleges, as though fully set forth herein, the
allegations contained in paragraphs 1-39 above.

41. On September 17, 2013, United States Patent No. 8,539,024, entitled “System
and Method for Asynchronous Client Server Session Communication,” was duly and legally
issued. A true and correct copy of the ‘024 patent is attached hereto as Exhibit A.

42. Mark Smit and Stefan van den Oord are the inventors of the *024 instant
search patent. The 024 Patent has been assigned to Plaintiff. Plaintiff MasterObjects is the
sole legal and rightful owner of the ‘024 Patent.

43. Google makes, uses, and sells products that infringe the ‘024 Patent, including
the products described in Paragraphs 10-19 above. This conduct constitutes infringement
under 35 U.S.C. § 271(a).

44. Prior even to the filing of the application that led to the ‘024 Patent, Google at
minimum understood that there was a high probability that the MasterObjects search
technology was patented and took deliberate steps to avoid knowing these and related facts,
including ignoring repeated notices of pending applications related to the application that led
to the ‘024 Patent, all in willful blindness to MasterObjects’ patent portfolio and the
infringing nature of Google’s products with regards to that portfolio. This notice included
the June 2008 letter, Exhibit B, as well as a related email sent to the then Google CEO, Eric

Schmidt, in September 2008. A true and correct copy of this email is attached as Exhibit C.

COMPLAINT AND JURY DEMAND 10 Case No.

O oo ~J (=) W W [\ —_

N N NN N N N NN e e e e et e e e
0 1 N Rk W= O YO e NN W N = O

Google continues to make, use and sell products that infringe the ‘024 Patent. Defendant’s
infringement of the ‘024 Patent is willful.

45. As aresult of the infringement by Google, Plaintiff has been damaged, and
will continue to be damaged, until this Defendant is enjoined from further acts of
infringement.

46. Google will continue to infringe unless enjoined by this Court. Plaintiff faces
real, substantial and irreparable damage and injury of a continuing nature from infringement
for which Plaintiff has no adequate remedy at law.

PRAYER FOR RELIEF

WHEREFORE, Plaintiff prays for entry of judgment:

A. that the ‘024 Patent is valid and enforceable;

B. that Defendant has infringed one or more claims of the ‘024 Patent;

C. that Defendant’s infringement of the claims of the ‘024 Patent was willful;

D. that Defendant account for and pay to Plaintiff all damages caused by the
infringement of the ‘024 Patent, which by statute can be no less than a reasonable royalty;

E. that this Court adjudicate Defendant’s infringement of the claims of the ‘024
Patent as willful, that the damages to Plaintiff be increased by three times the amount found
or assessed pursuant to 35 U.S.C. § 284, and that the Defendant account for and pay to
Plaintiff the increased amount;

F. that this Court issue a preliminary and final injunction enjoining Google, its
officers, agents, servants, employees and attorneys, and any other person in active concert or
participation with them, from continuing the acts herein complained of, and more
particularly, that Google ahd such other persons be permanently enjoined and restrained from

further infringing the ‘024 Patent;

COMPLAINT AND JURY DEMAND 11 Case No.

O 0 3 &N o s W

NN NN N e e e e e i emd e e e

G. that Plaintiff be granted pre-judgment and post-judgment interest on the
damages caused to them by reason of Defendant’s infringement of the ‘024 Patent;

H. that this Court require Defendant to file with this Court, within thirty (30)
days after entry of final judgment, a written statement under oath setting forth in detail the
manner in which Defendant has complied with the injunction;

L that this be adjudged an exceptional case and the Plaintiff be awarded its
attorney’s fees in this action pursuant to 35 U.S.C. § 285;

J. that this Court award Plaintiff its costs and disbursements in this civil
action, including reasonable attorney’s fees; and

K. that Plaintiff be granted such other and further relief as the Court may
deem just and proper under the current circumstances.

Dated: September 17, 2013 Respectfully submitted,

SPENCE IE (CA Bar No. 101777)
shosief@hosielaw.com
DIANE S. RICE (CA Bar No. 118303)

drice@hosielaw.com

DARRELL R. ATKINSON (CA Bar No. 280564)
datkinson@hosielaw.com

HOSIE RICE LLP

Transamerica Pyramid

600 Montgomery Street, 34™ Floor

San Francisco, CA 94111

(415) 247-6000 Tel.

(415) 247-6001 Fax

Attorneys for Plaintiff
MasterObjects, Inc.

COMPLAINT AND JURY DEMAND 12 Case No.

O 0 9 N b

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

DEMAND FOR JURY TRIAL

Plaintiff, by its undersigned attorneys, demands a trial by jury on all issues so triable.

Dated: September 17,2013

COMPLAINT AND JURY DEMAND

Respectfully submitted,

-

SPENC OSIE (CA Bar No. 101777)
shosie@hosielaw.com

DIANE S. RICE (CA Bar No. 118303)
drice@hosielaw.com

DARRELL R. ATKINSON (CA Bar No. 280564)
datkinson@hosielaw.com

HOSIE RICE LLP

Transamerica Pyramid

600 Montgomery Street, 34" Floor

San Francisco, CA 94111

(415) 247-6000 Tel.

(415) 247-6001 Fax

Attorneys for Plaintiff
MasterObjects, Inc.

13 Case No.

EXHIBIT A

a2 United States Patent

Smit et al.

O O g AL
US008539024B2

(10) Patent No.:

@5) Date of Patent:

US 8,539,024 B2
*Sep. 17, 2013

(59

(75)

(73)
(*)

1)
(22)
(65)

(63)

(51)

(52)

(58)

(56)

SYSTEM AND METHOD FOR 5444823 A 8/1995 Nguyen
ASYNCHRONOUS CLIENT SERVER SESSION 2,2'573,’5]3 : 1 21;; }ggg Eﬁng etal
I\ﬂ\'{ s » SC.
co UNICATION 5715443 A 2/1998 Yanagihara
Inventors: Mark H. Smit, Maarssen (NL); Stefan 2’7]‘2‘;’23 : g;iggg Sukushlma
L] (] argas
M. van den Oord, Best (NL) 5765168 A 6/1998 Burrows
. . 5,778,381 A 7/1998 Sandifer
Assignee: MasterObjects, Inc. (NL) 5802,292 A 9/1998 Mogul
5805911 A * 9/1998 Millerc.cconvvernennee. 715/234
Notice: ~ Subject to any disclaimer, the term of this 5845300 A * 12/1998 Comeretal. 715/203
patent is extended or adjusted under 35 5,896,321 A 4/1999 Miller
U.S.C. 154(b) by 0 days. 5978800 A 11/1999 Yokoyama et al.
. 6,006,225 A 12/1999 Bowman et al.
This patent is subject to a terminal dis- .
claimer. (Continued)
FOREIGN PATENT DOCUMENTS
Appl. No.: 13/366,905
EP 1054329 11/2000
o JP 8075272 5/1983
Filed: Feb. 6,2012 P H10-105562 4/1998
JP 2001-154789 6/2001
Prior Publication Data
US 2012/0284329 A1 Nov. 8§, 2012 OTHER PUBLICATIONS
Related U.S. Application Data Andrew Clinick, Remote Scripting, Apr. 12, 1999, MSDN, pp. 1-6.*
Continuation of application No. 09/933,493, filed on (Continued)
Aug. 20, 2001, now Pat. No. 8,112,529.
Int. CL Primary Examiner — Barbara Burgess
GO6F 15/16 (2006.01) (74) Attorney, Agent, or Firm — Fliesler Meyer LLP
US. CL
USPC ... 709/203; 709/224; 709/227; 709/228;
70020 (57 ABSTRACT
Field of Classification Search s .
USPC oo 709/203, 217, 219, 224, 227,228, Lhe invention provides a session-based bi-directional multi-
709/229 tier cher_lt—server asynchronous. information database search
See application file for complete search history. am.i retrieval system fqr sending a character-by-character
string of data to an intelligent server that can be configured to
References Cited immediately analyze the lengthening string character-by-
character and return to the client increasingly appropriate
U.S. PATENT DOCUMENTS database information as the client sends the string.
4,255,796 A 3/1981 Gabbe et al.
4,648,044 A 3/1987 Hardy
4,823,310 A 4/1989 Grand 37 Claims, 17 Drawing Sheets

-

h 2
23 26— Vil il
kY A

U
()
Systicalar

218

20, 322

e

M
221,
o] [t
| Arcoms Modwie| |-besed Curive

Corarns Cireel

Service

US 8,539,024 B2
Page 2

(56)

6,070,184
6,078,914
6,169,986
6,253,228
6,275,820
6,278,992
6,292,806
6,347312
6,356,905
6,381,593
6,397,212
6,408,294
6,421,675
6,434,547
6,484,162
6,496,833
6,539,379
6,539,421
6,564,213
6,578,022
6,629,092
6,629,132
6,633,874
6,647,383
6,671,681
6,687,696
6,697,849
6,704,727
6,704,906
6,732,090
6,772,150
6,778,979
6,801,190
6,820,075
6,823,514
6,829,607
6,832,218
6,859,908
6,862,713
6,912,715
6,915,279
6,928.425
6,981,215
7,000,179
7,039,635
7,043,530
7,058,944
7,089,228
7,100,116
7,117,432
7,177,818
7,181,459
7,185,271
7,216,292
7,240,045
7,251,775
7,284,191
7,308,439
7,383,299
7,424,510
7,467,131
7,499,940
7,512,654
7,526,481
7,559,018
7,610,194
7,647,225
7,647,349
7,672,932
7,676,517
7,769,757

7,840,589

References Cited

U.S. PATENT DOCUMENTS

A

A

Bl
Bl
Bl
Bl
Bl
B1
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
B2
Bl
Bl
Bl
B2
Bl
B2
Bl
B2

5/2000
6/2000
1/2001
6/2001
8/2001
8/2001
9/2001
2/2002
3/2002
4/2002
5/2002
6/2002
7/2002
8/2002
11/2002
12/2002
3/2003
3/2003
5/2003
6/2003
9/2003
9/2003
10/2003
11/2003
12/2003
2/2004
2/2004
3/2004
3/2004
5/2004
8/2004
8/2004
10/2004
11/2004
11/2004
12/2004
12/2004
2/2005
3/2005
6/2005
7/2005
8/2005
12/2005
2/2006
5/2006
5/2006
6/2006
8/2006
8/2006
10/2006
2/2007
2/2007
2/2007
5/2007
7/2007
7/2007
10/2007
12/2007
6/2008
9/2008
12/2008
3/2009
3/2009
4/2009
7/2009
10/2009
1/2010
1/2010
3/2010
3/2010
8/2010
8/2010
11/2010
11/2010
11/2010

Blount

Redfern

Bowman

Ferris

Navin-Chandra
Curtisetal. 707/711
Sandifer
Byme
Gershman et al.
Yano
Biffar
Getchius
Ryan
Mishelevich et al.

Edlund

Goldberg et al.

Voraetal.ccoevrvvvvecnenn. 171
Appelman et al.
Ortegaetal.ccececnnne. 1/1
Foulger

Berke

Ganguly

Nusbickel

August

Emens et al.

Hofmann

Carlson

Kravets

Yankovich et al.
Shanahan et al.

‘Whitman

Grefenstette et al.
Robinson et al.

Shanahan et al.

Degenaro

Tafoyaetal.cccooocecene. 1/1
Emens

Clapper

Kraft

Gao

Hogan et al.

Grefenstette et al.
Lindhorst

Yankovich et al.

Morgan

Isaacs

Sponheim

Amold

Shafrir

Shanahan et al.

Nair

Grant

Lee

Snapper

Bushee

Astala et al.

Grefenstette et al.

Baird

Hailpem et al. 709/203
Gross et al.

Gharachorloo

Gibbs

Tafoya et al.

Cusson

Matti

Bradford

Bennett et al.

Hubert et al.

Hood

Hurst-Hiller

Grefenstette et al.

Forstall

Kamvar et al.

Smith

Holt

........... 705/26.8

7,856,432 B2 12/2010 Tesch et al.
7,890,516 B2 2/2011 Zarzar Charur et al.
7,890,526 Bl 2/2011 Brewer
7,900,228 B2 3/2011 Stark et al.
7,941,819 B2 5/2011 Stark et al.
8,131,258 B2 3/2012 Smith et al.
8,135,729 B2 3/2012 Brewer et al.
2001/0049676 Al 12/2001 Kepler
2002/0049756 Al1* 4/2002 Chuaetal.ccocvenene. 707/4
2002/0065879 Al 5/2002 Ambrose et al.
2002/0069122 Al 6/2002 Yun et al.
2002/0129012 A1* 9/2002 Greenccccoivevvivreennrns 707/3
2002/0138571 Al 9/2002 Trinon et al.
2002/0138640 Al 9/2002 Razetal.
2003/0033288 Al 2/2003 Shanahan et al.
2003/0041058 Al 2/2003 Ibuki et al.
2003/0061200 Al 3/2003 Hubert et al.
2003/0071850 Al 4/2003 Geidl
2003/0120554 Al 6/2003 Hogan et al.
2004/0093562 Al 5/2004 Diorio et al.
2004/0141011 Al 7/2004 Smethers et al.
2004/0142720 Al 7/2004 Smethers
2004/0205448 Al 10/2004 Grefenstette et al.
2005/0022114 Al 1/2005 Shanahan et al.
2005/0055438 Al 3/2005 Matti
2005/0120005 Al 6/2005 Tesch et al.
2005/0283468 Al 12/2005 Kamvar et al.
2006/0004843 Al 1/2006 Tafoya et al.
2006/0026636 Al 2/2006 Stark et al.
2006/0026638 Al 2/2006 Stark et al.
2006/0031880 Al 2/2006 Stark et al.
2006/0041927 Al 2/2006 Stark et al.
2006/0184546 Al1* 8/2006 Yano etal.cccooeueeee 707/10
2007/0050351 Al 3/2007 Kasperski et al.
2007/0050352 Al 3/2007 Kim
2007/0143262 Al 6/2007 Kasperski
2007/0288648 Al 12/2007 Mehanna et al.
2008/0071561 Al 3/2008 Holcombe
2008/0147788 Al 6/2008 Omoigui
2010/0267362 Al 10/2010 Smith et al.
2011/0106831 Al 5/2011 Zarzar Charnur et al.
2011/0173217 Al 7/2011 Kasperski
2011/0320472 Al 12/2011 Griffith et al.
OTHER PUBLICATIONS

Anonymous, Ajax (Programming), Wikipedia.org, XP-002401064,
Retrieved from the Internet: <http://www.en.wikipedia.org/wiki/
Ajax,sub—(programming)>.

International Searching Authority, International Search Report for
PCT/US02/25729, Nov. 5, 2002, 3 pages.

Harless, Membership Database on USA Gymnastics Online, 1996, 5
pages Retrieved from the Internet: URL: http://usa-gymnastics.org/
publications/techrique/1996/9/membership-queryhtml.

Nareddy, Introduction to Microsoft Index Server, Oct. 15, 1997, 9
pages Retrieved from the Internet: URL: http://msdn.microsoft.com/
en-us/library/ms951563(printer).aspx.

Clinick, Remote Scripting, Apr. 12, 1999, Microsoft Corporation, 6
pages Retrieved from the Internet: URL: http://msdn.microsoft.com/
en-us/library/ms951563(printer).aspx.

Masterobjects, Inc., Introducing QuestObjects, 2006, XP002496891,
25 pages Retrieved fromthe Internet: URL: http://www.questobjects.
masterobjects.com/documents/go-introducing pdf.

European Patent Office, European Search Report for European Patent
Application No. EP08252534.6-1225, Oct. 14, 2008, 9 pages.
European Patent Office, European Examination Report for European
Patent Application No. EP02763441.9, 4 pages.

European Patent Office, European Search Report for European Patent
Application No. EP02763441.9, 3 pages.

Widjaja, Communication Networks, Fundamental Concepts and Key
Architecture, 2004, pp. 315-316 and 6 11-612, McGraw-Hill, 2nd Ed.
Marsch, Remote Scripting, XP002401062, Retrieved from the
Internet: <http://www.microsoft. com/germany/msdn/library/web/
RemoteScripting. mspx?pf-=true>.

Anonymous, Using the XML HTTP Request Object,
XP-002401063, Retrieved from the Internet: <http://www jibbering.
com/2002/4/httpre quest.2002 html>.

US 8,539,024 B2
Page 3

Doherty, Web-based E-Mail, May 29, 2000, 3 pages. Retrieved from:
http://www.networkcomputing.com/1110/1110f3 html?Is=NCJS__
1110bt.

Cheong, et al., A Boolean Query Processing with a Result Cache in
Mediator Systems, Advances in Digital Libraries, May 22-24, 2000,
10 pages.

Jakobsson, Autocompletion in Full Text Transaction Entry: A
Method for Humanized Input, 1986, vol. 17.

Livingston, Windows 98 Secrets, 1998, pp. 232-235.

Markatos, et al., On Caching Search Engine Results, May 2000, 23
pages.

Krishnamurthy, et al., Web Protocols and Practice : HTTP/I.1, Net-
working Protocols, Caching and Traffic Measurement, 2001.
Kientzle, A JAVA Applet Search Engine, Feb. 1999.

Homer, XMLin IE5 Programmers Reference, 1999.

Xia, et al.. Supporting Web-Based Database Application Develop-
ment, 1999, 8 pages.

Chen, et al., The Implementation and Performance Evaluation of the
ADMS Query Optimizer: Integrating Query Result Caching and
Matching, Oct. 1993, 21 pages.

Unknown Author, Netscape Communicator for Solaris 4.7 Release
Notes, Aug. 20, 1999, 5 pages.

Oracle International Corporation, iPlanet Directory Server 4.11
LDAP Setup and Configuration Guide, Chapter 3, 2001, 14 pages.
Netscape Communications Corporation, Netscape Directory Server
4.1 Deployment, Administrators Guide, 1999.

Kapitskaia, et al., Evolution and Revolution in LDAP Directory
Caches, Advances in Database Technology—EDBT, 2000, pp. 202-
216.

Glick, Global Address Book and LDAP UI Proposal, 2001.
Unknown Author, Mozilla 0.9.1 Release Notes, 2001, 23 pages.
Giovetti, Microsoft Money, COMPUTE!, Jul. 1992, p. 105, Issue
142.

Microsoft Corporation, MSN Hotmail: From Zero to 30 Million
Members in 30 Months, Feb. 8, 1999.

Qualcomm, Inc., Qualcomm Extends Internet E-mail Presence to the
Web, Dec. 10, 1997.)

Johnson, et al., A Hypertextual Interface for a Searcher’s Thesaurus,
Jun. 11-13, 1995, 15 pages.

Deadmond, Address Book: What a Concept!, Jun. 1, 1999, 2 pages.
Hassan, Stanford Digital Library Interoperability Protocol, 1997, 42
pages.

Buyukkoten, Focused Web Searching with PDAs, May 15-19, 2000,
21 pages.

O’Brien, The New Domino R5 Directory Catalog: An Administra-
tor’s Guide, Nov./Dec. 1998.

Beaulie, et al., Okapi at TREC-5, Jan. 31, 1997, 23 pages.

Jones, Graphical Query Specification and Dynamic Result Previews
for a Digital Library, 1998, 9 pages.

Jones, Dynamic Query Result Previews for a Digital Library, Jun.
1998, 3 pages.

Unkown Author, Using Netscape Communicator at Lehigh, 15 pages,
retrieved from the World Wide Web: http://web.archive.org/web/
2000100222473 1/http:/www.lehigh.edu/~inhelp/fag/qa/nsfiles/
nsfall2000-2 htm.

* cited by examiner

U.S. Patent Sep. 17,2013 Sheet 1 of 17 US 8,539,024 B2

t
0~ _
™ QuestObjects

Chient

L]/w 102
! .

183 —_¢*
3 QuestObjects

Server
L%,,,«w 104
105 —_ oY |
N QuestObjects
Service

FIG. 1

U.S. Patent Sep. 17, 2013

Sheet 2 of 17 US 8,539,024 B2

201

= o 202

- oo i

L

Controller
: Clhient
4 e 308
206 — s {} 205)
A Pl 209
4 &

i 2 O\)

&

i

Controller

Z 20T

4

sy
3
}
.3

Quester ”

Session

Porsistent

Tune Server
Quester Store §

207 313

User
Manager

Preference
Manager

- Nsage
Statistios Store

Syvadicator

-
254

23— 23
23E

Y

)3
}

)Y
H Y

A
Y

\

)

\

3

Query
Manager

Content
Arcess Module

rd
{antent
-based Cache

Contont Charmel

Conte
Engine

- 219

114

L Y

U.S. Patent Sep. 17, 2013 Sheet 3 of 17 US 8,539,024 B2
//—- 01

302)

A
303
» 0, ——— N ‘
304 T — -]

5 :

3 =——_INebraska '
06— INevada "
307 =—_INevada y

FIG. 34

U.S. Patent Sep. 17, 2013 Sheet 4 of 17 US 8,539,024 B2

Y1 North Carolina 2
311—1 | United States of Ameri
USA
NC —
United States of Ameri
Charlotte
312— | |Greensboro
Raleigh
tr|cardinal (bird)
Last of the Mohicans
Thesa {Sounds (1 Prefs/
FIG. 3B
/’313
314—| North Carolina AlSINC =315
United States of Ameri| [i5|United States of Ameri 316
USA E=|Charlotte -] 317
=z
Greensboro
Raleigh
E cardinal (bird) ~ ~+ 1'%
Last of the Mohicans
319—|Recent Terms !EIH] Thesa {Sounds{Prefs - 320

L.?I] \—312

FIG. 3C

US 8,539,024 B2

Sheet 5 0f 17

Sep. 17,2013

U.S. Patent

¥ o1

; ' H
H m m 1
i i
| m W
7 iy enn et B Py yesme g} TETE 2 TG T
0% | [Toaw prsoyiont) | PP Iompdpogiss: Lo Jumpdrpogipussi | Lok Jnepdcogi
wﬁ«:ﬁo s oumddyaoymepndn (] -
; Lol 4 $ - e e - »Qwu
S0t~ [LG Bmsaniinn | | Laepdpoginey Moﬁsﬁmﬁzﬁé_
. {85 jasenb | | : w LSRRG AL | e et | L0, FABALXOISCIATS | § sarm £
DO] | (LA APEOHAIID Laulmepdrpegimsar - :.\.m.u A b “ra‘ﬁmnﬁxo&u»msw« “w
B LIZUL R oy eyt i [Lae orepdrmginear | | Lavlonpdmaginea -
m. QV e ib&rm.zﬂk &Eﬂ& - . ~
] fqpjasenb | | Mﬁ_wrvmwbﬁm_"ww spedlyageginden 7o nddvagogmder M Ta SRR - P2
ﬁ {eipeadavagmgnds ; :n.,..ﬁi&.a&smum&.m w s %n«&.%mﬁ%ﬁ e s M_s...f cop
/ H i
‘_, g o B »i pazrenia
pzian » [hatasiaol o F DTS e |
417 gt § - M
4 HIRYW ISR b agedas | [s oo
; ! insdnpsanb U -
M. Y ISR m EaveY SRR
1 ; e f Q‘
I : i
i | {
PHAITON ISR A IGO0 HOSRIGO0 Benunseanged T e esue esimd msanlpueinds Psusideoneansyed
- \\\
It -

U.S. Patent Sep. 17, 2013 Sheet 6 of 17 US 8,539,024 B2
(Aciive C.amyonem)
SOI~ %
inittalizeClient
Quester
. - 3

NEEN] ;o303 /0

component send event to (re)activale

estroyed? .~ no Clent Quester event receiver

505 P"ﬁs
N

destroy Client
Quester

UTNTIDRUET NI

FIG. 54

(Bvent Receivey)
p‘; 306

wait for svent from
Client Quester

event
novw, received?

process event from

Chient Quester

FIG. 5B

U.S. Patent Sep. 17, 2013 Sheet 7 of 17 US 8,539,024 B2
(Chent Quester)
. /’“w 6(}1
register using
Client Controller
7YX
609 Vs 603
~quester deregister using
destroyed? Client Controller
GOF
- STOP
receive event
6805 ™ | /M 806
charactor
event? o~ 0 -4 handle event
807
update input buffer and
notify dependent Questers
08~ | 611
-r&sul;s tn > gj SO0 input buffer
client cache? " 55 change message
609, y 682
— s {reyactivate
et resulls result retriever
from cache -
s}
notify active
component

FIG. 64

U.S. Patent Sep. 17, 2013 Sheet 8 of 17 US 8,539,024 B2

(Result Retr{evex)

613

wait for results
front server

614~

resuits
received?

ng

results
usable?

notify active component
and dependent Questers

617~ }

store vesults
i cache

FIG. 6B

U.S. Patent Sep. 17,2013 Sheet 9 of 17 US 8,539,024 B2

(Server Quester)

PRt

v
restore from
et (Quester Store and g
YO fremster with Service

RNy

can ba

o results sgil
sastored?

Jp-io-daie?

115)

6~ RO}
., 708

inttialize and register ProQess resend last

with Serviee query resudts} £ query to Service

707

Quiaster
destroyed?)
P iy

send query
to Service

]

-,
~2
w
ovan,

exalis

wait for wput boffer
change message

'

update inpt
buffer

FlG. 74

US 8,539,024 B2

Sheet 10 of 17

Sep. 17,2013

U.S. Patent

gL DId

9L
y

JaISongy JUSILY
03 $yjasar puas

Laan0R
Ruggend

HSHETY
sAvYy .

| DDTAIRS O3 BOLSHNS —~pil
- o8esn puos
9127 + wd NSy 108
syes W . _ .
snsar ey [S .
, (synsay g ssaonig)
it

U.S. Patent Sep. 17, 2013 Sheet 11 of 17 US 8,539,024 B2

QoResuliBet - QofQuery
-strings: QoStringf] . «queryString: String
-rowpmss! ntf] oged -Qualifier; String
~service: Qolervice query b .rownums: inf}
~guery: GoQuery ~requestedTypes: QoTypell
~complete: byte RIHECUHN Déte
<totalNumberOQfStrings: long -vwan.t\:si‘ushmg: boolean
-andered: boolesn -pushinginterval: it
-setected: mitf)}
~ctirpent int
~reguliSetid: rfixgi)ecmmi 0.% ¥ roquested Types
FQoResalBell QoType
14 resuliSct “ypetudicator; byte
0.* ¥ strings -typeString: String
QulnternaiString 0.1 ?type 1.% ? types
-expirstionTime: Date I ¢ quester
-fetehTime: Date CoQuester

<value: Sivng
“ey: String
~metedata; LimitedXME

-regaltSet: QoResultet
-service: QoService
~qualifier; String
-types: GoTypes{]
~inpuiBallen StringBuiler
~autolipdateinterval:
~minisnmBatch Dime: int
-resulSetBatchSixe: int
-typer QoType -maximumBatchTime: ot
~cHemtMaximemLatency: int
~changelistensys: QoQuesterChangedistener()
-apphicationFrastion: Sting
service:: QoService Ié J -applicationProxyRequired: boolesn
) sepvice | -highestRecstvedResudiSettd: BigDecimal
) ifﬁﬁi‘\-‘iﬁt‘- JatestRequasted: BigDecimal

QoStang

(See Fig. 8A-2)

+addQuesterChangeListener(): void «

§..% sters

Qof duery Validator

-servive: QoService

tisvalidi)y hoolean
f ehient: QoClientQuester §-4 serversQolepverQuuester

OnTransformingQueryValidator

HrangformlfValied(): String

FIG. 84-1

U.S. Patent Sep. 17, 2013

Sheet 12 of 17 US 8,539,024 B2

Obiect Model: base

QoQuesterChangeBven

-INPUT_BUFFER_CHANGED INT
-RESULT 3BT _CURRENT CHANGEIDN INT
-RESULT. &ET Si:.LLC’li:D CHANGED: INT

~quester; Qoluester
~eventType: fnt

<< jrgerface >o-
QoCuesterChengsListenet

QoResultsCacheEntry

: Q.x) "y . - inor N
....... g RS EOTChangadi): void qugggmn&{;,ﬁmag
 changel.isteners qualiier: Sing
- «resaltSet: QoResuliSet
0..¢ & regultsCacheBnincs
<
i+
o QoResultsCache
e
g resulfsCachaBntries: QoResultsCacheBniry]
o 1 ?resuits{.,a&he
QoController

~mesultsCache: QoResultsCache
~questers: Qofduesterf]

~statishesRBuifer QoLﬁsaeRo,mdF
-stafisticsDufferFlushTime: int

~address: URL

cHentnChonContralier

server:QoServerController

FIG. 84-2

U.S. Patent Sep. 17,2013 Sheet 13 of 17 US 8,539,024 B2

Object Model: client

hase::QoController base::QoQuester

A A

QoCHentControdler CoChientQuester

I.¥ TclieatQuester

ActiveComponent

~clientQuesters: QoClientQuester]}

FIG. 8B

US 8,539,024 B2

Sheet 14 of 17

Sep. 17,2013

U.S. Patent

.U mm . Mu N mw(SHAIOBOINEOY

sspanypacys

% 1

{Hsandpmao maO LRI PRI
sunSimssndpLaEee ol

g Imssueissiod & 1

BHOBHOIAIG00) SIS
{heweneaiegody Sm1sans 08105
Fong precnmydde-

"THfy ‘ssosppvisordde-

R - spmospuAgsapldyed
UASEIET sruospuissepdde & o

sopeprE Aoty aseq | UOBS

SUOISEas & ,p

-~

ALy

Vil W

ssond %, 1 mponuorsas ¥ |

PIOA Y JOI0EI4 { \;uw&?ﬁ.ﬁfs yddyofy .?:;Eﬁ:\f“ mm
.qumuﬁwvﬁu.waumamu ., wuuo\wm..m. .mhawotwmn.‘muﬁ A3RG X.v RIOy PH ARG 0500 it C.NKMW SSOIPP YA
USROSy JU0ISEEE- SIS MU GO]) oGRS d- aniaans | (i) 1 SosSoapnYaaLaIds-
sEpppALabol) uepire A Lonb- {Juosragaly sucipsas- """ TG ESUBNIOLALIG
T AT wrsiRoy ooy B ssanbar- : OIS

IBHOTRIO 1324135047

{

mssuyndy aveg

REH I ,uam.

Q
223
=t
=

PAIS (Bpo 1lq0

U.S. Patent Sep. 17, 2013 Sheet 15 of 17 US 8,539,024 B2

QuSyndicator

SRR NITUISVVIIU VT VIR,

-pame: Siring

~asers: Qoliserf} i
+roptentChannels(y: QoCatentChannell] M svndicaror

1% ¥ contentChannels

GoContentChangel *L
~name: Siring commtent
~Jesertption: Swng Channel
~queryStringMindength: int
-yueryStringRegularBxpressions: Stringl}
~queryStringFilters; String{] o
-queryValidator: QoQueryValidator &
~esuliDioscrpitorn String B
~types: QoTypel] .
-tmeMmimunRetirninterval int A
-statisticsStore: GollsageStatisticsStore ~
-contentdeceasMadole: QoContentAccessModule]

y T T statigtics
+eseativeCuery() QoResultSet Stare

(.4 s uneryValidator LYy types
basenQeQuery Validator base:QoType

1 ¥ confentdccessModule
QoContentAccessModale

+egecuteQuery(h QoResultSet
+startContertSession(): fnt

FIG. 8D-1

U.S. Patent Sep. 17, 2013 Sheet 16 of 17 US 8,539,024 B2

(Object Model: service

Qollser
0. f-naoee Stoing

— ¥ password; String
USSLS .. E .
-subscriptions: (GoSubscriptica(}
- QoService 0 }'
~syadicator: QoSyndwator hod PUST
~contemtChannel QoContentChannel . L
distable: boolean 1 Q. Sﬁ{}ﬁﬁﬂpii 13 8
, ~pricinghnfo: XML b e QoSebscription
v Rbpiotr SOIVIeS S A T
A3 -name Sirmg; o . ~service: Quiervice
~mn§mi.Iixtgfmri...-c.xggzb:&mze: §lnitg -starilate: Date
-cmxmrx\zt;.{xgzncmgmi assword: String expirationDate: Date
-subscriptionRequired: boolesn ~queryLimit: int

-queryLimitReset: ing
-resultlinut int
syl imitReset int
~pushAllowad: boolean
-pushintervallimit int
-historvAllowed: boolesns
QollsageStatisfiosSione -histarylimit: int
ecords: QolisageRecors] |
JeepServiceStatisties: boalesn

J

See Fig. 8Dt

o

eee 3 :#d_'-g»‘w.'u aaes {)*

kccp(; lfcnti}f:spi f}"_{}f{’_‘f tfml.}.ft%. hootean g QalisageRecond
~keepChientifsedStutistics: boolean records TR
eepClientHitStistics: boolean -siringhey: String

-string Value Sting
-rowimnResultSet; int
~totalRowsinRosultSef: ing
~dateReturnFirst: Date
-dateRetumlsst Date
~cHeatDisplayed: boolean
~clientiised: boolean
~clientHit boolsan
-apphicetionName: String
sctiveComponentil: Stuing
~tser Gollser

FIG. 8D-2

U.S. Patent Sep. 17, 2013 Sheet 17 of 17 US 8,539,024 B2

U A
‘\ ;'! f Rt

G#7 =

n £
App/Web . Qe - AppHost o

Server Adaptor Synchronizer
. o Q09
| 908
Applicationd 4 f
Welbr Host Controlfer .
{Onestey
817 Pt dXi QuestObjectsServer
I 903
;e
{.M.,M!..w o e _..f:...,.?
i Application/Web Fal 7 Fa
! Wb Form s f
: wb o Submat ;
2 Baticn %
; 805 —~ 0061
| Id 907
!
i . s
i Controller
i1 Quester n‘*
| §
O 4
Chent App/Browser

US 8,539,024 B2

1
SYSTEM AND METHOD FOR
ASYNCHRONOUS CLIENT SERVER SESSION
COMMUNICATION

CLAIM OF PRIORITY

This application is a continuation of U.S. patent applica-
tion Ser. No. 09/933,493, filed on Aug. 20, 2001 entitled:
“SYSTEM AND METHOD FOR ASYNCHRONOUS CLI-
ENT SERVER SESSION COMMUNICATION”, by Mark
H. Smit, et al, now U.S. Pat. No. 8,112,529, issued on Feb. 7,
2012, which is incorporated herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF THE INVENTION

The invention relates generally to client-server communi-
cation systems, and particularly to a session-based bi-direc-
tional multi-tier client-server asynchronous search and
retrieval system.

BACKGROUND OF THE INVENTION

A primary task of computer systems is to manage large
quantities of information, generally referred to as data. The
first computers typically stored data using off-line methods,
for example by using punch cards and other primitive means.
As built-in or on-line storage solutions became more afford-
able, data were instead stored in central memory banks. The
first enterprise-wide computer systems consisted of central
computers containing central data storage, and a large num-
ber of user terminals that accessed this server data by sending
input and receiving output as characters to be displayed or
printed at the terminal. Although these systems had a primi-
tive user interface and data access became increasingly
slower as the number of users grew, these systems neverthe-
less handled enterprise data with ease and great security.

The first servers, often referred to as mainframes or mini
computers, ran on proprietary operating systems. Terminals
usually had large input buffers where input was only checked
against or committed to the server after entering text into a
page or form. Many systems only displayed the character
entered after it was received and confirmed by the server.
Faster servers and more modern server operating systems,
such as Unix and VMS, offered several advantages in that
users could receive immediate feedback after each character
was typed.

At the beginning of the 1980s decade, the growing popu-
larity of microcomputers and personal workstations made it
possible to store data locally. Enterprise data was distributed
over networks of computer systems. To access information it
was no longer necessary to have a continuous connection to
central databases, and instead it was possible to copy infor-
mation to a personal computer, edit and work with it, and then
save it back to a file or database server later. Most microcom-
puters worked with data in logical chunks or files. This
brought a lot of power to end users, but introduced problems
in managing the Jarge quantity of enterprise data that was no

15

20

25

30

35

40

45

50

55

60

65

2

longer stored as a unique entity in one place. For example, a
file that was being edited by one user could not usually be
accessed or modified by other users at the same time. It was
also difficult to manage multiple copies of the same data.

Toward the end of the 1980’s faster microcomputers and
networks made it practical to work with enterprise data in
smaller chunks than files. One example of this new technol-
ogy was the development of Structured Query Language
(SQL) relational databases which made it possible to divide
software programs into a ‘Client’ tier and a ‘Server’ tier, that
communicated with each other over a network. Client-server
computing thus made it possible to store information cen-
trally, yet manage and work with it locally. In the client-server
paradigm, the client systems concentrated on offering a user-
friendly interface to server data, while the server systems
were able to handle many client systems at once while safely
managing enterprise data.

However, the increasing client-server computing intro-
duced its share of problems. Protocols used to communicate
between client and server became increasingly complex and
difficult to manage. Enterprise IT departments needed
increasingly greater resources to manage the proprietary
implementations of client operating systems, server database
systems and middleware protocols connecting the various
‘tiers’ of client-server systems. Data was no longer stored in
one place but was required to be managed within a distributed
network of systems. Client-server systems also lacked a
major advantage of mainframes: in a client-server system any
changes to the data on the server weren’t immediately
updated on the client.

Starting in the 1990s, the Internet has allowed businesses,
organizations, and other enterprises to easily make informa-
tion available to users without the complex architecture that
client-server systems typically require. Today, an increasing
number of software applications are moving their data and
logic or functional processes back to the server tier, from
which they can be accessed from the Internet by a wide
variety of clients, including thin and very thin-clients, which
typically consist of Internet browsers or small applications
(applets) whose sole responsibility is providing an interface
to the user. In many ways, Internet computing (often referred
to as e-commerce) has brought back the data-handling advan-
tages of mainframes. Within the e-commerce environment
data that change on the server are immediately available to
clients that access the data through the Internet (world-wide)
or through an intranet (enterprise-wide).

Unfortunately, the rise of Internet commerce has also given
rise to some of the disadvantages associated with mainframe
technology. Most Internet connections that present data to the
user or client process use the Hyper Text Transfer Protocol
(HTTP) which is inherently “session-less.” This means that,
for example, there is no totally reliable way for the server to
automatically update the client display once the server data
change. It also means that the server only checks the validity
of the client or user input after the user sends back or submits
an entire input form. This apparent disadvantage has also
played an important role in the success of the Internet:
because HTTP connections are session-less, they require
much less processing power and much less memory on the
server while the user is busy entering data. Thus, Internet
applications running on web servers can be accessed by mil-
lions of people. Because HTTP and related Internet-based
client-server systems do not provide continuous access to
server data, systems sometimes incorporate lookup tables and
pre-defined values that are cached locally. For example, a list
of possible countries to be selected by a user of aweb page can
be sent to the user’s computer when that page is first sent to

US 8,539,024 B2

3

the user and used thereafter for subsequent country selec-
tions. Client-server applications often pre-read the data from
the server the moment an application or application window
is opened, in order to present users with selection lists the
moment they need them. This poses problems for data that
frequently changes over time since the client system may
allow users to select or enter data that is no longer valid. It also
poses problems for large selection lists whose transmission to
the client may take a long time.

To address this some systems incorporate a local cache of
the data frequently accessed by the user. A web browser may,
for example be configured to remember the last pages a user
visited by storing them in a local cache file. A clear disadvan-
tage of keeping such a local cache is that it is only useful as
long as the user stays on the same client computer system.
Also, the local cache may include references to web pages
that no longer exist.

Some other systems with limited network bandwidth (like
cell phones or personal organizers) can be deployed with
built-in databases (such as dictionaries and thesauri), because
it would be impractical to wait for the download of an entire
database, which is needed before the data is of any use. This
has the disadvantage that data stored in the device may no
longer be up-to-date because it’s really a static database.
Also, the cost of cell phones and personal organizers is greatly
increased by the need for megabytes of local storage. Another
important consideration is that keeping valuable data in any
local database makes it vulnerable to misuse and theft. What
is needed is a mechanism that addresses these issues that
allows a client-server system to retain some element of a
session-based system, with its increase in performance, while
at the same time offering a secure communication mechanism
that requires little, if any, local storage of data.

Other attempts have been made to tackle some ofthe prob-
lems inherent with traditional computer system interfaces,
and particularly with regard to user session administration
and support. These attempts include the auto-complete func-
tion systems such as used in Microsoft Internet Explorer, the
spell-as-you-go systems such as found in Microsoft Word,
and the wide variety of client-server session managers such as
Netopia’s Timbuktu and Citrix Winframe.

Auto-Complete Functionality

Many current systems provide a mechanism to auto-com-
plete words entered into fields and documents. This ‘auto-
complete’ functionality is sometimes called ‘type-ahead’ or
‘predictive text entry’. Many web browsers such as
Microsoft’s Internet Explorer application will automatically
‘finish’ the entry of a URL, based on the history of web sites
visited. E-mail programs including Microsoft Outlook will
automatically complete names and e-mail addresses from the
address book and a history of e-mails received and sent.
Auto-completion in a different form is found in most graphi-
cal user interfaces, including operating systems such as
Microsoft Windows and Apple Mac OS, that present lists to
the user: When the user types the first character of a list entry,
the user interface list will automatically scroll down to that
entry. Many software development tools will automatically
complete strings entered into program source code based on a
known taxonomy of programming-language dependent key
words and ‘function names’ or ‘class names’ previously
entered by the developer. Some cell phones and personal
organizers also automatically type-ahead address book
entries or words from a built-in dictionary. Auto-complete
functionality facilitates easy entry of data based on prediction
of what options exist for the user at a single moment in time
during entry of data.

10

15

20

25

40

45

60

4

Checking as You go

More and more word processing programs (most notably
Microsoft Word and certain e-mail programs) include so-
called ‘spell checking as you type’. These programs auto-
matically check the spelling of words entered while the user
is typing. In a way, this can be seen as ‘deferred auto-com-
plete’, where the word processor highlights words after they
were entered, if they don’t exist in a known dictionary. These
spell checking programs often allow the user to add their own
words to the dictionary. This is similar to the ‘history lists’
that are maintained for the auto-completion of URLs in a web
browser, except that in this case the words are manually added
to the list of possible ‘completions” by the user.

Software Component Technologies

Software component technologies have provided a mea-
sure of component generation useful in client/server systems.
One of these technologies is OpenDoc, a collaboration
between Apple Computer, Inc. and IBM Corporation
(amongst others) to allow development of software compo-
nents that would closely interact, and together form applica-
tions. One of the promises of OpenDoc was that it would
allow small developers to build components that users could
purchase and link together to create applications that do
exactly what the users want, and would make existing ‘bloat-
ware’ applications (notably Microsoft Office and Corel’s
WordPerfect Office/Corel Office) redundant, but the technol-
ogy was dropped several years ago in favor of newer tech-
nologies such as CORBA (Common Object Request Broker
Architecture), developed by the Object Management Group
to allow transparent communication and interoperability
between software components.

Object-oriented languages and even non-object-oriented
(database) systems have used component technologies to
implement technical functionality. The NeXTstep operating
system from NeXT Computer, Inc. (which was later acquired
by Apple Computer, Inc. and evolved into the Mac operating
system Mac OS X)) had an object-oriented architecture from
its original beginnings, that allowed software developers to
create applications based on predefined, well-tested and reli-
able components. Components could be ‘passive’ user inter-
face elements (such as entry fields, scroll areas, tab panes etc)
used in application windows. But components could also be
active and show dynamic data (such as a component display-
ing a clock, world map with highlight of daylight and night,
ticker tape showing stock symbols, graphs showing computer
system activity, etc.). The NeXT operating system used object
frameworks in the Objective C language to achieve its high
level of abstraction which is needed for components to work
well. Later, Sun Microsystems, Inc. developed the Java lan-
guage specification in part to achieve the same goal of
interoperability. To date, Java has probably been the most
successful ‘open’ (operating system independent) language
used to build software components. It is even used on certain
web sites that allow ‘Java applets’ on the user’s Internet
browser to continuously show up-to-date information on the
client system.

WebObjects, an object-oriented technology developed by
Apple Computer, Inc. is an Internet application server with
related development tools, which was first developed by
NeXT Computer, Inc. WebObjects uses object oriented
frameworks that allow distribution of application logic
between server and client. Clients can be HTML-based, but
can also be Java applets. WebObjects uses proprietary tech-
nology that automatically synchronizes application objects
between client and server. The layer that synchronizes data
objects between the client and the server is called the ‘Enter-
prise Object Distribution’ (EODistribution), part of Apple’s

US 8,539,024 B2

5

Enterprise Objects Framework (EOF), and is transparent to
the client software components and the server software com-
ponents.

Session Management

Both Netopia’s Timbuktu remote access systems, and Cit-
rix, Inc.’s Winframe terminal server product, allow some
element of remote access to server applications from a client
system. These products synchronize user data and server data,
transparently distributing all user input to the server and
return all server (display) output to the client. Timbuktu does
this with very little specific knowledge about the application
and operating system used. This allows it to transparently
work on both Microsoft Windows and Mac OS platforms.
Technologies similar to Timbuktu do exist and perform the
same kind of “screen sharing’. For example, the Virtual Net-
work Computing (VNC) system is one example of an open
source software program that achieves the same goals and
also works with Linux and Unix platforms.

Citrix Winframe has taken the same idea a step further by
incorporating intimate knowledge of the Microsoft Windows
operating system (and its Win32 APIs) to further optimize
synchronization of user input and application output on the
server. It can then use this detailed knowledge of the
Microsoft Windows APIs to only redraw areas of the screen
that it knows will change based on a user action: for example,
Winframe may redraw a menu that is pulled down by the user
without needing to access the server application because it
knows how a menu will work.

Software Applications

Several application providers have also built upon these
technologies to provide applications and application services
of use to the end-user. These applications include computer-
based thesauri, on-line media systems and electronic ency-
clopediae.

The International Standards Organization (as detailed fur-
ther in ISO 2788-1986 Documentation—Guidelines for the
Establishment and Development of monolingual thesauri and
ISO 5964-1985 Documentation—Guidelines for the Estab-
lishment and Development of multilingual thesauri) deter-
mines suggested specifications for electronic thesauri, and
thesaurus management software is now available from
numerous software vendors world-wide. However, most sys-
tems have clearlimitations that compromise their user-friend-
liness. Most commonly this is because they use a large third-
party database system, such as those from Oracle Software,
Inc. or Informix, Inc. as a back-end database. This means that
any thesaurus terms that are displayed to the user are fetched
from the database and then presented in a user interface. Ifone
user changes the contents of the thesaurus, other users will
only notice that change after re-fetching the data. While of
little concern in small or infrequently changing environ-
ments, this problem is a considerable one within larger orga-
nizations and with rapidly updated content changes, for
example in media publishing applications when thesaurus
terms are being linked to new newspaper or magazine articles.
This type of work is usually done by multiple documentalists
(media content authors) simultaneously. To avoid ‘mixingup’
terms linked to articles, each documentalist must be assigned
a certain range of articles to ‘enrich’ (which in one instance
may be the act of adding metadata and thesaurus terms to a
document). Clearly, in these situations there is a great need for
live updates of data entered by these users, but a similar need
exists for all client-server database programs.

SUMMARY OF THE INVENTION

The invention provides a system that offers a highly effec-
tive solution to the aforementioned disadvantages of both

40

45

60

65

6

client-server and Internet systems by providing a way to
synchronize the data entered or displayed on a client system
with the data on a server system. Data input by the client are
immediately transmitted to the server, at which time the
server can immediately update the client display. To ensure
scalability, systems built around the present invention can be
divided into multiple tiers, each tier being capable of caching
data input and output. A plurality of servers can be used as a
middle-tier to serve a large number of static or dynamic data
sources, herein referred to as “content engines.”

The present invention may be incorporated in a variety of
embodiments to suit a correspondingly wide variety of appli-
cations. It offers a standardized way to access server data that
allows immediate user-friendly data feedback based on user
input. Data can also be presented to a client without user
input, i.e. the data are automatically pushed to the client. This
enables a client component to display the data immediately,
or to transmit the data to another software program to be
handled as required.

The present invention can also be used to simply and
quickly retrieve up-to-date information from any string-based
content source. Strings can be linked to metadata allowing
user interface components to display corresponding informa-
tion such as, for example, the meaning of dictionary words,
the description of encyclopedia entries or pictures corre-
sponding to a list of names.

Embodiments of the present invention can be used to create
a user interface component that provides a sophisticated
“auto-completion” or “type-ahead” function that is extremely
useful when filling out forms. This is analogous to simple,
client-side auto-complete functions that have been widely
used throughout the computing world for many years. As a
user inputs data into a field on a form, the auto-complete
function analyzes the developing character string and makes
intelligent suggestions about the intended data being pro-
vided. These suggestions change dynamically as the user
types additional characters in the string. At any time, the user
may stop typing characters and select the appropriate sugges-
tion to auto-complete the field.

Today’s client-side auto-complete functions are useful but
very limited. The invention, however, vastly expands the use-
fulness and capabilities of the auto-complete function by
enabling the auto-complete data, logic and intelligence to
reside on the server, thus taking advantage of server-side
power. Unlike the client-side auto-complete functions in cur-
rent use, an auto-complete function created by the present
invention generates suggestions at the server as the user types
in a character string. The suggestions may be buffered on a
middle tier so that access to the content engine is minimized
and speed is optimized.

The simple auto-complete schemes currently in popular
use (such as emaijl programs that auto-complete e-mail
addresses, web browsers that auto-complete URLs, and cell
phones that auto-complete names and telephone numbers)
require that the data used to generate the suggestions be stored
on the client. This substantially limits the flexibility, power,
and speed of these schemes. The present invention, however,
stores and retrieves the auto-complete suggestions from data-
bases on the server. Using the present invention, the sugges-
tions generated by the server may, at the option of the appli-
cation developer, be cached on the middle tier or on the client
itself to maximize performance.

The present invention provides better protection of valu-
able data than traditional methods, because the data is not
present on the client until the moment it is needed, and can be
further protected with the use of user authentication, if nec-

essary.

US 8,539,024 B2

7

The present invention is also useful in those situations that
require immediate data access, since no history of use needs
to be built on the client before data is available. Indeed, data
entered into an application by a user can automatically be
made available to that user for auto-completion on any other
computer, anywhere in the world.

Unlike existing data-retrieval applications, server data can
be accessed through a single standardized protocol that can be
built into programming languages, user interface components
or web components. The present invention can be integrated
into and combined with existing applications that access
server data. Using content access modules, the present inven-
tion can access any type of content on any server.

In the detailed description below, the present invention is
described with reference to a particular embodiment named
QuestObjects. QuestObjects provides a system for managing
client input, server queries, server responses and client out-
put. One specific type of data that can be made available
through the system from a single source (or syndicate of
sources) is a QuestObjects Service. Other terms used to
describe the QuestObjects system in detail can be found in the
glossary given below.

QuestObjects is useful for retrieval of almost any kind of
string-based data, including the following QuestObjects Ser-
vice examples:

Intranet Us

Access system for database fields (for lookup and auto-
complete services)

Enterprise thesauri system.

Enterprise search and retrieval systems.

Enterprise reference works.

Enterprise address books.

Control systems for sending sensor readings to a server that
responds with appropriate instructions or actions to be taken.
Internet Use

Client access to dictionary, thesaurus, encyclopedia and
reference works.

Access to commercial products database.

Literary quotes library.

Real-time stock quote provision.

Access to real-time news service.

Access to Internet advertisements.

Access to complex functions (bank check, credit card vali-
dation, etc).

Access to language translation engines.

Access to classification schemes (eg, Library of Congress
Subject Headings).

Access to lookup lists such as cities or countries in an order
form.

Personal address books.

Personal auto-complete histories.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows a general outline of a system incorporating
the present invention.

FIG. 2 shows a schematic of a system in accordance with an
embodiment of the invention.

FIG. 3A shows a variety of stages in the usage of a sample
Questlet implementation in accordance with an embodiment
of the invention.

FIG. 3B shows an expanded view of a sample Questlet
implementation in accordance with an embodiment of the
invention.

FIG. 3C shows an expanded view of a sample Questlet
implementation in accordance with an embodiment of the
invention.

20

25

30

35

40

45

50

60

65

8

FIG. 4 shows a sequence diagram illustrating the use of a
system in accordance with an embodiment of the invention.

FIG. 5A shows a first thread flow chart illustrating the
interface between an active component and an embodiment of
the invention.

FIG. 5B shows a second thread flow chart illustrating the
interface between an active component and an embodiment of
the invention.

FIG. 6A shows a first thread flow chart illustrating the
client side of an embodiment of the invention.

FIG. 6B shows a second thread flow chart illustrating the
client side of an embodiment of the invention.

FIG. 7A shows a first thread flow chart illustrating the
server side of an embodiment of the invention.

FIG. 7B shows a second thread flow chart illustrating the
server side of an embodiment of the invention.

FIG. 8A shows an object model of an embodiment of the
present invention, displaying the base part.

FIG. 8B shows an object model of an embodiment of the
present invention, displaying the client part.

FIG. 8C shows an object model of an embodiment of the
present invention, displaying the server part.

FIG. 8D shows an object model of an embodiment of the
present invention, displaying the service part.

FIG. 9 shows a schematic of an application proxy system
that enables the use of the invention in various client environ-
ments.

DETAILED DESCRIPTION

Roughly described, the invention provides a session-based
bi-directional multi-tier client-server asynchronous informa-
tion database search and retrieval system for sending a char-
acter-by-character string of data to an intelligent server that
can be configured to immediately analyze the lengthening
string character-by-character and return to the client increas-
ingly appropriate database information as the client sends the
string.

The present invention includes a system that offers a highly
effective solution to an important disadvantage of both client-
server and Intemet systems: The present invention provides a
standardized way to immediately synchronize the data
entered or displayed on a client system with the data on a
server system. Data input by the client is immediately trans-
mitted to the server at which time the server can immediately
update the client display. To ensure scalability, systems built
around the present invention can be divided into multiple
‘tiers’ each capable of caching data input and output. Any
number of servers can be used as a middle-tier to serve any
number of static or dynamic data sources (often referred to as
“Content Engines™).

The present invention is useful for an extremely wide vari-
ety of applications. It offers a standardized way to access
server data that allows immediate user-friendly data feedback
based on user input. Data can also be presented to a client
without user input, i.e. the data is automatically ‘pushed’ to
the client. This enables a client component to display the data
immediately or to transmit it to another software program to
be handled as required.

The present invention is also particularly useful for assis-
tance in data entry applications, but can also be used to simply
and quickly retrieve up-to-date information from essentially
any string-based content source. Strings can be linked to
metadata allowing user interface components to display cor-
responding information such as the meaning of dictionary
words, the description of encyclopedia entries or pictures
corresponding to a list of names.

US 8,539,024 B2

9

In some embodiments, the present invention can be used to
create a user interface component that provides a sophisti-
cated “auto-completion” or “type-ahead” function that is
extremely useful when filling out forms. Simple, client-side
auto-complete functions have been widely used throughout
the computing world for many years. As a user inputs data
into a field on a form, the auto-complete function analyzes the
developing character string and makes “intelligent” sugges-
tions about the intended data being provided. These sugges-
tions change dynamically as the user types additional char-
acters in the string. At any time, the user may stop typing
characters and select the appropriate suggestion to auto-com-
plete the field.

Today’s client-side auto-complete functions are very lim-
ited. The present invention vastly expands the usefulness and
capabilities of the auto-complete function by enabling the
auto-complete data, logic and intelligence to reside on the
server thus taking advantage of server-side power. Unlike the
client-side auto-complete functions in current use, an auto-
complete function created by the present invention pushes
suggestions from the server as the user types in a character
string. Using the present invention, the suggestions may be
buffered on a middle tier so that access to the content engine
is minimized and speed is optimized.

The simple auto-complete schemes currently in popular
use (such as email programs that auto-complete e-mail
addresses, web browsers that auto-complete URLs, and cell
phones that auto-complete names and telephone numbers)
require that the data used to generate the suggestions be stored
on the client. This substantially limits the flexibility, power,
and speed of these schemes. The present invention, however,
stores and retrieves the auto-complete suggestions from data-
bases on the server. Using the present invention, the sugges-
tions generated by the server may, at the option of the appli-
cation developer, be cached on the middle tier or one the client
itself to maximize performance.

The present invention provides better protection of valu-
able data because the data is not present on the client until the
moment it is needed and can be further protected with a user
authentication mechanism, if necessary.

The present invention is useful for immediate data use,
since no use history must be built on the client before data is
available. Indeed, data entered into an application by a user
can automatically be made available to that user for auto-
completion on any other computer anywhere in the world.

Unlike existing data-retrieval applications, server data can
be accessed through a single standardized protocol that can be
built into programming languages, user interface components
or web components. The present invention can be integrated
into, and combined with, existing applications that access
server data. Using Content Access Modules, the present
invention can access any type of content on any server.

In the detailed description below, an embodiment of the
present invention is referred to as QuestObjects, and provides
a system of managing client input, server queries, server
responses and client output. One specific type of data made
available through the system from a single source (or syndi-
cate of sources) is referred to as a QuestObjects Service.
Other terms used to describe the QuestObjects system in
detail can be found in the glossary below:

GLOSSARY

Active Component—Part of a software program that accesses
the QuestObjects system through one or more Questers.
Active Components may provide a user interface, in which
case they’re referred to as Questlets.

20

25

40

45

50

55

60

65

10
AppHost Synchronizer—Part of the QuestObjects Server that
allows the Application Proxy access to data in Server
Questers.
Application Proxy—An optional method implemented by the
QuestObjects Server allowing the use of the QuestObjects
system in client systems that do not allow the
QuestObjects—Client components to communicate to the
application server or web server directly. Uses the AppHost
Synchronizer on the QuestObjects Server to send selected
strings and metadata to the application server or web server
using a QuestObjects Adaptor.
Client Controller—A QuestObjects Controller on a QuestO-
bjects Client.
Client Quester—A Quester on a QuestObjects Client that has
a Server Quester as its peer.
Client Session—A temporary container of information
needed to manage the lifespan of Server Questers in a
QuestObjects Server.
Content Access Module—A part of a Content Channel that
provides a standardized API to access specific types of Con-
tent Engines.
Content-based Cache—A persistent store of Queries and cor-
responding Result Sets executed by a Content Engine for a
specific Content Channel.
Content Channel—A part of the QuestObjects system that
provides one type of information from one Content Engine.
Consists of a Query Manager and a Content Access Module,
linking a Content Engine to the QuestObjects system.
Content Engine—A dynamic data source that provides data
to a Content Channel by accessing its own database or by
querying other information systems.
Query Filter—A filter specified by a Query Manager in a
specific Service used to tell the Server Quester to interpret
incoming strings before they are sent to the Service as a
QuestObjects Query.
Query Manager—An intelligent part of a Content Channel
that interprets QuestObjects Queries and sends them to a
Content Engine (through a Content Access Module) or
retrieves results from the Content-based Cache in a standard-
ized way. The Query Manager can also send a list of Query
Patterns and Query Filters to the Server Quester, allowing the
Server Quester to match and filter new Queries before they are
sent to the Content Channel.
Query Pattern—A string-matching pattern (such as a unix-
style grep pattern) specified by a Query Manager in a specific
Service used to tell the Server Quester to interpret incoming
strings before they are sent to the Service as a QuestObjects
Query.
Persistent Quester Store—A dynamic database of Questers
that is maintained on the QuestObjects Server, allowing
Questers 1o be stored across Client sessions whereby the state
and contents of the Client are automatically restored when a
new Client Session is started.
Quester—An intelligent non-visual object contained by an
Active Component that links a QuestObjects Stringlist to an
input buffer. Questers exist on both the QuestObjects Client
and the QuestObjects Server and can be specifically referred
to as Client Quester and Server Quester. Questers communi-
cate with each other through a QuestObjects Controller.
Questlet—A User Interface Element that accesses the
QuestObjects system through one or more Questers. A visual
Active Component.
QuestObjects Adaptor—An optional software component for
existing application servers and web servers that allows these
servers to use data entered into the QuestObjects system by
users of client systems and web browsers that require an
Application Proxy.

US 8,539,024 B2

11

QuestObjects Client—Part of the QuestObjects system that
functions as the client tier consisting of one or more Client
Questers and a Client Controller that communicates to a
QuestObjects Server.

QuestObjects Controller—An intelligent non-visual compo-
nent that provides the interface between Questers on QuestO-
bjects Clients and QuestObjects Servers. QuestObjects Con-
trollers implement the protocol of the present invention.
QuestObjects Query—A string created by the Server Quester
with optional qualifier and the requested row numbers form-
ing a query to be executed by a specified QuestObjects Ser-
vice.

QuestObjects Result Set—A set of Stringlists with corre-
sponding Query returned from the QuestObjects Service,
returned in batches to the Client Quester by the Server
Quester.

QuestObjects Server—Central part of the QuestObjects sys-
tem that provides the link between any number of QuestOb-
jects Clients, any number of QuestObjects Services, and any
number of other QuestObjects Servers. Maintains Client Ses-
sions that QuestObjects Clients communicate with through
the Server Controller. Provides services such as caching, rep-
lication and distribution.

QuestObjects Service—One of the Content Channels pro-
vided by a specific Syndicator. A logical name for a Syndi-
cator, a Content Channel and its corresponding Content
Engine.

QuestObjects String—Sequence of Unicode characters with
standardized attributes used by the QuestObjects system.
QuestObjects StringList—Container for a set of QuestOb-
jects Strings retrieved from a QuestObjects Service with stan-
dardized attributes needed by the QuestObjects System.
QuestObjects User—Person or process accessing the
QuestObjects system from the QuestObjects Client, option-
ally authorized by the Syndicator.

Server Controller—A QuestObjects Controller on a QuestO-
bjects Server.

Server Quester—A Quester on a QuestObjects Server that has
a Client Quester as its peer.

Syndicator—A part of the QuestObjects system that offers
one or more Content Channels to be used by QuestObjects
Servers, performing user-based accounting services based on
actual data use such as billing, collection of statistics and
management of preferences.

User Interface Element—A visual and optionally interactive
component in a software program that provides an interface to
the user.

The present invention provides a system that allows clients
or client applications to asynchronously retrieve database
information from a remote server of server application. The
terms “client” and “server” are used herein to reflect a specific
embodiment of the invention although it will be evident to one
skilled in the art that the invention may be equally used with
any implementation that requires communication between a
first process or application and a second process or applica-
tion, regardless of whether these processes comprise a typical
client-server setup or not. The invention includes a Server,
that handles requests for information from clients, and a
communication protocol that is optimized for sending single
characters from a Client to the Server, and lists of strings from
the Server to the Client. In one embodiment, as the Server
receives a single character from the Client, it immediately
analyzes the lengthening string of characters and, based on
that analysis, returns database information to the Client in the
form of a list of strings. Clients are not restricted to programs
with a user interface. Generally, any process or mechanism
that can send characters and receive string lists can be con-

10

20

25

30

35

40

45

§S

60

65

12

sidered a client of the system. For example, in an industrial or
power supply setting, the control system of a power plant
could send sensor readings to the system, and in return receive
lists of actions to be taken, based on those sensor readings.

The system’s protocol is not restricted to sending single
characters. In fact, Clients can also use the protocol to send a
string of characters. For example, when a user replaces the
contents of an entry field with a new string, the Client may
then send the entire string all at once to the Server, instead of
character by character.

In accordance with one embodiment of the invention the
system is session-based, in that the server knows or recog-
nizes when subsequent requests originate at the same Client.
Thus, in responding to a character the Server receives from a
Client it can use the history of data that has been sent to and
from the current user. In one embodiment, the system stores
user preferences with each Service, so that they are always
available to the Client, (i.e., they are independent of the physi-
cal location of the client). Furthermore, client authentication
and a billing system based on actual data and content use by
Clients are supported. For faster response, the Server may
predict input from the Client based on statistics and/or algo-
rithms.

The system is bi-directional and asynchronous, in that both
the Client and the Server can initiate communications at any
moment in time. The functionality of the system is such that
it can run in parallel with the normal operation of clients.
Tasks that clients execute on the system are non-blocking, and
clients may resume normal operation while the system is
performing those tasks. For example, a communication initi-
ated by the Client may be a single character that is sent to the
Server, that responds by returning appropriate data. An
example of a communication initiated by the Server is updat-
ing the information provided to the client. Because the system
is session-based it can keep track of database information that
has been sent to the Client. As information changes in the
database, the Server sends an updated version of that infor-
mation to the Client.

Embodiments of the system may be implemented as a
multi-tier environment This makes it scalable because the
individual tiers can be replicated as many times as necessary,
while Joad balancing algorithms (including but not limited to
random and round robin load-balancing) can be used to dis-
tribute the load over the copies of the tiers. One skilled in the
art would appreciate that it is not necessary to replicate the
tiers. Indeed, there may be only a single copy of each tier, and
that all tiers (Client, Server, and Service) may be running on
a single computer system.

FIG. 1 illustrates the general outline of a system that
embodies the present invention. As shown in FIG. 1 there may
be various Clients 101 using the system. These Clients use a
communication protocol 102 to send information, including
but not limited to single characters, and to receive informa-
tion, including but not limited to lists of strings and corre-
sponding metadata. At least one Server 103 receives informa-
tion from the Client, and sends information to the Client. In a
typical embodiment if there is a plurality of Servers, then the
system can be designed so that each Client connects to only
one of them, which then relays connections to other Servers,
possibly using load-balancing algorithms. Servers have a
communication link 104 to a Service 105, which they use to
obtain the information that they send to the Client.

FIG. 2 is a schematic illustrating an embodiment of the
present invention, and displays a five-tier system that has a
user interface in which user interface elements use the present
invention to assist the user in performing its tasks. For pur-
poses of illustration, FIG. 2 displays just one session and one

US 8,539,024 B2

13

content Service. In an actual implementation there may be
multiple concurrently active sessions, and there may be more
than one content Service that Clients can use. As shown
herein, the first of the five tiers is a Client tier 201. The Client
tier contains the user interface and the Client components that
are needed to use the system. The second tier is a Server or
server process 206, which handles the queries that Clients
execute, and in return displays results to the Client. Service
213, which corresponds to 105 of FIG. 1, is a logical entity
consisting of three more tiers: a Syndicator 214, a Content
Channel 219 and a Content Engine 224. The Syndicator pro-
vides access to a number of Content Channels and performs
accounting services based on actual data use. The Content
Channel provides a specific type of information from a spe-
cific source (i.e. the Content Engine). The Content Engine is
the actual source of any content that is made available through
the QuestObjects system. The Client tier 201 corresponds to
the client 101 in FIG. 1. In this example, the Client may be an
application (and in some embodiments a web application)
with a user interface that accesses the system of the present
invention. As used in the context of this disclosure a user
interface element that uses the present invention is referred to
as a “Questlet.” A Client can contain one or more Questlets
202 (e.g. an input field or a drop down list. FIG. 3 described
later contains three examples of such Questlets. A Questlet is
always associated with at least one Client Quester 203.
Questers are objects that tie a QuestObjects input buffer (con-
taining input from the Client) to a QuestObjects Result Set
returned from a QuestObjects Server. Questers exist on both
the Client and Server, in which case they are referred to as a
Client Quester and a Server Quester, respectively. Every Cli-
ent Quester has one corresponding Server Quester. In accor-
dance with the invention, any event or change that happens in
either one of them is automatically duplicated to the other so
that their states are always equal. This synchronization
mechanism is fault-tolerant so that a failure in the communi-
cation link does not prevent the Questers from performing
tasks for which they do not need to communicate. For
example, a Client Quester can retrieve results from the cache,
even if there is no communication link to the Server. Each
single Quester accesses exactly one QuestObjects Service,
i.e. one specific Content Channel offered by one specific
Syndicator. At initialization of the Client, the Questlet tells its
Quester which Service to access. In one embodiment a Ser-
vice is stored or made available on only one Server within a
network of Servers. However, this is transparent to the Client
because each Server will forward requests to the right com-
puter if necessary. The Client does not need to know the exact
location of the Service.

To communicate with its Server Quester 208, each Quester
in a session uses a controller 204. The system contains at least
one Client Controller 204 and a Server Controller 209, which
together implement the network communication protocol 205
of the present invention. Client Controllers may cache results
received from a Server, thus eliminating the need for network
traffic when results are reused.

Client Questers are managed by a Questlet, which create
and destroy Questers they need. In a similar fashion, Server
Questers are managed by a Session 207. When a Client
Quester is created, it registers itself with the Client Controller.
The Client controller forwards this registration information
as a message to the Session using the Server Controller. The
Session then checks if the Persistent Quester Store 210 con-
tains a stored Quester belonging to the current user matching
the requested Service and Query Qualifier. 1f such a Quester
exists, it is restored from the Persistent Quester Store and

20

25

35

40

45

50

55

60

65

14

used as the peer of the Client Quester. Otherwise, the Session
creates a new Server Quester to be used as the Client
Quester’s peer.

A Time Server 211 provides a single source of timing
information within the system. This is necessary, because the
system itself may comprise multiple independent computer
systems that may be set to a different time. Using a single-
time source allows, for example, the expiration time of a
Result Set to be calibrated to the Time Server so that all parts
of the system determine validity of its data using the same
time.

Server communication link 212 is used by the Server to
send requests for information to a Service, and by a Service to
return requested information. Requests for information are
Query objects that are sent to and interpreted by a specific
Service. Query objects contain at least a string used by the
Service as a criterion for information to be retrieved, in addi-
tion to a specification of row numbers to be returned to the
Client. For example, two subsequent queries may request row
numbers 1 through 5, and 6 through 10, respectively. A query
object may also contain a Qualifier that is passed to the
appropriate Service. This optional Qualifier contains
attributes that are needed by the Service to execute the Query.
Qualifier attributes may indicate a desired sort order or in the
example of a thesaurus Service may contain a parameter
indicating that the result list must contain broader terms of the
Query string. Services use the communication link to send
lists of strings (with their attributes and metadata) to Servers.
Server communication link 212 is also used by Server
Questers to store and retrieve user preferences from a Syndi-
cator’s Preference Manager.

Questers use Services to obtain content. A Service is one of
the Content Channels managed by a Syndicator. When a
Quester is initialized, it is notified by its Active Component of
the Service it must use. The Service may require authentica-
tion, which is why the Syndicator provides a User Manager
215. If a Client allows the user to set preferences for the
Service (or preferences needed by the Active Component), it
may store those preferences using the Syndicator’s Prefer-
ence Manager 216. The Server (i.e. Server Quester) only uses
the Syndicator for authentication and preferences. To obtain
content, it accesses the appropriate Content Channel directly.
The Content Channel uses its Syndicator to store usage data
that can be later used for accounting and billing purposes.
Usage data is stored in a Usage Statistics Store 217.

Content communication Jink 218 is used by Content Chan-
nels to send usage data to their Syndicator, and to retrieve user
information from the Syndicator. The Content Channel is a
layer between the QuestObjects System, and the actual con-
tent made available to the system by a Content Engine 224.
Each Content Channe] has a corresponding Query Manager
220 that specifies the type of query that can be sent to the
corresponding Content Engine, and defines the types of data
that can be returned by the Content Channel.

Specification of query type comprises a set of Query Pat-
terns and Query Filters that are used by the Server Quester to
validate a string before the string is sent to the Content Chan-
nel as a QuestObjects Query. For example, a query type
“URL” may allow the Server Quester to check for the pres-
ence of a complete URL in the input string before the input
string is sent to the Content Channel as a query. A query type
“date” might check for the entry of a valid date before the
query is forwarded to the Content Channel.

The Query Manager optionally defines the types of string
datathat can be returned to the Client by the Content Channel.
Specific Active Components at the Client can use this infor-
mation to connect to Services that support specific types of

US 8,539,024 B2

15

data. Examples of string types include: simple terms, defini-
tional terms, relational terms, quotes, simple numbers, com-
pound numbers, dates, URLSs, e-mail addresses, preformatted
phone numbers, and specified XML formatted data etc.

The Query Manager 220 retrieves database information
through a Content Access Module 221. The Content Access
Module is an abstraction layer between the Query Manager
and a Content Engine. It is the only part of the system that
knows how to access the Content Engine that is linked to the
Content Channel. In this way, Query Managers can use a
standardized API to access any Content Engine. To reduce
information traffic between Content Channels and Content
Engines, Content Channels may access acontent-based cache
222 in which information that was previously retrieved from
Content Engines is cached. Engine communication link 223
is used by Content Access Modules to communicate with
Content Engines. The protocol used is the native protocol of
the Content Engine. For example, if the Content Engine is an
SQL based database system then the protocol used may be a
series of SQL commands. The Content Access Module is
responsible for connecting the Content Engine to the QuestO-
bjects System.

Content Engines 224 are the primary source of information
in the system. Content Engines can be located onany physical
computer system, may be replicated to allow load balancing,
and may be, for example, a database, algorithm or search
engine from a third-party vendor. An example of such an
algorithm is Soundex developed by Knuth. Content Engines
may require user authentication, which, if required, is
handled by the Syndicator (through the Content Access Mod-
ule).

The invention uses Content Engines as a source of strings.
One skilled in the art would understand that a string may, for
example, contain a URL of| or a reference to any resource,
including images and movies stored on a network or local
drive. Furthermore, strings may have metadata associated
with them. In one embodiment, strings might have a language
code, creation date, modification date, etc. An entry in a
dictionary may have metadata that relates to its pronuncia-
tion, a list of meanings and possible uses, synonyms, refer-
ences, etc. A thesaurus term may have a scope note, its nota-
tion, its source and its UDC coding as metadata, for example.
Metadata of an encyclopedia entry may include its descrip-
tion, references, and links to multi-media objects such as
images and movies. A product database may have a product
code, category, description, price, and currency as metadata.
A stock quote may have metadata such as a symbol, a com-
pany name, the time of the quote, etc. Instructions to a control
system may contain parameters of those instructions as meta-
data. For example, the instruction to open a valve can have as
metadata how far it is to be opened.

FIGS. 3A-3C contain three examples of the Questlets that
can be used with the system, i.e., the User Interface Elements
that access the QuestObjects system. In FIG. 3A, a series of
representations of an auto-completing entry field are shown,
such as might be used in an application window or on a web
form, that accesses a single QuestObjects Service, and allows
for auto-completion of, in this example, a U.S. state name.
FIGS. 3B and 3C depict two different presentation forms of
the same complex Questlet that access a number of QuestO-
bjects Services simultaneously.

Users should be able to clearly recognize the availability of
QuestObjects Services in an application. As shown in FIG.
3A, and particularly in the auto-complete entry field example
screen element 302, clear symbols are displayed at the right
end of the field. A small disclosure triangle 308 is displayed in
the lower right-hand corner, and serves as an indicator to the

25

40

45

60

65

16

user that a QuestObject is being used. A reserved space herein
referred to as the “status area”, and located above the disclo-
sure triangle 301 is used to display information about the state
of the QuestObjects system. The successive shots of this
screen element 302 through 307 show some of the different
kinds of states in this status area. Screen element 302 depicts
an empty data field with an empty status area. The screen
element 303 shows the same field immediately after the user
enters a character “N”. On receiving the “N”input, the Quest-
let immediately checks its internal entry cache for available
auto-complete responses. If the cache does not contain a valid
string (either because the cache is empty, because the cache is
incomplete for the entry character, or because one or more
cached strings have expired) the QuestObjects system sends a
query to the QuestObjects Service. This sending process is
indicated by a network access symbol in the status area 304
which is in this embodiment takes the form of a left and right
facing arrows.

Screen element 305 shows the entry field after the Server
has sent one or more auto-complete strings back to the Quest-
let. This example situation is typical of these instances in
which the user did not enter a second character after the
original “N”” before the QuestObjects system responded. The
QuestObjects system is inherently multi-threaded and allows
the user to continue typing during access of the QuestObjects
Service. The screen element status area of 305 now displays
a small downward facing arrow indicating that there are more
available auto-complete answers. In this case, the entry field
has displayed the first one in alphabetic order.

Screen element 306 shows the same entry field after the
user has hit the down arrow key or clicked on the arrow
symbol in the status area. The next available auto-complete
response in alphabetical order is displayed. The double up
and down pointing arrows in the status area now indicate that
both a previous response (in this example, “Nebraska™) and a
next response are available.

Screen element 307 shows the same entry field after the
user has typed two additional characters, “e” and “v”. As
shown in this example, the status area changes to a checkmark
indicating that there is now only one available auto-complete
match for the characters entered. The user can at any point use
the backspacekey on theirkeyboard (or perform other actions
defined in the Questlet) to select different states, or can leave
the entry field to confirm his selection. At this time, the system
may do several things. It can automatically accept the string
“Nevada” and allow the user to move on with the rest of the
entry form; or if it has been confignred such it may decide to
replace the string “Nevada” by the two-character state code.
The QuestObjects Service not only retumns strings, but also
any corresponding metadata. This example of an auto-com-
plete entry field Questlet is based on showing the response
string, but other Questlets (and even invisible Active Compo-
nents) may perform an action invisible to the user. In addition,
a response sent to one Questlet can trigger a response in other
Questlets that have a pre-defined dependency to that Questlet.
For example, entering a city into one Questlet can trigger
another Questlet to display the corresponding state. It will be
evident to one skilled in the art, that although left, right, up
and down arrows are used to indicate usually the status of the
QuestObject field, other mechanisms of showing the status
within the scope and spirit of the invention.

Interdependent data (which in the context of this disclosure
is that data originating from a multitude of QuestObjects
Services) can be combined into a complex Questlet.
Examples 309 shown in FIG. 3B and example 313 shown in
FIG. 3C show a complex user interface element (Questlet)
that makes multiple QuestObjects Services available to the

US 8,539,024 B2

17

user. In both examples the upper part of the Questlet is an
entry field that may offer the auto-complete functionality
described in FIG. 3A. By clicking on the disclosure triangle
308 shown in the earlier FIG. 3A (or by another action), the
user can disclose the rest of the Questlet, which in this
example comprises two functional areas 311 and 312. In this
example, the user interface allows the user to choose a vertical
presentation mode 309, shown in FIG. 3B or a horizontal
presentation mode 313, shown in FIG. 3C for the Questlet. A
close box 310 replaces the disclosure triangle in the entry
field, allowing the user to close areas 311 and 312. In FIG. 3C
Area 314 shows a certain QuestObjects Service, in this case a
list of “Recent Terms™ accessed by the user. This Questlet
allows the user to select a different QuestObjects Service for
area 314 by selecting it from a popup list 319. Inthis example,
an appropriate second Service might be “Alphabetic Listing”.

In both examples of FIGS. 3B and 3C, area 312 displays a
QuestObjects “Thesaurus Service” (Thesa) that has been
selected. Additionally, in FIG. 3C areas 315 through 318
display four different Questers that take their data from a
QuestObjects Thesaurus Service. These Questers all access
the same Thesaurus and all have a dependency on the selected
string in the main list of area 314. Once the user clicks on a
string in area 314 the thesaurus lists 315 through 318 are
automatically updated to show the corresponding “Used For
terms” UF, “Broader Terms” BT, “Narrower Terms” NT, and
“Related Terms” RT from the Thesaurus Service. Questers
315 through 318 thus have a different Qualifier that is used to
access the same QuestObjects Service. It will be evident to
those skilled in the art that this example is not intended to be
acomplete description of features that a thesaurus browser (or
any other Service) provides. Most thesauri offer a multitude
of term relationships and qualifiers. A Questlet or part of a
Questlet may provide access to a multitude of QuestObjects
Services. A possible way to do this is to show multiple tabbed
panes accessible through tab buttons named after the Services
they represent 320.

Data from the QuestObjects Services can be displayed by a
Questlet in many forms. Thesaurus browser Questlets gener-
ally display interactive lists of related terms. Questlets can
also allow users to lookup data in a reference database (dic-
tionary, encyclopedia, product catalog, Yellow Pages, etc.)
made available as a QuestObjects Service. Furthermore,
Questlets can access QuestObjects Services that provide a
standardized interface to search engines. These search
engines may be Internet-based or can be built into existing
database servers. Questlets can also access pre-defined func-
tions made available as QuestObjects Services (such as a
bank number check, credit card validation Service or encryp-
tion/decryption Service). Questlets can even access transla-
tion Services allowing on-the-fly translation of entry data. In
some embodiments Questlets can retrieve multi-media data
formats by receiving a URL or pointer to multi-media files or
streaming media from a QuestObjects Service. In other
embodiments Questlets can be used to display current stock
quotes, news flashes, advertisements, Internet banners, or
data from any other real-time data push Service. Questlets can
provide an auto-complete or validity checking mechanism on
the data present in specific fields or combinations of fields in
relational database tables.

As described above, Questlets are well suited to represent
QuestObjects data visually. However, a QuestObjects Client
system can also contain non-visual Active Components, such
as function calls from within a procedure in a program to
access a QuestObjects Service. A program that needs to dis-
play a static or unchanging list of strings can use a Quester in
its initialization procedure to retrieve that list from a QuestO-

20

25

40

45

60

65

18

bjects Server. By calling a Quester, a stored procedure in a
database can make a QuestObjects Service available to any
database application. By encapsulating a Quester into an
object supplied with a programming language, a QuestOb-
jects Service can be made available to its developers. Another
example of how QuestObjects Services may be accessed is
through a popup menu that a user can access by clicking on a
word, phrase or sentence in a document. The popup menu can
include one or more QuestObjects Services by calling one or
more Questers. In an application that is controlled by speech,
a sound conversion engine that translates speech input into
phonemes can be used to send these phonemes to a QuestO-
bjects speech recognition Service through a Quester. As yet
another example, a control system can use a Quester to send
sensor readings to a Server, which then queries a special
purpose content engine to return actions that the control sys-
tem must perform given the sensor readings.

FIG. 4 shows a simplified event life cycle illustrating what
happens in a QuestObjects system using an auto-complete
Service. The protocol of the present invention is implemented
in the Client Controller and the Server Controller 400. In an
initial phase an Active Component on the Client tells its
Quester to start or initialize 401 a corresponding Client Ses-
sion on the current QuestObjects Server by sending a Register
message to its Client Controller. The Server Controller starts
a Client Session if it has not been started already. For sim-
plicity the event trace of FIG. 4 does not show typical error
handling that normally occurs, for instance when a Session
cannot be started. If the Quester was used before in the same
Active Component and application, the Session may restore
the Quester from a Persistent Quester Store, which may even
cause a Query to be triggered immediately if the Result Set in
the Quester is out of date.

The Server Quester looks up the Service in the Server’s list
of known QuestObjects Services, which may or may not be
located on the same computer. Once the Service is found, the
Client is registered and optionally authenticated by the Ser-
vice. At this time, the Service 402 returns information to the
Server Controller at which time the Client receives a confir-
mation that it was registered successfully. The Active Com-
ponent can now start using the Quester it has just initialized.
If the Active Component has a user interface (i.e. it is a
Questlet) then it will now allow the user to start entering
characters or cause other user events.

The next step in the process is to capture user input. As
shown in FIG. 4, at point 403 a character event is generated to
indicate the user has typed a character ‘a’ into the Questlet.
The Quester sends a message to its Client Controller telling it
that character ‘a’ must be appended to the input buffer (it will
be evident to one skilled in the art that if the cursor is not at the
end of the input string, typing ‘a’ would, for example, gener-
ate a different event to insert the character instead of append
it). The Client Controller uses the protocol to synchronize the
input buffer in the Server Quester by communicating to the
Server Controller. The Server Controller may look up query
‘a’ in its Result Set cache, in which case it can return a
previous Result Set to the Client without accessing the Ser-
vice. Also, depending on any rules specified by the Service (as
specified by a list of Query Patterns and Query Filters defined
in the Query Manager of the Content Channel) and depending
on the time interval between input buffer changes, the Server
Quester may decide not to immediately send the (perhaps
incomplete) string to the Service, as shown here.

An additional character event 404 is generated when the
user has typed a second character ‘b’ into the Questlet. As
before, a corresponding event arrives at the Server Quester. In
this case, the Server Quester may deduct that the input string

US 8,539,024 B2

19

represents a valid query and send the appropriate query mes-
sage ‘ab’ to the Service. After receiving a query, the Service
executes it by accessing its Content Engine through the Con-
tent Access Module unless the Query Manager was able to
lookup the same Query with a Result Set in the Content-based
Cache. After an appropriate Result Set 405 is retrieved, the
Service will return it to the Client. In some embodiments, a
large Result Set may be returned to the Client in small
batches. In other embodiments an incomplete Result Set may
also be returned if the Content Engine takes a long time to
come up with a batch of results. A QuestObjects Service may
automatically ‘push’ updated information matching the pre-
vious query to the Client as it becomes available. A Query can
also be set to auto-repeat itself 406 if necessary or desired.

At step 407 the user types a third character ‘¢’ into the
Questlet. While this character is being sent to the Server, a
second and possibly third result set from the previous query is
on its way to the Client. When the Client Controller decides
408 that the received Result Set ‘ab’ no longer matches the
current input string ‘abc’, the second update of ‘ab’ is not
transmitted to the Active Component. Depending on the sort
order and sort attributes of the Result Set, the Client Control-
ler may still send the second and third Result Sets to the
Active Component if the second query ‘abc’ matches the first
string of the Result Set for the first query ‘ab’409. In that case,
the user typed a character that matched the third character in
the second or third Result Set, thus validating the Result Sets
for the second query. Eventually the Server Quester receives
notice of the third character appended to the input buffer, and
sends a new query ‘abc’ to the Service. The Server Quester
will stop the ‘repeating’ of query ‘ab’ and the Service willnow
execute 410 the new query ‘abc’ at the Content Engine, or
retrieve it from the Content-based Cache.

FIG. 5 depicts a flow chart illustrating the interface
between an Active Component and the present invention. As
shown therein a Client Quester is initialized (step 501) in
which each active component is associated with one or more
Client Questers. A loop is then entered that exits when the
Active Component is destroyed (step 502). In the loop, events
are sent to the Client Quester (step 503), such as keyboard
events, click events and focus events (i.e. events that tell the
system which user interface element currently has input
focus). When events are sent to the Client Quester, they may
result in return events from the Client Quester, such as events
informing that the Result Set of the Client Quester has
changed. Those events are received by the event receiver (step
504). The event receiver waits for events from the Client
Quester (step 506) and—if events have been received (507)
—processes them (step 508). It will be evident to one skilled
in the art that the Active Component can be multi-threaded, in
that the event receiver can work concurrently with the rest of
the Active Component. The Active Component may also use
a cooperative multi-threading scheme where it actively
handles client events and server responses in a continuous
loop.

FIG. 6 shows a flow chart illustrating the Client side of the
present invention. First, the Client Quester registers itself
with the Client Controller (step 601). It then enters a loop that
exits when the Client Quester is destroyed (step 602). When
that happens, the Client Quester deregisters itself from the
Client Controller (step 603). During the loop the Client
Quester handles events from the Active Component it belongs
to. First, it waits for an event and receives it (step 604). Then
the type of the event is checked (step 605). If it is not a
character event, it is handled depending on the type and
content of the event (step 606). An example of a non-character
event is a double-click on the input string, the click of a button

—

0

20

30

35

40

45

55

60

65

20

that clears the input buffer, the addition of characters to the
input buffer by a paste-action etc. If the event is a character
event, the input buffer is updated accordingly and Client
Questers that have dependencies with the input buffer or the
Result Set also are notified (step 607).

The next step is to get results based on the new input buffer.
First, the Client Quester checks ifthe results are present in the
client-side cache, which usually is a fast short-term
in-memory buffer (step 608); if so, they are retrieved from the
cache (step 609) and the Active Component is notified of the
results (step 610). If the results are not found in the cache, the
Client Quester uses the Client Controller to send the new
input buffer to the Server Quester, so that a new query can be
executed (step 611). To support this, the protocol of the
present invention provides a number of messages that allow
the Client Quester to send just the changes to the input buffer,
instead of sending the entire input buffer. These messages
include but are not limited to: inputBufferAppend, input-
BufferDeleteCharAt, inputBufferInsertCharAt, inputBuffer-
SetCharAt, inputBufferSetLength, and inputBufferDelete.
After thus updating the Server Quester’s input buffer, the
Client Quester activates the result retriever to wait for new
results and process them (step 612).

The Client Quester is intended to be multi-threaded, so that
it can continue providing its services to its Active Component
while it waits for results from the QuestObjects Server. There-
fore, the Result Retriever can be implemented to run in a
separate thread of execution. In this embodiment the Result
Retriever waits for results from the Server Quester (step 613).
1f results have been received (step 614), it checks whether
they are usable (step 615). Results are usable if they corre-
spond to the latest query. If results are from a previous query
(which can occur because the system is multi-threaded and
multi-tier), they may also still be usable if the Client Quester
can filter them to match the new input buffer (this depends on
the sort flags in the Result Set). If results are usable, the Active
Component is notified of the new results. This notification is
also sent to other Client Questers that have dependencies on
the originating Client Quester (step 616). Received results are
stored in the client-side cache, regardless of whether they
were found to be usable (step 617).

FIG. 7 is a flow chart illustrating the Server side of the
present invention. The first thing a Server Quester does when
it is created, is to check whether its attributes can be restored
from the Persistent Quester Store (step 701), based on the
parameters with which it is created. If the attributes can be
restored, they are restored and registered with its correspond-
ing Service (step 702). In accordance with one embodiment,
one of the restored attributes is a Result Set attribute; the
Server Quester checks whether it is still up to date (step 703).
If not, a query is sent to the corresponding Service if it is a
pushing service or if the Query was originally set to be auto-
repeating (step 704) and (in a separate thread of execution)
the Server Quester waits for the resulis of that query and
processes them (step 705).

If the Server Quester’s attributes could not be restored, it
initializes itself and registers itself with the correct service
which is one of the initialization parameters (step 706). If the
Client Quester was created with a default input buffer, the
Server Quester may automatically send the corresponding
Query to the Service. At this point, the initialization process is
complete and the Server Quester enters a loop that exits when
the Quester is destroyed (step 707). During the loop, the
Server Quester checks whether the Query String is valid,
using the validation attributes of the Service (Query Pattern
and Query Filter) (step 708). If the query 1s valid, the Server
Quester checks if the server-side cache has the results for the

US 8,539,024 B2

21

Query String (step 709). If not, a new Query is sent to the
Service (step 710). After that, the results are retrieved (either
from cache or from the Service) and processed (step 711).

After validating (and possibly processing) the Query
String, the Server Quester waits for messages from the Client
Quester notifying of changes to the input buffer (step 712). If
such amessage is received, the input buffer is updated accord-
ingly (step 713), and the loop is re-entered (step 708).

The processing of query results is performed in a separate
thread of execution. The process performed in this thread
starts by obtaining the Result Set (step 714), either from the
server-side cache or from the Service depending on the result
of the decision in step 709. When these results are obtained
(step 715), they are sent to the Client Quester (step 716) either
as part of the Result Set or as the entire Result Set, depending
on parameters set by the Client Quester and are stored in the
server-side cache (step 717). In addition, the Service is noti-
fied of actual results that have been sent to the client (step
718). If the results were pushed by the Service (step 719), this
thread starts waiting for new results to be processed; other-
wise, the thread stops.

FIGS. 8A-8D illustrate and object model of an embodi-
ment of the present invention. FIG. 8A illustrates the base
portion of the model containing the entities that are not spe-
cific to either QuestObjects Clients, QuestObjects Servers, or
QuestObjects Services. FIG. 8B displays the entities that are
specific to the QuestObjects client. FIG. 8C contains the
entities specific to the QuestObjects Server. FIG. 8D shows
the entities specific to the QuestObjects Service.

Each of FIGS. 8A through 8D show object models of one
particular embodiment of the present invention, using UML
(Unified Modelling Language) notation. Note that in the fig-
ures some of the entities have a name that starts with one of
the words ‘base’, ‘client’, ‘server’, and ‘service’, followed by
two colons. Those entities are merely references to entities in
the subfigure indicated by the word before the two colons. For
example, the entity named ‘service::QoService’ in FIG. 8A is
a reference to the ‘QoService’ entity in the figure of the
service part, namely FIG. 8D. It will be evident to one skilled
in the art that the model shown is purely an illustrative
example of one embodiment of the invention and that other
models and implementations may be developed to practice
the invention while remaining within the spirit and scope of
the this disclosure.

The base part of the system—depicted in FIG. 8 A-com-
prises entities that are not specific to one of the tiers of the
QuestObjects system. One of the most important entities
shown in FIG. 8A is QoString, the QuestObjects String. QoS-
tring models the strings that the QuestObjects System
handles. A QoString has at least a value, which is the
sequence of (Unicode) characters itself. To guarantee a mini-
mum performance level, i.e. one in which the communication
takes as little time as possible, this value has a limited length
(e.g. of 256 characters). Furthermore, a QoString may have a
key and metadata. The key (if any is present) is the identifier
(i.e. the primary key) of the QuestObjects String in the data-
base from which it originates. This key can be used to retrieve
data from the database that is related to the QuestObjects
String. Metadata of a QoString can be any additional data that
is provided with the QoString’s value. Metadata of a QoString
is XML formatted and has a limited length (e.g. 2048 bytes),
in order to ensure that QoStrings can be exchanged between
the tiers of the QuestObjects System without compromising
efficiency. If the QoString originates from a Content Channel,
it may also have a fetichTime, namely the timestamp of when
the QoString was retrieved from the underlying content pro-
vider. Italso may have an expirationTime indicating how long

40

45

55

60

65

22

the data in the QoString is to be considered valid. Optionally
a QoString can have a type, which is a reference to a QoType
object. (Note that for maximum efficiency the types are not
actually stored in the QoStrings, because it is very likely that
many QoStrings in a QoResultSet have the same type. Storing
the types in the strings would unnecessarily increase network
traffic.)

The QoType object models the concept of a string’s type. It
has a string typeString that contains the description of the type
and an indicator typelndicator that defines the meaning of the
description (typeString). Examples of string types are: the
DTD or Schema of the string’s value in these cases in which
it is XML formatted (or, alternatively, the URL ofthe DTD or
Schema), the number formatter in the case it is a number, and
the date (and/or time) formatter in the case it is a date (and/or
time). Table 1 shows an example of the use of types, espe-
cially type indicators.

TABLE 1
Value of
typelndicator Meaning of typeString
0 typeString contains the name of the type

64 typeString contains a string formatter
65 typeString contains a number formatter
66 typeString contains a date formatter

128 typeString contains a DTD

129 typeString contains a Schema

160 typeString contains the URL of a DTD

typeString contains the URL of a Schema
custom type; typeString is the type’s name

In the example shown in Table 1, bit 7 of the typelndicator
is on if typeString is XML related, bit 6 is on if typeString is
some formatter, and bit 5 is on when typeString is a URL. This
name must follow the same naming scheme as Java packages:
They must use the Internet domain name of the one who
defined the type, with its elements reversed. For example,
custom types defined by MasterObjects would begin with
“com.masterobjects.”.

The QoQuery entity models the specification of a QuestO-
bjects Query. It includes a queryString that contains the value
the Content Channel is queried for (which is named que-
ryString in the figure). In addition to the queryString,
QoQuery has a property ‘qualifier’ that can hold any other
attributes of the query. The format and meaning of the quali-
fier's contents is defined by the Content Channel that executes
the query. Furthermore, it can be specified which row num-
bers of the total result set must be returned using the property
‘rownums’. The property ‘requestedTypes’ can optionally
hold a list of QoTypes, limiting the types of the strings that
will result from the query. The “timeout’ property can be used
to specify a maximum amount of time execution of the query
may take.

Queries may include a type (QoQuerytype). Query types
are similar to Qo Type (i.e. String Types), and can be used by
QuestObjects Clients to find all QuestObjects Services that
support a certain kind of Query.

The result of a query is represented by the QoResultSet
entity. QuestObjects Result Sets are collections of QuestOb-
jects Strings that are sent from a QuestObjects Server to a
QuestObjects Client in response to a query. QoResultSets are
created and filled by a QuestObjects Service (to which QoRe-
sultSet has a reference named ‘service’), based on the
QoQuery to which the QoResultSet has a reference. Actual
results are stored as an array of QoStrings in the ‘strings’
property. Elements of the QuestObjects Result Set (i.e. QoS-
trings) may be selected, as indicated by the ‘selected’ prop-

US 8,539,024 B2

23

erty that is a list of indices in the strings array of selected
strings. Also, one of the QoStrings may be marked as current
as indicated by the ‘current’ property. (When a QoString is
marked as current it means that all operations are performed
on that QoString, unless another one is explicitly specified.)
QuestObjects Result Sets include an attribute ‘ordered’ that
indicates whether the QoStrings in the QoResultSet are
ordered. Sometimes, especially when a QuestObjects Result
Set is narrowed down by a new Query, the fact that the
QoResultSet is ordered may mean that the QuestObjects Cli-
ent does not need to actually execute a new Query; instead, it
can filter the previous QuestObjects Result Set itself accord-
ing to the new queryString.

As further described below, Server Questers may have a
QuestObjects Result Set, of which only a part is sent to the
QuestObjects Client. At all times, the ‘rownums’ property of
QoResultSet indicates the row numbers of QoStrings that are
actually present in the QoResultSet. The rownums property
may have different values for corresponding QoResultSets on
the QuestObjects Server and the QuestObjects Client. The
same holds for the ‘strings’ property. The ‘complete’ property
is the percentage of the QoStrings in the server-side QoRe-
sultSet that is present in the corresponding client-side QoRe-
sultSet as well. The property ‘totalNumberOfStrings’ indi-
cates the total number of QoStrings in the QoResultSet,
whether actually present or not. For server-side QoResultSets
this number is always equal to the length of the ‘strings’ array,
but for client-side QoResultSets the number may be smaller.

Finally, result sets include an identifier ‘resultSetld’. Every
time a Client Quester uses the protocol of the present inven-
tionto send something to the Server Quester that may resultin
anew QuestObjects Result Set, it includes a request identifier.
This identifier is then copied in the resultSetld when the
QuestObjects Result Set is sent to the Client Quester. In this
way Client Questers know which request the QuestObjects
Result Set belongs to. (This is important because the system
is asynchronous and on occasions it may occur that a newer
QuestObjects Result Set is sent to the client before an older
one. The request identifier and QuestObjects Result Set iden-
tifier allow the Client Quester to detect and handle this.)

The core entity in the figure is QoQuester. QoQuester is the
superclass of both QoClientQuester (part of the client and
thus depicted in FIG. 8B) and QoServerQuester (depicted in
FIG. 8C). The QoQuester entity models the Quester concept.
Its primary task is to maintain an input buffer, to make sure
that QuestObjects Queries are executed and to store and pro-
vide access to the QuestObjects Result Sets returned by
QuestObjects Services in reply to QuestObjects Queries. At
all times, a QoQuester holds one QoResultSet that contains
the results of the latest QuestObjects Query. (Note that a
QoQuester may hold other QoResultsSets as well, for
example for optimization purposes.) Client Questers and
Server Questers exist in a one-to-one relationship with each
other: for every Client Quester there is exactly one corre-
sponding Server Quester, and vice versa. All properties listed
in QoQuester are present and equal, both in the Client Quester
and in the corresponding Server Quester. An important excep-
tion is the resultSet property. In the Server Quester, this is
always the entire QuestObjects Result Set of the latest Query.
However, in order to minimize network traffic the Server
Quester is intelligent about the portion it actually sends to the
Client Quester. Questers include a property ‘minimumBatch-
Time’ that indicates the minimum amount of time that should
pass before the Server Quester sends results to the Client
Quester. This allows the Server Quester to accumulate results
and send them as a single action instead of as a separate action

—

0

25

35

45

50

55

60

6!

<n

24

for each result. There are two situations in which the Server
Quester may ignore this minimum batch time:

(a) when the result set is complete before the minimum
batch time has passed, and

(b) when the number of accumulated results exceeds the
number indicated by the ‘resultSetBatchSize’ property before
the minimum batch time has passed.

1f, for whatever reason, the Server Quester postpones send-
ing the accumulated results to the Client Quester, the (op-
tional) ‘maximumBatchTime’ property indicates how long it
may postpone the sending. Even if no results are available yet,
when the maximumBatchTime passes, the Server Quester
must notify the Client Quester thereof.

Results are sent to the Client Quester in batches, the size of
which is indicated by the ‘resultSetBatchSize’ property.
Occasionally, the Server Quester may deviate from this batch
size, notably when the number of results that is not present on
the client is smaller than the batch size or when the maxi-
mumBatchTime has passed. This concept can be taken even
further, for example when the batch size is 10 results and the
Server Quester has 11 results, the Server Quester may send
them all, even though it exceeds the batch size, because send-
ing one extra result with the other 10 is probably more effi-
cient than sending a single result in a separate batch at a later
point. The Server Quester can use the ‘clientMaximuml a-
tency’ to make such decisions; it indicates the maximum
expected amount of time that elapses between sending a
message and receiving its response. The higher this value, the
more likely it is that sending the eleventh result with the other
ten is more efficient.

Questers include an input buffer. The content of the input
buffer is what the QuestObjects Service will be queried for. In
the Client Quester, the input buffer is controlled by the appli-
cation that uses the QuestObjects system. For example, an
application with a graphical user interface may update the
input buffer according to key presses in one of its input fields.
The Client Quester keeps the input buffer of its corresponding
Server Quester up to date using the protocol of the present
invention.

Properties ‘highestReceivedResultSetld” and ‘latestRe-
questld’ are used to detect when QuestObjects Result Sets are
received out of order. As with the ‘resultSetld’ property of the
QoResultSet, every QuestObjects Result Set includes an
identifier. The ‘highestReceivedResultSetld’ property stores
the highest of all received QuestObjects Result Setidentifiers.
If a Client Quester only needs the latest results, it can simply
discard received QuestObjects Result Sets that have a lower
identifier than ‘highestReceivedResultSetld’. The ‘latestRe-
questld’ is the identifier of the latest request. The QuestOb-
jects Result Set with an identifier that matches latestReques-
tld” holds the results of the latest request.

The remaining properties of QoQuester store the QuestO-
bjects Service the Quester uses (‘service’), the optional quali-
fier that Queries to this QuestObjects Service need (‘quali-
fier’), the types the Quester can handle (‘types’), whether an
application proxy is needed, and the optional function of the
Quester in the application (‘applicationFunction’, used by the
application proxy mechanism to determine how the value of
the Quester is to be passed to the application/web server). In
addition, if the update interval property ‘autoUpdatelnterval’
is set to a non-zero value, the Server Quester will automati-
cally repeat the last Query with that interval. This is useful for
QuestObjects Services that are not capable of pushing results
themselves. A mechanism is required to allow any other entity
to be notified of changes in the Quester. There are many ways
this can be done. As an example in the embodiment shown in
FIGS. 8A-8D an event mechanism is included that involves

US 8,539,024 B2

25

event listeners and event handlers, very similar to the Java2
event mechanism. An entity that wants to be notified of
changes must implement the QoQuesterChangeListener
interface and then be added to the Quester’s ‘changeListen-
ers’ property (using the method ‘addQuesterChangeLis-
tener’). When the Quester changes, it will call the ‘quester-
Changed’ method of all registered
QoQuesterChangel isteners with a QoQuesterChangeEvent
as a parameter. The QoQuesterChangeEvent holds a descrip-
tion of the changes of the Quester; it has a reference 1o the
Quester that raised the event and an event type. In FIG. 8 three
event types are displayed (INPUT_BUFFER_CHANGED
indicates that the Quester’s input buffer has changed,
RESULT_SET_CURRENT_CHANGED indicates that the
current item of the Quester’s Result Set has changed, and
RESULT_SET_SELECTED_CHANGED indicates that the
list of selected results in the Quester’s Result Set has
changed). More event types can be added as desired.

Another important entity in FIG. 8A is QoController.
QoController is the entity that implements the protocol of the
present invention. In addition, it knows how to buffer usage
statistics and also handles the caching of result sets. QoCon-
troller includes two subclasses (QoClientController and QoS-
erverController), depicted in FIG. 856 and FIG. 8¢, respec-
tively. Buffering of usage statistics is an optimization that
eliminates the need of exchanging usage data between the
layers of the system every time a result is used. Instead, the
QuestObjects Controller buffers that data and flushes the
buffer when the statisticsBufferFlushTime has passed. Cach-
ing is an optimization as well. Caching is done by the QoRe-
sultsCache entry, to which the QuestObjects Controller has a
reference. The QoResultsCache has a list of cached entries
(‘resultsCacheEntries’). The entry of the cache is modeled as
QoResultsCacheEntry, an entity that has a list of QuestOb-
jects Result Sets for combinations of query strings and quali-
fiers (as defined in QoQuery).

The last entity in FIG. 8A is QoQuery Validator. QoQuery-
Validator is an abstract class that defines the method ‘is
Valid’. This method has a query string as a parameter and
returns either ‘true’ or “false’. QuestObjects Services may
declare and publish a QoQueryValidator. By doing so, they
allow the QuestObjects Serverto verify the validity ofa query
string without actually having to send it to the QuestObjects
Service, thus eliminating network traffic for invalid query
strings.

FIG. 8B displays the minimal entities every QuestObjects
Client must have. Every client of the QuestObjects System at
least has a Client Controller QoClientController. QoClient-
Controller is a subclass of QoController that implements the
client side of the protocol of the invention. Applications using
the QuestObjects System do so through Client Questers,
modeled as QoClientQuester. QoClientQuester is the sub-
class of QoQuester that implements client-specific Quester
functionality. The figure contains the entity ‘ActiveCompo-
nent’. It represents some entity that uses the QuestObjects
System through one or more Client Questers.

FIG. 8C shows the server part of the embodiment of the
present invention, and includes the QoServerQontroller, one
of the subclasses of QoController. QoServerController
implements the server-side part of the protocol of the present
invention. In addition, it maintains a list of sessions running
on the server, and it has references to a Persistent Quester
Store, an optional Service Directory and a list of optional
Application Host Synchronizers. For security reasons, one
implementation of the QuestObjects System may require that
only certified clients can connect to the system. A boolean
‘requiresCertification’ indicates this.

20

40

45

55

60

65

26

The QuestObjects System is session-based. This means
that clients that use the system are assigned to a session,
modeled by the QoSession entity. Every session has a unique
identifier, the ‘sessionld’. The QoSession entity maintains a
list of Server Questers that are active in the session (stored in
the ‘serverQuesters’ property). Furthermore, it has a refer-
ence to the Server Controller through which a QuestObjects
Client is using the session.

QoServerQuester is the server-side subclass of QoQuester.
It includes a reference to the session it is being used in (the
‘session’ property). Furthermore, when the QuestObjects
Service that the Quester uses has a Query Validator, QoServ-
erQuester has (a reference 10) a copy of that Query Validator,
so that query strings can be validated before they are actually
sent to the QuestObjects Service. The QoPersistentQuester-
Store is an entity that is able to store a user’s session and to
restore it at some other time, even when the session would
normally have expired or even when the same user is con-
necting from a different client machine. To this end, QoServ-
erQuester has two methods ‘store’ and ‘restore’. The first,
‘store’, returns a QoStoredQuester, which is a (persistent)
placeholder of the Server Quester that contains all relevant
data of that Server Quester. The second, ‘restore’, needs a
QoStoredQuester as an argument. The two are each other’s
inverse, which means calling ‘store’ on a QoServerQuester
and then calling ‘restore’ on the result creates a new QoServ-
erQuester that is an exact copy of the original QoServer-
Quester.

QoServiceDirectory acts as a Yellow Pages or directory of
QuestObjects Services. For each QuestObjects Service it
stores the name and address, as well as the address of the
QuestObjects Server through which the Service can be
accessed. Furthermore, Services’ profiles are additionally
stored to allow clients to find all QuestObjects Services sat-
isfying desired criteria.

Finally, QoAppHostSynchronizer is the AppHost Syn-
chronizer. QoAppHostSynchronizer has its address as a prop-
erty (‘appHostAddress”).

FIG. 8D depicts the service part of the embodiment of the
present invention. Content is disclosed through Content
Channels (the QoContentChannel entity). Content Channels
use Content Access Modules (QoContentAccessModule) to
obtain their data in a standardized way, so only the Content
Access Module knows how to communicate with the under-
lying data source. Content Channels are organized in Syndi-
cators (the QoSyndicator entity), and each syndicator
includes a list of Content Channels. Each Quester in the
QuestObjects System uses a specific Content Channel of a
specific Syndicator. This is called a QuestObjects Service,
namely one of the Content Channels of a Syndicator. The
property ‘subscriptionRequired’ indicates whether the user
needs to be a registered user to be allowed to use the Service.
If it is false, only users listed in ‘users’ may use the Service.
Users can be subscribed to QuestObjects Services, which is
modeled by the QoSubscription entity. Statistics are kept per
Content Channel using the QoUsageStatisticsStore entity.
Content Engines optionally have a Query Validator that the
QuestObjects Server may use to validate Query Strings
before sending them off to the QuestObjects Service. In addi-
tion, Content Channels have a profile that consists of a Con-
tent Channel’s description, a list of types (QoType) of
QuestObjects Strings the Content Channel can provide, an
optional list of DTDs of that metadata of QuestObjects
Strings from the Channel conforms to, and an optional list of
Query Types the Content Channel accepts.

US 8,539,024 B2

27

QuestObjects Servers communicate with QuestObjects
Services through the QoServiceSession. The QoServiceSes-
sion has a static reference to the QuestObjects Service it
belongs to, as well as a static array of 1P addresses of QuestO-
bjects Servers that are allowed to connect to the QuestObjects
Service. In some versions of the QoServiceSession the array
of IP addresses can be replaced by a list of addresses and
netmasks, or by IP address ranges. Every instance of QoSer-
viceSession has the IP address of the server that is using the
session (‘serverAddress’), a connectionTimeout indicating
the maximum period of idle time before the Service Session
is automatically ended, and a serviceSessionld that can be
used to refer to the Service Session.

As described above, a QuestObjects Service is one of the
Content Channels of a Syndicator, so QoService has a refer-
ence to both (“syndicator’ and ‘contentChannel’). The prop-
erty ‘listable’ indicates whether the Service may be listed ina
Service Directory (server::QoServiceDirectory). If not, the
Service can only be used if the application writer (i.e. the
programmer using the QuestObjects to develop an applica-
tion) knows that it exists and where it is available. The prop-
erty ‘name’ is the Service’s name, used in the Service Direc-
tory amongst others. This name must use the same naming
scheme as the names of custom types. The boolean ‘subscrip-
tionRequired’ indicates whether users must be subscribed
(modeled by QoSubscription) to the Service in order to be
allowed to use it. If the Content Engine of this Service’s
Content Channel requires login, ‘contentEnginel .oginName’
and ‘contentEnginel oginPassword’ are the name and pass-
word with which is logged in. Finally, ‘pricingInfo’ contains
information about the costs involved in using the Service. It is
formatted as XML, conforming to a well-defined structure
(i.e. DTD or Schema).

A Content Channe] has a name (the ‘name’ property) and a
profile (QoContentChannelProfile). The profile provides
information about the Content Channel, namely about the
Query Types it accepts (‘queryTypes’), the types of the
Strings it can provide (“types’), and the DTDs that QuestO-
bjects Strings’ metadata conforms to. In addition, it has a
textual ‘description’ of the content the Content Channel dis-
closes.

Content Channels also have properties that define the cri-
teria Query Strings have to satisfy. The property ‘que-
ryStringMinl.ength’ defined the minimum length a valid
query has. Alternatively or additionally, ‘queryStringRegu-
larExpressions’ may contain a list of regular expression
describing valid Query Strings (meaning that Query Strings
have to match at least one of the regular expressions). The
property ‘queryStringFilters’ may hold a list of regular
expressions and replacement strings that can transform Query
Strings in a well-defined manner (for example the way the
standard Unix utility ‘sed” does it). Instead of using these
three properties, Content Chanpels may define a QoQuery-
Validator (described above in FIG. 8A). If there is a Query
Validator, ‘queryStringMinl ength’, ‘queryStringRegularEx-
pressions’, and ‘queryStringFilters’ are ignored.

As described above, Syndicators may have a list of users.
Users (QoUser) have a name and a password, as well as a list
of subscriptions (QoSubscription). QoSubscription models a
user’s subscription to a Service (the ‘service’ property). The
properties ‘startDate’ and ‘expirationDate’ define the time
frame during which the subscription is valid. Outside that
time frame the user will be denied access through the sub-
scription. The maximum number of queries the user may ran
in the Service is stored in the ‘queryLimit’ attribute. The
‘queryLimitReset’ defines when the query counter is reset.
For example, if queryLimit is 10 and queryLimitReset is 7

20

25

30

35

40

45

50

55

60

65

28

days, the user may run 10 queries per week. (If queryLimit
equals zero the number of queries is unlimited and que-
ryLimitReset is ignored.) The property ‘resultLimit’ stores
the maximum number of results the user may receive from the
subscription. Similar to ‘queryLimitReset’, ‘resultL.imitRe-
set” defines how often the result counter is reset. If
‘resultLimit’ equals zero the number of results is unlimited
and ‘resultLimitReset’ is ignored. The property ‘pushAl-
lowed’ indicates whether the user may use the Service in
pushing mode. If so, ‘pushintervalLimit’ indicates the mini-
mum amount of time that has to pass between two pushes. A
‘historyAllowed” variable indicates whether a history is kept
of the use of the subscription; if so, ‘historyLimit” indicates
the maximum size of the history. If the maximum size is
exceeded, the oldest history data is deleted so that the size of
the history is below the maximum size again. If ‘histo-
ryLimit’ equals zero, the size of the history is unlimited.
Finally, a ‘usageAnonymous’ variable indicates that the
QoUsageRecords that are generated for this subscription
must not contain user information (this is necessary because
of privacy issues).

If “keepServiceStatistics’ is true, then the QoUsageStatis-
ticsStore can store three kinds of statistics:

statistics about Strings that have been displayed on the
client; the ‘keepClientDisplayedStatistics’ indicates whether
this kind of statistics are kept.

statistics about Strings that have actually been selected on
the client; the ‘keepClientSelectedStatistics’ indicates
whether this kind of statistics are kept.

statistics about Strings that have a used on the client; the
‘keepClientUsedStatistics’ indicates whether this kind of sta-
tistics are kept.

The Client Quester determines the exact meaning of the
three kinds of statistics. In the case of web applications, a
string is generally considered displayed when the Client
Quester accesses it in its QuestObjects Result Set. It is con-
sidered selected when a new Query is executed with the String
as Query String. Itis considered used when the form on which
the Client Quester is active is submitted with that String. The
actual data is stored as a list of QoUsageRecords in the prop-
ery ‘records’.

A QoUsageRecord holds usage information about a
QuestObjects String or a number of QuestObjects Strings. If,
in one Service Session, a Quester gets the same Result Set
more than once (consecutively), the usage data of each of the
Strings in the Result Set is grouped in one QoUsageRecord.
However, if ‘stringKey’, “stringValue’, ‘rowInResultSet’, or
‘totalRowslnResultSet” changes, a new QoUsageRecord
must be used from that point on. The properties of
QoUsageRecord mean the following:

stringKey: if available, this is the unique key of the
QuestObjects String as provided by the Content AccessMod-
ule.

stringValue: the value of the QuestObjects String.

rowInResultSet: the row of the QuestObjects String in its
QuestObjects Result Set.

totalRowsInResultSet: the number of rows the QuestOb-
jects String’s Result Set had.

dateReturnFirst: the timestamp of the first time the
QuestObjects String was returned by the Content Channel.

dateReturnLast: if the QoUsageRecord represents a group
of usage events, this is the timestamp of the last event.

clientDisplayed: indicates whether the QuestObjects Cli-
ent that received the QuestObjects String considers it to be
displayed.

US 8,539,024 B2

29

clientSelected: indicates whether the QuestObjects Client
that received the QuestObjects String considers it to be
selected.

clientUsed: indicates whether the QuestObjects Client that
received the QuestObjects String considers it to be used.

applicationName: the name of the application to which the
Quester that received the QuestObjects String belongs.

appliationFunction: the function (if available) of the
Quester that received the QuestObjects String.

activeComponentld: the identifier of the Active Compo-
nent that received the QuestObjects String.

user: the identifier of the user that saw/selected/used the
String. If the user’s subscription has ‘false’ as value of ‘usag-
eAnonymous’, then this property is empty.

Queries are executed by QoQueryExecutors. A Query
Executor has a reference to the Service Session in which the
Query is executed, it has a reference to the Query itself, and it
also has a reference to the Server Quester that has the Query
executed. This reference may be a remote object when Corba
is being used, for example. If some proprietary protocol is
used, it may just be the unique identifier of the Server Quester.

FIG. 9 shows a method for using the present invention in
systems that have limited technical capabilities on the Client
side, such as, for example, web browsers with embedded Java
applets. If developers of client systems have not integrated
Client components of the present invention into their client
software, then Client components needed for the present
invention must be present as Plug-Ins, DLL’s, or an equiva-
lent device, or they must be downloaded to the client com-
puter as applets. These applets can be written in the Java
language, when they are needed. For security reasons, such
Client systems including web browsers usually do not allow
‘foreign’ software (i.e. software that is not an integral part of
the web browser) to influence or change data entered by the
user before it is sent to the application server (in this case the
web server). Without an additional infrastructure on the
server side, the present invention could not easily be used to
enter data by users of systems with such limited technical
capabilities on the client, because data entered and selected
using the present invention would not be communicated to the
existing application/web server. However, the modified
invention and method described in FIG. 9, referred to as an
Application Proxy, offers a solution.

Although the system depicted in FIG. 9 can be used to
support clients in practically any server-based application
server, and particularly in the case of a web server hosting an
application used by end users to enter data that is partially
retrieved using the present invention, the system is not limited
to the web. The system provides an ideal solution for current
web-based applications that consist of web browsers 903 on
the client side and web host computers 901 with web server
software 917 on the server side. To allow the web server 917
to access data selected using the present invention, this sys-
tem provides a link between the web server and the QuestO-
bjects Server 902. In this case, QuestObjects Server acts as a
data-entry proxy between the existing client system (web
browser) and the existing web server. Data entered by the
client is submitted to the QuestObjects Adaptor instead of to
the web server. The QuestObjects Adaptor then fills in the
values of the Questers and passes the data to the web server.
An Application Proxy is not required if the QuestObjects
Client components can directly insert data into the client
entry form on the web browser, as is the case on certain
platforms that allow integration between Java applets or other
components and JavaScript in the web browser.

In FIG. 9, the web server runs on a host computer 901
typically associated with a fixed IP address or an Internet host

20

25

40

45

60

65

30

name. The web server is accessed by any number of clients
using web browsers 903. To allow users to enter data and send
data to the server, web pages make use of HTML forms 904.
To use the present invention, user interface elements such as
entry fields in these HTML forms are associated with
Questers 905 in the form of browser Plug-Ins or Java Applets.
Through a QuestObjects Controller 906 those Questers allow
the user to access one or more QuestObjects Services hosted
by a QuestObjects Server 902 using the protocol of the
present invention 907. The Server Controller 908 forwards
user actions generated in the Client Questers 905 to their
corresponding Server Questers 909 that thus are always
aware of data selected in the Client. When a Server Quester is
first activated, it checks whether it is being used by a client
system that requires the use of an Application Proxy. If the
answer is yes, then the Quester creates a corresponding
AppHost Synchronizer 911 that contacts the QuestObjects
Adaptor 914 on the host computer 901 using a standardized
protocol 915. The QuestObjects Adaptor then knows which
QuestObjects Server to contact to retrieve QuestObjects data
915 after the user submits form data 912 to the application
host using the existing application protocol 913, such as
HTTP POST or HTTP GET. The QuestObjects Adaptor then
replaces the appropriate form field data with the strings
selected in the Server Questers 909 before forwarding this
form data, now including data selected using the present
invention, to the web server 917.

Design Implementation

The preceding detailed description illustrates software
objects and methods of a system implementing the present
invention. By providing a simple and standardized interface
between Client components and any number of Content
Engines that accept string-based queries, the present inven-
tion gives content publishers, web publishers and software
developers an attractive way to offer unprecedented interac-
tive, speedy, up-to-date and controlled access to content with-
out the need to write an access mechanism for each content
source.

In addition to acting as a standardized gateway to any
content engine, the present invention can intelligently cache
query results, distribute Services over a network of Servers,
validate user and other client input, authorize user access and
authenticate client software components as needed. These
and other optional services are provided by the present inven-
tion without requiring additional work on the part of software
developers or content publishers. Publishers can also keep
track of usage statistics, on a per-user basis as required allow-
ing flexible billing of content access. Content Access Mod-
ules allow software developers and vendors of Content
Engines such as database vendors and search engine vendors
to create simplified ways for developers and implementers of
such content engines to disclose information through the
present invention.

End users of the present invention experience an unprec-
edented level of user-friendliness accessing information that
is guaranteed to be up-to-date while being efficiently cached
for speedy access as the number of simultaneous users grows.

The present invention can be implemented on any client
and server system using any combination of operating sys-
tems and programming languages that support asynchronous
network connections and preferably but not necessarily pre-
emptive multitasking and multithreading. The interface of the
present invention as it appears to the outside world (i.e. pro-
gramumers and developers who provide access to end users
and programmers who provide Content Access Modules to
Content Engines used by content publishers) is independent
of both the operating systems and the programming lan-

US 8,539,024 B2

31

guages used. Adapters can be built allowing the tiers of the
system to cooperate even if they use a different operating
system or a different programming language. The protocol of
the present invention can be implemented on top of network-
ing standards such as TCP/IP. It can also take advantage of
inter-object communication standards such as CORBA and
DCOM. The object model of the present invention can be
mapped to most other programming languages, including
Java, C++, Objective C and Pascal.

Third-party vendors of software development and database
management tools can create components that encapsulate
the present invention so that users of those tools can access its
functionality without any knowledge of the underlying pro-
tocols and server-side solutions. For example, a 4GL tool
vendor can add an ‘auto-complete field’ to the toolbox of the
development environment allowing developers to simply
drop a Questlet into their application. In order to function
correctly, the auto-complete field would only need a reference
to the QuestObjects Server and one or more QuestObjects
Services, but it would not require any additional program-
ming. .

Examples of Applications in which the invention may be
used include: Access system for database fields (for lookup
and auto-complete services); Enterprise thesauri system;
Enterprise search and retrieval systems; Enterprise reference
works; Enterprise address books; Control systems for send-
ing sensor readings to a server that responds with appropriate
instructions oractions to be taken; Client access to dictionary,
thesaurus, encyclopedia and reference works; Access to com-
mercial products database; Literary quotes library; Real-time
stock quote provision; Access to real-time news service;
Access to Intemet advertisements; Access to complex func-
tions (bank check, credit card validation, etc); Access to lan-
guage translation engines; Access to classification schemes
(eg, Library of Congress Subject Headings); Access to lookup
lists such as cities or countries in an order form; Personal
address books; and, Personal auto-complete histories.

The foregoing description of preferred embodiments of the
present invention has been provided for the purposes of illus-
tration and description. It is not intended to be exhaustive or
to limit the invention to the precise forms disclosed. Obvi-
ously, many modifications and variations will be apparent to
the practitioner skilled in the art. The embodiments were
chosen and described in order to best explain the principles of
the invention and its practical application, thereby enabling
others skilled in the art to understand the invention for various
embodiments and with various modifications that are suited
to the particular use contemplated. It is.intended that the
scope of the invention be defined by the following claims and
their equivalence.

What is claimed is:

1. A system comprising:

aserver system, including one or more computers, which is

configured to receive query messages from a client
object, the server system asynchronously receiving and
responding to the query messages from the client object
over a network;

the client object that, while a user is providing input com-

prising a lengthening string of characters, sends query
messages to the server system;

whereby the query messages represent the lengthening

string as additional characters are being input by the
user; and

wherein the server system, while receiving said query mes-

sages, uses the input to query data available to the server
system and send return messages to the client object
containing results in response to the input; and

5

20

25

30

35

40

45

50

55

60

65

32

wherein, upon receiving a return message of the return
messages from the server system, the client object tests
the usability of the results in the return message by
checking that the return message corresponds to the
latest query, and if usability is established, the client
object displays or returns at least some result data to the
user.

2. The system of claim 1, wherein, upon testing the usabil-
ity of the server system results, at least some result data is
displayed as an auto-completion inside of an input field.

3. The system of claim 1, whereby the lengthening string is
entered into an input field, and wherein upon testing the
usability of the server system results, at least some result data
is displayed in a separate area that is associated with the input
field or that pops up near said input field.

4. The system of claim 1, whereby the lengthening string is
entered into an input field, and wherein one or more symbols
displayed inside of the input field indicate(s) to the user one or
more of whether or not said system is present, whether the
system is available for use, the current state of the system,
whether a query has been sent to the server system, whether
more results are available, whether a previous result is avail-
able, whether a next result is available, or whether the current
result is the only available match.

5. The system of claim 1, wherein the server system sends
return messages to the client object containing results both in
response to the input and associated with a string contained
elsewhere on the same client object to which the input has a
predefined dependency.

6. The system of claim 1, wherein the server system
retrieves the results from one or more of a database, a search
and retrieval system, a thesaurus, areference work, an address
book, a control system, a dictionary, an encyclopedia, a prod-
ucts database, a quotes library, a stock quote system, a news
service, internet advertisements, a catalog, a complex func-
tion, a translation engine, a classification scheme, a lookup
list, an auto-complete history, an algorithm, a directory, a
search engine, a database retrieval engine, or a cache.

7. The system of claim 1, wherein the server system caches
query results and subsequently determines results by looking
up the query in said cache so that it can avoid performing a
query for the same input on a data source or looking up said
query in a second cache.

8. The system of claim 1, wherein the client object trans-
mits an associated query message to the server system upon
each detected change to the input.

9. The system of claim 1, wherein the client object accu-
mulates input before transmitting an associated query mes-
sage to the server system.

10. The system of claim 1, wherein the client object com-
bines the input string with additional information, whereby
said additional information includes one or more of an indi-
cation of whether or not results should be sorted, whether
results should be in response to both the user input and a
qualifier, how many results should be returned, or which
selection of results should be returned.

11. The system of claim 10, whereby said qualifier identi-
fies a user to the server system whereby the server system
returns messages containing results in response to said user.

12. The system of claim 1, wherein the results returned by
the server system include suggestions for the user input; and

wherein these suggestions change dynamically while the

user is providing input.

13. The system of claim 1, wherein selections of results
returned by the server system are related to the user input
through predefined relationships; and

US 8,539,024 B2

33

wherein an indicator of the corresponding relationship is
displayed or returned alongside each of said result selec-
tions.

14. The system of claim 13, wherein said relationships are
organized according to a dictionary or thesaurus system that
includes one or more of broader term relationships, narrower
term relationships, related term relationships, synonym rela-
tionships, used-forterm relationships, meaning relationships,
or uses relationships.

15. The system of claim 1, wherein results returned by the
server system comprise result sets consisting of zero or more
string values.

16. The system of claim 1, wherein results returned by the
server system comprise a set of zero or more results;

wherein each result consists of one or more of a string, key,

fetch time, expiration time, metadata, logical link to
other data sources, or a Uniform Resource Identifier.

17. The system of claim 1, wherein the client object deter-
mines the usability of each server system response by com-
paring an original input to a then-current input; and

wherein the client object deems the results usable if they

match.

18. The system of claim 1, wherein the query message sent
to the server system includes a request identification that is
included by the server system in the corresponding server
response message.

19. The system of claim 18, wherein the usability of a
server system response is determined by the client object by
matching the request identification received in the server
response message against a request identification on the cli-
ent.

20. The system of claim 1, wherein the client object caches
results received from the server system and reuses said
cached results when Previously Presented queries match que-
ries contained in the cache or if cached query results can be
filtered to match the Previously Presented queries, instead of
sending messages representing those Previously Presented
queries to the server system.

21. The system of claim 1, wherein one or more filters are
used to validate or transform the input string using a type,
pattem, or minimum length; and

wherein no query is performed if the input string is found

not to conform to or does not transform using said type,
pattern, or minimum length.
22. The system of claim 1, wherein the server system is
capable of returning results from multiple data sources;
wherein the client object selects which of the available data
sources at the server system is to be queried; and

wherein the system selects one or more data sources based
on a name associated with each data source, on types of
queries accepted by each data source, or on string types
that can be returned by each data source.

23. The system of claim 1, wherein the input on the client
object represents speech and is generated by a sound conver-
sion engine.

24. The system of claim 1, wherein retum messages
include suggestions and related data relevant to the sugges-
tions, and wherein the related data is displayed in a user
selectable manner; wherein a selection of the related data
displayed to the user causes additional data to be obtained
from the server system and be displayed.

25. The system of claim 1, wherein the client object is run
by a web browser.

26. The system of claim 1, wherein the client object is run
on a mobile device.

15

25

40

45

60

65

34

27. The system of claim 1, wherein the client object tests
the usability of the results in the return message by matching
an ID for the user query.

28. The system of claim 27, wherein the client object tests
the usability of the results in the return message by matching
an ID included in one of the query messages sent to the server
system and returned as part of the return message.

29. The system of claim 1 wherein the client object uses a
pre-defined query and automatically transmits a correspond-
ing message to the server as the client object is first run, and
wherein user input is not required before server responses are
sent to the client object.

30. The system of claim 1, wherein the server system
automatically sends messages containing Previously Pre-
sented results to the client object as updated data in response
to a previous query becomes available.

31. The system of claim 1, wherein the client object auto-
matically repeats a query to retrieve updated information
from the server system.

32. A system including at least one computer comprising:

a server system using a communication protocol that
enables asynchronous communication between the
server system and a client object; and

wherein the client object that, while a user is providing
input comprising a lengthening string of characters,
sends query messages to the server system;

whereby the query messages represent the lengthening
string as additional characters are being input by the
user; and

wherein the server system, while receiving said query mes-
sages, uses the input to query data available to the server
system and send return messages to the client object
containing results in response to the input

wherein upon receiving corresponding return messages
from the server system, the client object tests the usabil-
ity of each return message by checking that the return
message corresponds to the latest query, and if usability
is established, provides feedback to the user based on the
contents of the retum message.

33. The system of claim 32, wherein the client object is nin

using a web browser.
34. The system of claim 32, wherein the client object is run
on a mobile device.
35. A system comprising;
a client object adapted to receive input comprising a
lengthening string of characters from a user, the client
objectasynchronously sending multiple query messages
corresponding to multiple versions of said input to a
server system while a user modifies the input, compris-
ing a lengthening string of characters, the client object
receiving return messages with results in response to the
multiple versions of the input;
whereby the query messages represent the lengthening
string as additional characters are being input by the
user; and

wherein the server system, while receiving said query
messages, uses the input to query data available to the
server system and send return messages to the client
object containing results in response to the input

wherein upon receiving one of the return messages from
the server system, the client object checks the usabil-
ity of the results of the one of the return messages
using a more recent version of the input to determine
whether to display at least some of the results of the
one of the return messages to the user.

US 8,539,024 B2

35

36. A system comprising:

aserver system, including one or more computers, whichis
configured to receive query messages from a client
object, the server system asynchronously receiving and
responding to the query messages from the client object
over a network;

wherein the client object, while a software process is pro-
viding input comprising a lengthening string of charac-
ters, sends query messages representing said input, to
the server system,;

whereby the query messages represent the lengthening
string as additional characters are being input by the
software process;

wherein the server system, whilereceiving said query mes-
sages, uses the input to query data available to the server
object and send return messages to the client object
containing results in response to the input; and

wherein, upon receiving a return message of the return
messages from the server system, the client object tests
the usability of the results in the return message by
comparing the return message to the then-current input
or matching it with a request identification maintained
on the client object, and if usability is established, the
results are returned to the software process.

20

36

37. A system comprising:

aserver system, including one or more computers, which is
configured to receive query messages from a client
object, the server system asynchronously receiving and
responding to the query messages from the client object
over a network;

the client object that, while a user is providing input com-
prising a lengthening string of characters, sends query
messages representing said input to the server system;

whereby the query messages represent the lengthening
string as additional characters are being input by the
user;

wherein the server system, while receiving said query mes-
sages, uses the input to query data available to the server
system and send return messages to the client object
containing results in response to the input; and

wherein, upon receiving a return message of the retum
messages from the server object, the client object tests
the usability of the results in the return message by
matching an ID associated with the input sent to the
server system with an ID maintained in the client object,
and if usability is established, the client object displays
or returns at least some of the result data to the user.

* % * * ok

EXHIBIT B

MARTIN C. FLIESLER MICHAEL ROBBINS

SHELDON R. MEYER ANTHONY G. CRAIG, PH.D.

F LIESLER M EYER LLP THOMAS A. WARD JULIE DANIELS MISSUD
JEFFREY R. KURIN JUSTAS GERINGSON

JOSEPH P. O'MALLEY K. 1AIN MCAUSLAND"

KARL F. KENNA THOMAS K. PLUNKETT™®

INTELLECTUAL PROPERTY Law GUANYAO CHENG
REX HWANG

650 CALIFORNIA STREET * FOURTEENTH FLOOR NATHAN L. FELD
SaN FRANCISCO * CALIFORNIA 94 108 KUIRAN (TED) L1U

TeELEPHONE 415.362.3800
FACSIMILE 415.362.2928
INTERNET WWW_FDML.COM

PATENT AGENTS
SAM YIP

*MASSACHUSETTS; NEW YORK
**VIRGINIA

MARTIN C. FLIESLER

mcf@fdml.com
June 27, 2008 |
Kent Walker Marissa Mayer
VP and General Counsel VP of Search Products & User Experience
Google Inc. Google Inc.
1600 Amphitheatre Parkway 1600 Amphitheatre Parkway
Mountain View, CA 94043 Mountain View, CA 94043

Re: MasterObjects
Dear Mr. Walker and Ms. Mayer:

This letter is with respect to the technology identified by Google Inc. (“Google™) on its
website as Google Suggest, Google Desktop and various dynamic information retrieval functions
integrated into Google's applications and prior related technology developed by MasterObjects, Inc.,
San Francisco, California (“MasterObjects”) identified as QuestFields. MasterObjects, through its
research and development has, since the late 1990’s, invested in and developed its body of
QuestFields technology. MasterObjects is acquiring a U.S. and foreign patent portfolio related to this
QuestFields technology. MasterObjects owns pending published patent applications and pending
unpublished patent applications, U.S. and foreign, related to its work. MasterObjects also has a
significant body of software technology, including source code, that is readily installable for on-line
use by its customers and potential customers.

Google's business strategy is all about focus on information that the user needs, about
simplicity and instant user gratification. QuestFields technology provides a SOA-based solution that
helps people find and retrieve information interactively, be it through traditional web pages, in
mashups, or on mobile devices. QuestFields technology centers around a single challenge: Enabling
improved interaction with content sources and providing immediate validation in order to further
reduce the time it takes for users to find what they need.

You may learn more about MasterObjects by accessing its website at:
http://www.masterobjects.com/
We represent MasterObjects and have represented MasterObjects since its inception in the late
1990's. The purpose of this letter is to ask if Google would be interested in exploring a world-wide
licensing arrangement with MasterObjects as licensor and Google as licensee, and having discussions

with MasterObjects about its software development work and know-how. Alternatively,
MasterObjects, as part of an exit strategy, is willing to entertain a merger or acquisition offer.

MOO000001

FLiEstER MEYER LLP

Google Inc. Page 2 June 27, 2008
Mr. Walker and Ms. Mayer

We have therefore attached for your convenience copies of the following, publicly available
MasterObjects-owned U.S. patent related documents (and their published foreign counterparts):

Tab A: Published Patent Application No. US2003-0041147
(European Publication No. 1425677)
Tab B: Published Patent Application No. US2006-0075120

(European Publication No. 1653376)

We are contacting other entities on behalf of MasterObjects that might be interested n a
similar manner in this opportunity.

There is no date by which we request your response, but if you are interested in pursuing
matters, we do look forward to hearing from you.

V 1
, M y

/Martin C. Fliesler
MCF/mmc
Enclosures

M:imeNwpimnbjiLicense-Google.duc

MO000002

MOO000003

| ARERCARTH B R M) O)R M O) R O A) 0
US 20030041147A1

a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2003/0041147 Al

van den Oord et al.

(43) Pub. Date: Feb. 27, 2003

(54) SYSTEM AND METHOD FOR
ASYNCHRONOUS CLIENT SERVER
SESSION COMMUNICATION

(76) Inventors: Stefan M. van den Qord, Weesp (NL);
Mark H. Smit, Maarssen (NL)

Comrespondence Address:

FLIESLER DUBB MEYER & LOVEJOY, LLP
FOUR EMBARCADERO CENTER

SUITE 400

SAN FRANCISCO, CA 94111 (US)

(21) Appl. No: 097933493

(22) Filed: Aug. 20, 2001

Publication Classification

(51) IDL CL7 oo GOGF 15/16
(52) US.CL 708/227; 709/203

(57 ABSTRACT

The invention provides a session-based bi-directional multi-
tier client-server asynchronous information database search
and retreval system for sending a character-by-character
string of data to an intelligent server that can be configured
to immediately analyze the lengthening string character-by-
character and return to the client increasingly appropriate
database information as the client sends the string.

204

RS

Clien]

206

215 238 17 214
[usermer] [Fgemmes | [e,
tor|

s

b

=

T 1218
I
229 z2
Query Content Contentbased
Manager Actess Module | Cache
Ct Channe!
e

Sanvice

MOO000004

Patent Application Publication Feb. 27,2003 Sheet 1 of 15

|

!

QuestObjects
Client

102

1t

{

QuestObjects
Server

104

QuestObjects
Service

feuee \

101

103

105

US 2003/0041147 A1

MOO000005

Patent Application Publication Feb. 27,2003 Sheet 2 of 15 US 2003/0041147 A1
— ————%01

204

Controller
Client
206
207 209
208 Controller l
Quester 210 211
Persistent .
Sessi Quester Store Time Server
Server
LF12
213
215 216 217 214
Preference Usage
User Manager Manager Statistics Store
Syndicator
le
I 1219

22! 1 222

Query Content Content-based
Manager Access Module Cache
Content Channel
Service
AouRe 7

MOO000006

Patent Application Publication Feb. 27,2003 Sheet 3 of 15 US 2003/0041147 A1

a1
aoe | ®
| () 308
303 [N P
|
01 [i E|

Fevee 3R

MO000007

Patent Application Publication Feb. 27,2003 Sheet 4 of 15 US 2003/0041147 A1

310

3t

312

MOO000008

US 2003/0041147 A1

tion Publication Feb. 27,2003 Sheet 5 of 15

Patent Appli

4 IO

-

g% Wwangabueysidsiuce
e T J0Q€, o ePpar[i9gynssd
(oqe)Aiarb | 1< H_u%cq.miesms%_ 60b
Boy T [(e Jerepdnieginsal
- e en Jllﬁ “Towengimoenys | | £0b
ooy R rssgaers — 7] | LdeJeTepdIaginsad WeAJeb We|DIURIU00
. d sa
cay (.qeJarepdniagyn
< Tapve < yoy
o lapwagmoerys
(% Jpum 18] hEhav] u/ N TTRE STy _...m EOY
L »| [Fozmeni >
[LYEFLEY
< le
a <]
1)
80500 ASBNBUBAIBG 0D MOIS53500 13)|0AUOIIRS0D ARjanuo B0 ABISANDHIB|| D0 WBUOAWOHRANOYOY

oay

MOO000009

Patent Application Publication Feb. 27,2003 Sheet 6 of 15 US 2003/0041147 A1

CActive Component)

A 501

initializeClient
Quester

502 503 504

send event to (re)activate
no Client Quester event receiver

component
destroyed?

destroy Client
Quester

\ O\euee. SN
STOP

(Event Receiver)

A 506

wait for event from
Client Quester

event
received?

process event from
Client Quester

flaure g

MO000010

(Client Quester)

Y

register using
Client Controller

[

Patent Application Publication Feb. 27,2003 Sheet 7 of 15

US 2003/0041147 A1

602

603

quester
destroyed?

deregister using
Chent Controller

receive event

4
{ STOP)

606

character
event?

handle event

update input buffer and notify
dependent Questers

608

611

results in
client cache?

send input buffer
change message

Y 609 £
get results from (re)activate result
cache refriever

A 610
notify active
component
Flure 6A

MOO000011

Patent Application Publication Feb. 27,2003 Sheet 8 of 15 US 2003/0041147 A1

(Result Retriever)

613

wait for results
from server

614

resuits
received?

616

notify active component
and dependent Questers

l 617

store results in
cache

STOP

FouRke 6R

MOO000012

Patent Application Publication Feb. 27,2003 Sheet 9 of 15 US 2003/0041147 A1

C Server Quester)

701 702

restore from
Quester Store and |
register with Servicd

703

can be
restored?

results still
up-lo-date?

708 7 704
initialize and registdr process query | L4 resend last
with Service results query to Service
| - T

y

707

Quester
destroyed?

710
send query
to Service
has valid
Quer):)String Y 7
) process query
iy results
Y 71
wait for input buffer]
change message
Y 713
update input
buff
e' FGure 3 A

MOO000013

Patent Application Publication Feb. 27,2003 Sheet 10 of 15 US 2003/0041147 Al

Q’rocess Query Resut@ 717
I —} store results in
cache
714 {
718

get ResultSet [*

send usage)
statistics fo service

715

have
ResultSet?

716

send results o
Client Quester

CowRe. 9%

MO000014

Patent Application Publication Feb. 27,2003 Sheet 11 of 15 US 2003/0041147 A1

Object Model: base

OoGuesierChangeEvent
ANBUT_BUEEER_CHANGED. il
~RESWLY_SEI_CURAENT CHANGED: st
<BESIRY SEY SRECTED CHANGED o
-quesier GoQuester
W ot
wlnieriacer
QoQuesterChangel Jatener
querier as QoResultsCacheEntry
quecterChanged(y; vd querySinng Stnag
—Queifier Smng
ISUISet CoflfesiSst
0.7 RrsulivCacheEntnes
O che
resultsCacheErtnes Qof
1 AmsunCacte
QoCentroller
| 0, sen +osulinCachs OoFlesulioCache
quesien;

-address URL,

server:DoServerQuester —l T

l:nm:.oocn-mcmolhr 1 [mr"OoSon.. urconlmlh'—l

Feure SR

MOO000015

Patent Application Publication Feb. 27,2003 Sheet 12 of 15 US 2003/0041147 A1

Object Model: client

ActiveComponent
~chentQuestars: OoClisniQuester}

F\G\»&e 2%

MOO000016

Patent Application Publication Feb. 27,2003 Sheet 13 of 15

Object Model: server

A

GoServerQuester

base:QoControfier
A
QoServicebirectory QoServerController
Swng)) i bodlean
VR “sessions. O
-serverAddress, URLY P QoF
-ssrwosDirmclory. QoSamvcelureciory
-appt izer Qopp

~queryVakdator: QoQueryValidatsy
“session: QoSession

+storel)” QoSioredCusster
+easion[): Yoo

< fiquesters

1 Y uenyValkdator

US 2003/0041147 A1

base::0f
. 2::QoQueryValidator

QoPerslatentQuesterSiore

I QoSioredQuester l

Aouke &C

MO000017

Patent Application Publication Feb. 27,2003 Sheet 14 of 15 US 2003/0041147 A1

Object Modet: service

QoSyndicator Golicor
~trame: 8ving [%4 Py
g VST | peasword. String
1 N .
+contmniChannai(} CoCt i} -sutagripbons: QoSubscriphonf)
0 1 Auvesr
~symicaor QoSyndcator
~contentCrannel OaConentCrannsl
“Ystuble boolean
1 -mame Sy o
~contenEnginol oginName” Sving:
ol hannsl 1 9 Pa ¢ Stnrg (1 O
—name: Sting qured: boclsan usrvies.
-dascriphon” Stng -cariDatar Date
~quarySvinghinLeng® int axprationDats Date
~quarySimngRegularExrestions” Sting[j ~erylind ot
~quarySemgFaes Sking) ~querylurrifResst, in)
~quanyVakdalor: CoOuoryValidator p -
- Stng Yenut wnlFesel. bt
types QoTypsf) boclaan
~EmshtrarwmRelumimenssl i - it it
-satslicsStora: OollsaguSiavsticsSiors P ""m"ﬂ"ﬁ" \
QoCx S Pemtarf bt ion
yemaaeCueny); QoRansSal -kecpSurviceSiabstics; bookean
“keepClaniDisplayedSiafisics bovisan
AeepClentUsedSiateicy boolean o*
0.1 1" iypes HeepClerarnStamics booken QolsogeRecord
B -siingiey Stang
|:uu QoQueryValldatar] l:u::ﬂom: ingValua: Swing
~towinFlasultSer. Int
ot iRowsnPactiSer: int
“OraRetumFIvC Dute
1 conlontAcorsedodite ~taleRatuml 251" Dater
-ChriDiepixyed: boolean
QoContentAceesaModule “thertised:
~clectHk. bookmn
~apphcatonMarme: Stng
+exmcueQuery) OoRecutSet ~ackveComponentiD. Sting
+stanConlecnSesxion() nt -usat, Qpliver
Fuuee 85

MOO000018

Client App/Browser

Fieure 14

Patent Application Publication Feb. 27,2003 Sheet 15 of 15
901
N7 914 911
App/Web AppHost
Server QO Adaptor pope Synpghronizer 910
t Application/ 908 909
= | []
Quester
4
917 913 QuestObjects Server
—
903
— T %
Application/Web Form

912

Submit Button

e ————

905
906
l m Controller 07

US 2003/0041147 A1

902

MO000019

US 2003/0041147 Al

SYSTEM AND METHOD FOR ASYNCHRONOQUS
CLIENT SERVER SESSION COMMUNICATION

COPYRIGHT NOTICE

{0001] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

[0002] The invention relates generally to client-server
communication systems, and particularly to a session-based
bi-directional multi-tier client-server asynchronous search
and retrieval system.

BACKGROUND OF THE INVENTION

[0003] A primary task of computer systems is to manage
large quantities of information, generally referred to as data.
The first computers typically stored data using off-line
methods, for example by using punch cards and other
primitive means. As built-in or on-line storage solutions
became more affordable, data were instead stored in central
memory banks. The first enterprise-wide computer systems
consisted of central computers containing central data stor-
age, and a large number of user terminals that accessed this
server data by sending input and receiving output as char-
acters to be displayed or printed at the terminal. Although
these systems had a primitive user interface and data access
became increasingly slower as the number of users grew,
these systems nevertheless handled enterprise data with ease
and great security.

[0004] The first servers, often referred to as mainframes or
mini computers, ran on proprietary operating systems. Ter-
minals usually had large input buffers where input was only
checked against or committed to the server after entering
text into a page or form. Many systems only displayed the
character entered after it was received and confirmed by the
server. Faster servers and morc modern server operating
systems, such as Unix and VMS, offered several advantages
in that users could receive immediate feedback after each
character was typed.

[0005] At the beginping of the 1980s decade, the growing
popularity of microcomputers and personal workstations
made it possible to store data locally. Enterprise data was
distributed over networks of computer systems. To access
information it was no longer necessary to have a continuous
connection to contral databases, and instead it was possible
lo copy information 1o a personal compulier, edit and work
with it, and then save it back to a file or database server later.
Most microcomputers worked with data in logical chunks or
files. This brought a lot of power to end users, but introduced
problems in managing the large quantity of enterprise data
that was no longer stored as a unigue entity in one place. For
example, a file that was being edited by one user could not
usually be accessed or modified by other users at the same
time. It was also difficult to manage multiple copies of the
same data.

{0006] Toward the end of the 1980’s faster microcomput-
ers and networks made it practical to work with enterprise

Feb. 27, 2003

data in smaller chunks than files. One example of this new
technology was the development of Structured Query Lan-
guage (SQL) relationa] databases which made it possible to
divide software programs into a ‘Client’ tier and a ‘Server’
ticr, that communicated with each other over a network.
Client-server computing thus made it possible to store
information centrally, yet manage and work with it locally.
In the client-server paradigm, the chient systems concen-
trated on offering a user-friendly interface to server data,
while the server systems were able to handle many client
systems at once while safely managing enterprise data.

[0007] However, the increasing client-server computing
introduced its share of problems. Protocols used to commu-
nicate between client and server became increasingly com-
plex and difficult to manage. Enterprise IT departments
needed increasingly greater resources to manage the propri-
etary implemenlations of client operating systems, server
database systems and middleware protocols connecting the
various ‘tiers’ of client-server systems. Data was no longer
stored in one place but was required to be managed within
a distributed network of systems. Clienl-server systems also
lacked a major advantage of mainframes: in a client-server
system any changes to the data on the server weren’t
immediately updated on the client.

[0008] Starting in the 1990s, the Internet has allowed
businesses, organizations, and other enterprises to easily
make information available to users without the complex
architecture that client-server systems typically require.
Today, an increasing oumber of software applications are
moving their data and logic or functional processes back to
the server tier, from which they can be accessed from the
Internet by a wide variety of clients, including thin and very
thin-clients, which typically consist of Internet browsers or
small applications (applets) whose sole responsibility is
providing an interface to the user. In many ways, Internet
computing (often referred 1o as e-commerce) has brought
back the data-handling advantages of mainframes. Within
the e-commerce environment data that change on the server
are immediately available to clients that access the data
through the Internet (world-wide) or through an intranet
(enterprise-wide).

[0009] Unfortunately, the rise of Internet commerce has
also given rise to some of the disadvantages associated with
mainframe technology. Most Internet connections that
present data to the user or client process use the Hyper Text
Transfer Protocol (HTTP) which is inherently “session-
less.” This means that, for example, there is no totally
reliable way for the server to automatically update the client
display once the server data change. It also means that the
server only checks the validity of the client or user input
after the user sends back or submits an entire input form.
This apparent disadvantage has also played an important
role in the success of the Internet: because HTTP connec-
tions are session-less, they require much less processing
power and much less memory on the server while the user
is busy entering data. Thus, Internet applications running on
web servers can be accessed by millions of people. Because
HTTP and related Internet-based client-server systems do
not provide contipuous access to server data, systems some-
times incorporate lookup tables and pre-defined values that
are cached locally. For example, a list of possible countries
lo be selected by a user of a web page can be sent to the
user’s camputer when that page is first sent to the user and

MO000020

US 2003/0041147 Al

used thereafter for subsequent country selections. Client-
server applications often pre-read the data from the server
the moment an application or application window is opened,
in order to present users with selection lists the moment they
need them. This poses problems for data that frequently
changes overtime since the client system may allow users to
select or enter data that is no longer valid. It also poses
problems for large selection lists whose transmission to the
client may take a long time.

[0010] To address this some systems incorporate a local
cache of the data frequently accessed by the user. A web
browser may, for example be configured to remember the
last pages a user visited by storing them in a local cache file.
A clear disadvautage of keeping such a local cache is that it
is only useful as long as the user stays on the same client
computer system. Also, the local cache may include refer-
ences to web pages that no longer exist.

[0011] Some other systems with limited network band-
width (like cell phones or personal organizers) can be
deployed with built-in databases (such as dictionaries and
thesauri), because it would be impractical to wait for the
download of an entire database, which is needed before the
data is of any use. This has the disadvantage that data stored
in the device may no longer be up-to-date because it’s really
a static database. Also, the cost of cell phones and personal
organizers is greally increased by the nced for megabytes of
local storage. Another important consideration is that keep-
ing valuable data in any local database makes it vulncrable
to misuse and theft. What is needed is a mechanism that
addresses these issues that allows a client-server system to
retain some element of a session-based system, with its
increase in performance, while at the same time offering a
secure communication mechanism that requires little, if any,
local storage of data.

[0012] Other attempts have been made to tackle some of
the problems inherent with traditional computer system
interfaces, and particalarly with regard to user session
administration and support. These attempts include the auto-
complete function systems such as used in Microsoft Inter-
net Explorer, the spell-as-you-go systems such as found in
Microsoft Word, and the wide variety of client-server ses-
sion managers such as Netopia’s Timbuktu and Citrix Win-
frame.

[0013] Auto-Complete Functionality

[0014] Many current systems provide a mechanism to
auto-complete words entered into fields and documents.
This ‘auto-complete’ functionality is sometimes called
‘type-ahcad’ or ‘predictive text entry’. Many web browsers
such as Microsoft’s Intemet Explorer application will auto-
matically “finish’ the entry of a URL, based on the history of
web sites visited. E-mail programs including Microsoft
Outlook will automatically complete names and e-mail
addresses from the address book and a history of e-mails
received and sent. Auto-completion in a different form is
found in most graphical user interfaces, including operating
systems such as Microsoft Windows and Apple Mac OS, that
present lists to the user: When the user types the first
character of a list entry, the user interface list will automati-
cally scroll down to that entry. Many software development
tools will automatically complete strings entered into pro-
gram source code based on a known taxonomy of program-
ming-language dependent keywords and ‘function names’ or

Feb. 27, 2003

‘class names’ previously entered by the developer. Some cell
phones and personal organizers also automatically type-
abead address book entries or words from a buili-in dictio-
nary. Auto-complete functionality facilitates casy entry of
data based on prediction of what options exist for the user at
a single moment in time during entry of data.

[0015] Checking As You Go

[0016] More and more word processing programs (most
notably Microsoft Word and certain e-mail programs)
include so-called ‘spell checking as you type’. These pro-
grams automatically check the spelling of words entered
while the user is typing. In a way, this can be seen as
‘deferred auto-complele’, where the word processor high-
lights words after they were entered, if they don’t exist in a
known dictionary. These spell checking programs often
allow the user to add their own words to the dictionary. This
is similar to the ‘history lists’ that are maintained for the
auto-completion of URLs in a web browser, except that in
this case the words are manually added to the list of possible
‘completions’ by the user.

[0017] Software Component Technologies

[0018] Software component fechnologies have provided a
measure of component geperation useful in client/server
systems. Ope of these technologies is OpenDoc, a collabo-
ration between Apple Computer, Inc. and IBM Corporation
(amongst others) to allow development of software compo-
nents that would closely interact, and together form appli-
cations. One of the promiscs of OpenDoc was that it would
allow small developers to build components that users could
purchase and link together to create applications that do
exactly what the users want, and would make existing
‘bloat-ware’ applications (motably Microsoft Office and
Corel’s WordPerfect Office/Corel Office) redundant, but the
technology was dropped several years ago in favor of newer
technologies such as CORBA (Common Object Request
Broker Architecture), developed by the Object Management
Group to allow transparent communication and interoper-
ability between software components.

[0019] Object-oriented languages and even non-object-
oriented (database) systems have used component technolo-
gies 1o implement technical functionality. The NeXTstep
operating system from NeXT Computer, Inc. (which was
later acquired by Apple Computer, Inc. and evolved into the
Mac operating system Mac OS X) bad an object-oriented
architecture from its original beginnings, that allowed soft-
ware developers to create applications based oo predefined,
well-tested and reliable components. Components could be
‘passive’ user interface elements (such as entry fields, scroll
areas, tab panes etc) used in application windows. But
componenis could also be active and show dynamic data
(such as a component displaying a clock, world map with
highlight of daylight and night, ticker tape showing stock
symbols, graphs showing computer system activity, etc.).
The NeXT operating system used object frameworks in the
Objective C language to achieve its high level of abstraction
which is needed for components to work well. Later, Sun
Microsystems, Inc. developed the Java language specifica-
tion in part to achieve the same goal of interoperability. To
date, Java has probably been the most successful ‘open’
(operating system independent) language used to build soft-
ware components. It is even used on certain web sites that
allow ‘Java applets’ on the user’s Internet browser to con-
tinuously show up-to-date information on the client system.

MO000021

US 2003/0041147 Al

[0020] WebObjects, an object-oriented technology devel-
oped by Apple Computer, Inc. is an Internet application
server with related development tools, which was first
developed by NeXT Computer, Inc. WebObjects uses object
oriented frameworks that allow distribution of application
logic between server and client. Clients can be HTML-
based, but can also be Java applets. WebObjects uses pro-
prietary technology that automatically synchronizes appli-
cation objects between client and server. The layer that
synchronizes data objects between the client and the server
is called the ‘Enterprise Object Distribution’ (EODistribu-
tion), part of Apple’s Enterprise Objects Framework (EOF),
and is trapsparent to the client software components and the
server software components.

[0021] Session Management

[0022] Both Netopia’s Timbuktu remote access systems,
and Citrix, Inc.’s Winframe terminal server product, allow
some element of remote access to server applications from
a client system. These products synchronize user data and
server data, transparently distributing all user input to the
server and return al]l server(display) output to the client.
Timbuktu does this with very little specific knowledge about
the application and operating system used. This allows it to
transparently work on both Microsoft Windows and Mac OS
platforms. Technologies similar to Timbuktu do exist and
perform the same kind of ‘screen sharing’. For example, the
Virtual Network Computing (VNC) system is one example
of an open source software program that achieves the same
goals and also works with Linux and Unix platforms.

[0023] Citrix Winframe has taken the same idea a step
further by incorporating intimate knowledge of the
Microsoft Windows operating system (and its Win32 APIs)
to further optimize synchronization of user input and appli-
cation output on the server. It can then use this detailed
knowledge of the Microsoft Windows APIs to only redraw
areas of the screen that it knows will change based on a user
action: for example, Winframe may redraw a mem that is
pulled down by the user witbout needing to access the server
application because it knows how a menu will work.

[0024] Software Applications

[0025] Several application providers have also built upon
these technologies to provide applications and application
services of use to the end-user. These applications include
computer-based thesaurii, on-line media systems and elec-
lronic encyclopediae.

[0026] The International Standards Organization (as
detailed further in ISO 2788—1986 Documentation—
Guidelines for the Establishment and Development of
monolingual thesauri and ISO 5964—1985 Documenta-
tion—Guidelines for the Establishment and Development of
multilingual thesauri) determines suggested specifications
for electronic thesauri, and thesaurus management software
is now available from numerous software vendors world-
wide. However, most systems bave clear limitations that
compromize their user-friendliness. Most commonly this is
because they use a large third-party database system, such as
those from Oracle Software, Inc. or Informix, Inc. as a
back-end database. This means that any thesaurus terms that
are displayed to the user are fetchbed from the database and
then presented in a user interface. If one user changes the
contents of the thesaurus, other users will only notice that

Feb. 27, 2003

change after re-fetching the data. While of little concern in
small or infrequently changing environments, this problem
is a considerable one within larger organizations and with
rapidly updated content changes, for example in media
publishing applications when thesaurus terms are being
linked 1o new newspaper or magazine articles. This type of
Wwork is usuvally done by multiple documentalists (media
content authors) simultancously. To avoid ‘mixing up’ terms
linked to articles, each documentalist must be assigned a
certain range of articles to ‘enrich’ (which in one instance
may be the act of adding metadata and thesaurus terms to a
document). Clearly, in these situations there is a great need
for live updates of data entered by these users, but a similar
need exists for all client-server database programs.

SUMMARY OF THE INVENTION

[0027] The invention provides a system that offers a
highly effective solution to the aforementioned disadvan-
tages of both client-server and Internet systems by providing
a way to synchronize the data entered or displayed on a
client system with the data on a server system. Data input by
the client are immediately transmitted to the server, at which
time the server can immediately update the client display. To
ensure scalability, systems built around the present invention
can be divided into multiple tiers, each tier being capable of

" caching data input and output. A plurality of servers can be

used as a middle-tier to serve a large number of static or
dynamic data sources, herein referred to as “content
cogines.”

[0028] The present invention miay be incorporated in a
variety of embodiments to suit a comespondingly wide
variety of applications. It offers a standardized way 1o access
server data that allows immediate user-friendly data feed-
back based on user input. Data can also be presented to a
client without user input, ie. the data are automatically
pushed to the client. This enables a client component to
display the data immediately, or to transmit the data to
another software program to be handled as required.

[0029] The present invention can also be used to simply
and quickly retrieve up-to-date information from any string-
based content source. Strings can be linked to metadata
allowing user interface components to display comespond-
ing ioformation such as, for example, the meaning of
dictionary words, the description of encyclopedia entries or
pictures corresponding to a list of names.

[0030] Embodiments of the present invention can be used
to create a user interface component that provides a sophis-
ticated “aulo-completion” or “type-ahead” function that is
extremely useful when filling out forms. This is analogous to
simple, clicnt-side auto-complete functions that have been
widely used throughout the computing world for many
years. As a user inputs data into 2 field on a form, the
auto-complete function analyzes the developing character
string and makes intelligent suggestions about the intended
data being provided. These suggestions change dynamically
as the user types additional characters in the string. At any
time, the user may stop typing characters and select the
appropriate suggestion to auto-complete the field.

[0031] Today's client-side auto-complete functions are
useful but very limited. The invention, however, vastly
expands the usefulness and capabilities of the auto-complete
function by enabling the auto-complete data, logic and

MOO000022

US 2003/0041147 A1l

intelligence to reside on the server, thus taking advantage of
server-side power. Unlike the client-side auto-complete
functions in current use, an auto-complete function created
by the present invention generates suggestions at the server
as the user types 1o a character string. The suggestions may
be buffered on a middle tier so that access to the content
engine is minimized and speed is optimized.

[0032] The simple auto-complete schemes currently in
popular use (such as email programs that auto-complete
e-mail addresses, web browsers that auto-complete URLs,
and cell phones that autocomplete names and telephone
numbers) require that the data used to generate the sugges-
tions be stored on the client. This substantially limits the
flexibility, power, and speed of these schemes. The present
invention, however, stores and retrieves the auto-complete
suggestions from databases on the server. Using the present
invention, the suggestions generated by the server may, at
the option of the application developer, be cached on the
middle tier or on the client itself to maximize performance.

[0033] The present invention provides better protection of
valuable data than traditional methods, because the data is
not present on the client until the moment it is needed, and
can be further protected with the use of user authentication,
if necessary.

[0034] The present invention is also useful in those situ-
ations that require immediate data access, since no history of
use needs to be built on the client before data is available.
Indeed, data entered into an application by a user can
automatically be made available to that user for auto-
completion on any other computer, anywhere in the world.

[0035] Unlike existing data-retrieval applications, server
data can be accessed through a single standardized protocol
that can be built into programming languages, user interface
components or web comporents. The present invention can
be integrated into and combined with existing applications
that access server data. Using content access modules, the
present invention can access any type of content on any
server.

[0036] In the detailed description below, the present
invention is described with reference to a particular embodi-
men! named QuestObjects. QuestObjects provides a system
for managing client input, server queries, server responses
and clicnt output. One specific type of data that can be made
available through the system from a single source (or
syndicate of sources) is a QuestObjects Service. Other terms
used to describe the QuestObjects system in detail can be
found in the glossary given below.

[0037] QuestObjects is useful for retrieval of almost any
kind of string-based data, including the following QuestO-
bjects Service examples:

INTRANET USE

[0038] Access system for database fields (for lookup
and auto-complete services).

[0039] Enterprise thesauri system.

[0040] Enterprise search and refrieval systems.
[0041] Enterprise reference works.

[0042] Enterprise address books.

Feb. 27,2003

[0043] Control systems for sending sensor readings
fo a server that responds with appropriate instruc-
tions or actions to be taken.

INTERNET USE
[0044] Client access to dictionary, thesaurus, ency-
clopedia and reference works.
[0045] Access to commercial products database.
[0046] Literary quotes library.
[0047] Real-time stock quote provision.
[0048] Access to real-time news service.

[0049] Access to Internet advertisements.

[0050] Access to complex functions (bank check,
credit card validation, etc).

{0051] Access to language translation engines.

[0052] Access to classification schemes (eg, Library
of Congress Subject Headings).

[0053] Access to lookup lists such as cities or coun-
tries in an order form.

[0054] Personal address books.

[0055] Personal auto-complete histories.

BRIEF DESCRIFTION OF THE FIGURES

[0056] FIG. 1 shows a general outline of a system incor-
porating the present invention.

[0057] FIG. 2 shows a schematic of a system in accor-
dance with an embodiment of the invention.

[0058] FIG. 3A shows a variety of stages in the usage of
2 sample Questlet implementation in accordance with an
embodiment of the invention.

[0059] FIG. 3B shows an expanded view of a sample
Questlet implementation in accordance with an embodiment
of the invention.

[0060] FIG. 3C shows an expanded view of a sample
Questlet implementation in accordance with an cmbodiment
of the invention.

[0061] FIG. 4 shows a sequence diagram illustrating the
use of a system in accordance with an embodiment of the
invention.

[0062] FIG. 5A shows a first thread flow chart illustrating
the interface between an active component and an embodi-
ment of the invention.

[0063] FIG. 5B shows a second thread flow chart illus-
trating the interface between an active component and an
embodiment of the invention.

[0064] FIG. 6A shows a first thread flow chart illustrating
the client side of an embodiment of the invention.

[0065] FIG. 6B shows a second thread flow chart illus-
trating the client side of an embodiment of the invention.

[0066] FIG. 7A shows a first thread fiow chart illustrating
the server side-of an embodiment of the invention.

MO000023

US 2003/0041147 Al

[0067] FIG. 7B shows a second thread flow chart illus-
trating the server side of an embodiment of the invention.

[0068] FIG. 8A shows an object model of an embodiment
of the present invention, displaying the base part.

[0069] FIG. 8B shows an object model of an embodiment
of ibe present invention, displaying the client part.

[0070] FIG. 8C shows an object model of an embodiment
of the present invention, displaying the server part.

[0071] FIG. 8D shows an object model of an embodiment
of the present invention, displaying the service part.

[0072] FIG. 9 shows a schematic of an application proxy
system that enables the use of the invention in various client
environments.

DETAILED DESCRIPTION

[0073] Roughly described, the invention provides a ses-
sion-based bi-directional multi-tier client-server asynchro-
nous information database search and retrieval system for
sending a character-by-character string of data to an intel-
ligent server that can be configured to immediately analyze
the lengthening string character-by-character and return to
the client increasingly appropriate database information as
the client sends the string.

[0074] The present invention includes a system that offers
a highly effective solution to an important disadvantage of
both client-server and Internet systemns: The present inven-
tion provides a standardized way to immediately synchro-
nize the data entered or displayed on a client system with the
data on a scrver sysiem. Data input by the client is imme-
diately transmitted to the server at which time the server can
immediately update the client display. To ensure scalability,
systems built around the present invention can be divided
into multiple ‘tiers’ each capable of caching data input and
output. Any number of servers can be used as a middle-tier
to serve any number of static or dynamic data sounrces (often
referred to as “Content Engines”).

[0075] The present invention is useful for an extremely
wide variety of applications. It offers a standardized way to
access server dafa that allows immediate user-friendly data
feedback based on user input. Data can also be presented to
a client without user input, ie. the data is automatically
‘pushed’ fo the client. This enables a client component to
display the data immediately or o transmit it to another
software program to be handled as required.

[6076] The present invention is also particularly useful for
assistance in data entry applications, but can also be used to
simply and quickly retrieve up-to-date information from
essentially any string-based content source. Strings can be
linked to metadata allowing user interface components to
display corresponding information such as the meaning of
dictionary words, the description of encyclopedia entries or
pictures corresponding to a list of names.

[0077] Iosome embodiments, the present invention can be
used to create a user interface component that provides a
sophisticated “auto-completion” or “type-ahead” function
that is extremely useful when filling out forms. Simple,
client-side auto-complete functions have been widely used
throughout the computing world for many years. As a user
inputs data into a field on a form, the auto-complete function

Feb. 27, 2003

analyzes the developing character string and makes “intel-
ligent” suggestions about the intended data being provided.
These suggestions change dynamically as the user types
additional characters in the string. At any time, the user may
stop typing characters and select the appropriate suggestion
to auto-coroplete the field.

[0078] Today’s client-side auto-complete functions are
very limited. The present invention vastly expands the
usefulness and capabilities of the auto-complete function by
enabling the auto-complete data, logic and intelligence to
reside on the server thus taking advantage of server-side
power. Unlike the client-side auto-complete functions in
current use, an auto-complete function created by the present
invention pushes suggestions from the server as the user
types in a character string. Using the present invention, the
suggestions may be buffered on a middle tier so that access
to the content engine is minimized and speed is optimized.

[0079] The simple auto-complete schemes currently in
populer use (such as email programs that auto-complete
e-mail addresses, web browsers that autocomplete URLs,
and cell phones that auto-complete names and telephone
numbers) require that the data used to generate the sugges-
tions be stored on the client. This substantially limits the
flexibility, power, and speed of these schemes. The present
invention, however, stores and retrieves the anto-complete
suggestions from databases on the server. Using the present
invention, the suggestions generated by the server may, at
the option of the application developer, be cached on the
middle tier or one the client itself to maximize performance.

[0080] The present invention provides better protection of
valuable data because the data is not present on the client
until the moment it is needed and can be further protected
with a user authentication mechanism, if necessary.

[0081] The present invention is useful for immediate data
use, since no use history must be built on the client before
data is available. Indeed, data entered into an application by
a user can automatically be made available to that user for
auto-completion on any other computer anywhere in the
world.

[0082] Unlike existing data-retrieval applications, server
data can be accessed through a single standardized protocol
that can be built into programming languages, user interface
components or web cormponents. The present invention can
be integrated into, and combined with, existing applications
that access server data. Using Content Access Modules, the
present invention can access any type of conteat on any
Server.

[0083] In the detailed description below, an embodiment
of the present invention is referred to as QuestObjects, and
provides a system of managing client input, server queries,
server responses and client output. One specific type of data
made available through the system from a single source (or
syndicate of sources) is referred to as a QuestObjects Ser-
vice. Other terms used lo describe the QuestObjects system
in detail can be found in the glossary below:

GLOSSARY

[0084] Active Component—Part of a software program
that accesses the QuestObjects system through one or
more Questers. Active Components may provide a user
interface, in which case they’re referred to as Questlets.

MOO000024

US 2003/0041147 Al

[0085] AppHost Synchronizer—Part of the QuestOb-
Jjects Server that allows the Application Proxy access to
data in Server Questers.

[0086] Application Proxy—An optional method imple-
mented by the QuestObjects Server allowing the use of
the QuestObjects system in client systems that do not
allow the

[0087] QuestObjects—Client components to communi-
cate to the application server or web server directly.
Uses the AppHost Synchronizer on the QuestObjects
Server to send selecled strings and metadata to the
application server or web server using a QuestObjects
Adaptor.

[0088] Client Controller—A QuestObjects Controller
on a QuestObjects Client.

[0089] Client Quester—A Quester on a QuestObjects
Client that has a Server Quester as its peer.

[0090] ClientSession—A temporary container of infor-
mation needed to manage the lifespan of Server
Questers in a QuestObjects Server.

[0091] Content Access Module—A part of a Content
Channel that provides a standardized APl to access
specific types of Content Engines.

[6092] Content-based Cache—A persistent store of
Queries and corresponding Result Sets executed by a
Content Engine for a specific Content Channel.

[0093] Content Channel—A part of the QuestObjects
system that provides one type of information from one
Content Engine. Consists of a Query Manager and a
Content Access Module, linking a Content Engine to
the QuestObjects system.

[0094] Content Engine—A dynamic data source that
provides data to a Content Channel by accessing its
own database or by querying other information sys-
tems.

[0095] Query Filter—A filter specified by a Query Man-
ager in a specific Service used to tell the Server Quester
lo interpret incoming strings before they are sent to the
Service as a QuestObjects Query.

[06096] Query Manager—An intelligent part of a Con-
tent Channel that interprets QuestObjects Queries and
sends them to a2 Content Engine (through a Content
Access Module) or retrieves results from the Content-
based Cache in a standardized way. The Query Man-
ager can also send a list of Query Patterns and Query
Filters to the Server Quester, allowing the Server
Quester {o match and filter new Queries before they are
sent to the Content Channel.

[0097] Query Pattern—A string-matching pattern (such
as a unix-style grep pattern) specified by a Query
Manager in a specific Service used to tell the Server
Quester to interpret incoming strings before they are
sent to the Service as a QuestObjects Query.

[0098] Persistent Quester Store—A dynamic database
of Questers that is maintained on the QuestObjects
Server, allowing Questers to be stored across Client

Feb. 27, 2003

sessions whereby the state and contents of the Client
are automatically restored when a new Clicnt Session is
started.

[0099] Quester—An intelligent non-visual object con-
tained by an Active Component that links a QuestOb-
jects StringList to an input buffer. Questers exist on
both the QuestObjects Client and the QuestObjects
Server and can be specifically referred to as Client
Quester and Server Quester. Questers communicate
with each other through a QuestObjects Controller.

[0100] Questlet—A User Interface Element that
accesses the QuestObjects system through one or more
Questers. A visual Active Component.

[0101] QuestObjects Adaptor—An optional software
component for existing application servers and web
servers that allows these servers to use data entered into
the QuestObjects system by users of clicnt systems and
web browsers that require an Application Proxy.

[0102] QuestObjects Client—Part of the QuestObjects
system that functions as the client tier consisting of one
or more Client Questers and a Client Controller that
communicates to a QuestObjects Server.

[0103] QuestObjects Controller—An intelligent non-
visual component that provides the interface between
Questers on QuestObjects Clients and QuestObjects
Servers. QuestObjects Controllers implement the pro-
tocol of the present invention.

[0104] QuestObjects Query—A string created by the
Server Quester with optional qualifier and the requested
row numbers forming a query to be cxecuted by a
specified QuestObjects Service.

[0105] QuestObjects Result Set—A set of StringLists
with comresponding Query retumed from the QuestO-
bjects Service, returned in batches to the Client Quester
by the Server Quester.

[0106] QuestObjects Server—Central part of the
QuestObjects system that provides the link between
any number of QuestObjects Clients, any number of
QuestObjects Services, and any number of other
QuestObjects Servers. Maintains Client Sessions that
QuestObjects Clients communicate with through the
Server Controller. Provides services such as caching,
replication and distribution.

[0107] QuestObjects Service—Ope of the Content
Channels provided by a specific Syndicator. A logical
name for a Syndicator, a Content Channel and its
corresponding Content Engine.

[0108] QuestObjects String—Sequence of Unicode
characters with standardized attributes used by the
QuestObjects system.

[0109] QuestObjects Stringlist—Container for a set of
QuestObjects Strings retrieved from a QuestObjects
Service with standardized attributes needed by the
QuestObjects System.

[0110] QuestObjects User—Person or process access-
ing the QuestObjects system from the QuestObjects
Client, optionally authorized by the Syndicator.

MO000025

US 2003/0041147 A1

[0111] Server Controller—A QuestObjects Controller
on a QuestObjects Server.

[0112] Server Quester—A Quester on a QuestObjects
Server that has a Client Quester as its peer.

[0113] Syndicator—A part of the QuestObjects system
that offers one or more Content Channels 1o be used by
QuestObjects Servers, perfonning user-based account-
ing services based on actual data use such as billing,
collection of statistics and management of preferences.

[0114] User Interface Elcment—A visual and optionally
interactive component in a software program that pro-
vides an interface to the user.

[0115] The present invention provides a system that allows
clients or client applications to asynchronously retricve
database information from a remote server of server appli-
cation. The terms “client” and “server” are used herein 1o
reflect a specific embodiment of the invention although it
will be evident to one skilled in the art that the invention may
be equally used with any implementation that requires
communication between a first process or application and a
second process or application, regardless of whether these
processes comprise a typical client-server setup or not. The
invention includes a Server, that handles requests for infor-
mation from clients, and a communication protocol that is
optimized for sending single characters from a Client to the
Server, and lists of strings from the Server to the Client. In
one embodiment, as the Server receives a single character
from the Client, it immediately analyzes the lengthening
string of characters and, based on that analysis, returns
database information to the Client in the form of a list of
strings. Clients are not restricted to programs with a user
interface. Generally, any process or mechanism that cap
send characters and receive string lists can be considered a
client of the system. For example, in an indusirial or power
supply seiting, the control system of a power plant could
send sensor readings to the system, and in return receive lists
of actions to be taken, based on those sensor readings.

[0116] The system’s protocol is not restricted to sending
single characters. In fact, Clients can also use the protocol to
send a string of characters. For example, when a user
replaces the contents of an entry field with a pew string, the
Client may then send the entire string all at once to the
Server, instead of character by character.

{0117} In accordance with one embodiment of the inven-
tion the system is session-based, in that the server knows or
recognizes when subsequent requests originate at the same
Client. Thus, in responding to a character the Server receives
from a Client it can use the history of data that has been sent
to and from the current user. In one embodiment, the system
stores user preferences with each Service, so that they are
always available to the Client, (i.c., they are independent of
the physical location of the client). Furthermore, client
authentication and a billing system based on actual data and
content use by Clients are supported. For faster response, the
Server may predict input from the Client based on statistics
and/or algorithros.

[0118] The system is bi-directional and asyachronous, in
that both the Client and the Server can initiate communica-
tions at any moment in time. The functionality of the system
is such that it can run in parallel with the normal operation
of clients. Tasks that clients execute on the system are

Feb. 27, 2003

non-blocking, and clients may resume nommal operation
while the system is performing those tasks. For example, a
communication initiated by the Client may be a single
character that is sent to the Server, that responds by returning
appropriate data. An example of a communication initiated
by the Server is updating the information provided to the
client. Because the system is session-based it can keep track
of database information that has been sent to the Client. As
information changes in the database, the Server sends an
updated version of that information to the Client.

[0119] Embodiments of the system may be implemented
as a multi-tier environment This makes it scalable because
the individual tiers can be replicated as many times as
necessary, while load balancing algorithms (including but
not limited to random and round robin load-balancing) can
be used to distribute the load over the copies of the tiers. One
skilled in the art would appreciate that it is ot necessary to
replicate the tiers. Indecd, there may be only a single copy
of each tier, and that all tiers (Client, Server, and Service)
may be running on a single computer system.

[0120] FIG. 1 illustrates the general outline of a system
that embodies the present invention. As shown in FIG. 1
there may be various Clients 101 using the system. These
Clients use a communication protocol 102 to send informa-
tion, including but not limited to single characters, and to
receive information, including but not limited to lists of
strings and corresponding metadata. At least one Server 103
receives information from the Client, and sends information
to the Client. In a typical embodiment if there is a plurality
of Servers, then the system can be designed so that each
Client connects to only one of them, which then relays
connections (o other Servers, possibly using load-balancing
algorithms. Servers have a communication Link 104 to a
Service 105, which they use to obtain the information that
they send to the Client.

[0121] FIG. 2 is a schematic illustrating an embodiment
of the present invention, and displays a five-tier system that
has a user interface in which user interface elements use the
present invention to assist the user in performing its tasks.
For purposes of illustration, FIG. 2 displays just one session
and one content Service. In an actual implementation there
may be multiple concurrently active sessions, and there may
be more than one content Service that Clients can use. As
shown herein, the first of the five tiers is a Client tier 201.
The Client tier contains the user interface and the Client
components that are needed to use the system, The second
tier is a Server or server process 206, which handles the
queries that Clients execute, and in return displays results to
the Client. Service 213, which corresponds to 105 of FIG.
1, is a logical entity consisting of three more tiers: a
Syndicator 214, a Content Channel 219 and a Content
Engine 224. The Syndicator provides access to a number of
Content Channels and performs accounting services based
on actual data use. The Content Channel provides a specific
type of information from a specific source (i.c. the Content
Engine). The Content Engine is the actual source of any
content that is made available through the QuestObjects
system. The Client tier 201 corresponds to the client 101 in
FIG. 1. In this example, the Client may be an application
(and in some embodiments a web application) with a user
interface that accesses the system of the present invention.
As used in the context of this disclosure a user interface
element that uses the present invention is referred to as a

MO000026

US 2003/0041147 A1

“Questlet.” A Clicnt can contain one or more Questlets 202
(e.g. an input field or a drop down list. FIG. 3 described later
contains three examples of such Questlets. A Questlet is
always associated with at least one Client Quester 203.
Questers are objects that tic a QuestObjects input buffer
(containing input from the Client) to a QuestObjects Result
Set returned from a QuestObjects Server. Questers exist on
both the Client and Server, in which case they are referred
to as a Client Quester and a Scrver Quester, respectively.
Every Client Quester has one corresponding Server Quester.
In accordance with the invention, any event or change that
happens in either one of them is automatically duplicated to
the other so that their states arc always equal. This synchro-
nization mechanism is fault-tolerant so that a failure in the
commuuication link does not prevent the Questers from
performing tasks for which they do not need to communi-
cate. For example, a Client Quester can retrieve results from
the cache, even if there is no communication link to the
Server. Each single Quester accesses exactly one QuestOb-
Jects Service, i.c. one specific Content Channel offered by
one specific Syndicator. At initialization of the Client, the
Questlet tells its Quester which Service to access. In one
cmbodiment a Service is stored or made available on only
one Server within a network of Servers. However, this is
transparent to the Client because each Server will forward
requests to the right computer if necessary. The Client does
not neced to know the exact location of the Service.

[0122] To communicate with its Server Quester 208, each
Quester in a session uses a controller 204. The system
contains at least one Client Controller 204 and a Server
Controller 209, which together implement the network com-
munication protocol 205 of the present invention. Client
Controllers may cache results received from a Server, thus
eliminating the need for network traffic when results are
reused.

[0123] Client Questers are managed by a Questlet, which
create and destroy Questers they need. In a similar fashion,
Server Questers are managed by a Session 207. When a
Client Quester is created, it registers itself with the Client
Controller. The Client controller forwards this registration
information as a message to the Session using the Server
Controller. The Session then checks if the Persistent Quester
Store 210 contains a stored Quester belonging to the current
user malching the requested Service and Query Qualificr. If
such a Quester exists, it is restored from the Persistent
Quester Store and used as the peer of the Client Quester.
Olberwise, the Session creates a new Server Quester lo be
used as the Client Quester’s peer.

[0124] A Time Server 211 provides a single sowrce of
timing information within the system. This is necessary,
because the system itself may comprise multiple indepen-
dent computer systems that may be set to a different time.
Using a single-time source allows, for example, the expira-
tion time of a Result Set to be calibrated 1o the Time Server
so that all parts of the system determine validity of its data
using the same time.

[0125] Server communication link 212 is used by the
Server to send requests for information to a Service, and by
a Service (o return requested information. Requests for
information are Query objects that are sent to and interpreted
by a specific Service. Query objects contain at least a string
used by the Service as a criterion for information to be

Feb, 27, 2003

retrieved, in addition to a specification of row numbers 1o be
returned to the Client. For example, two subsequent queries
may request row numbers 1 through 5, and 6 through 10,
respectively. A query object may also contain a Qualifier that
is passed to the appropriate Service. This optional Qualifier
contains attributes that are needed by the Service to execute
the Query. Qualifier atiributes may indicate a desired sort
order or in the example of a thesaurus Service may contain
2 parameler indicating that the result list must contain
broader terms of the Query string. Services use the commu-
nication link to send lists of strings (with their attributes and
metadata) to Servers. Server communication link 212 is also
used by Server Questers to store and retrieve user prefer-
ences from a Syndicator’s Preference Manager.

[0126] Questers use Services to obtain content. A Scrvice
is one of the Content Channels managed by a Syndicator.
‘When a Quester is initialized, it is notified by its Active
Component of the Service it must use. The Service may
require authentication, which is why the Syndicator provides
a User Manager 215. If a Client allows thc user to sel
preferences for the Service (or prefercnces needed by the
Active Component), it may store those preferences using the
Syndicator’s Preference Manager 216. The Server (ie.
Server Quester) only uses the Syndicator for authentication
and preferences. To obtain content, it accesses the appro-
priate Content Channel directly. The Content Channel uses
its Syndicator to store usage data that can be later used for
accounting and billing purposes. Usage data is stored in a
Usage Statistics Store 217.

[0127] Content communication link 218 is used by Con-
tent Channels to send usage data to their Syndicator, and to
retrieve user information from the Syndicator. The Content
Channel is a layer between the QuestObjects System, and
the actual content made available to the system by a Content
Engine 224. Each Content Channel has a corresponding
Query Manager 220 that specifies the type of query that can
be sent fo the corresponding Content Engine, and defincs the
types of data that can be returned by the Content Channel.

[0128] Specification of query type comprises a set of
Query Patterns and Query Filters that are used by the Server
Quester to validate a string before the string is sent to the
Content Channel as a QuestObjects Query. For example, a
query type “URL” may allow the Server Quester to check
for the presence of a complete URL in the input string before
the input string is sent to the Content Channel as a query. A
query type “date” might check for the entry of a valid date
before the query is forwarded to the Content Channel.

[0129] The Query Manager optionally defines the types of
string data that can be returned to the Client by the Content
Channel. Specific Active Components at the Client can use
this information to connect to Services that support specific
types of data. Examples of string types include: simple
terms, definitional terms, relational terms, quotes, simple
numbers, compound pumbers, dates, URLs, e-mail
addresses, preformatted phone numbers, and specified XML
formatted data eic.

[0130] The Query Manager 220 retrieves database infor-
mation through a Content Access Module 221. The Content
Access Module is an abstraction layer between the Query
Manager and a Content Engine. It is the only part of the
system that knows how to access the Content Engine that is
linked to the Content Channel. In this way, Query Managers

MO000027

US 2003/0041147 Al

can use a standardized API to access any Content Engine. To
reduce information traffic between Content Channels and
Content Engines, Content Channels may access a content-
based cache 222 in which information that was previously
retrieved from Content Engines is cached. Engine commu-
nication link 223 is used by Content Access Modules to
communicate with Content Engines. The protocol used is the
native protocol of the Content Engine. For example, if the
Content Engine is an SQL bascd database system then the
protocol used may be a series of SQL commands. The
Content Access Module is responsible for connecting the
Content Engine to the QuestObjects System.

[0131] Content Engines 224 are the primary source of
information in the system. Content Engines can be located
on any physical computer system, may be replicated to aliow
load balancing, and may be, for example, a database, algo-
rithm or scarch engine from a third-party vendor. An
example of such an algorithm is Soundex developed by
Kouth. Content Engines may require user authentication,
which, if required, is handled by the Syndicator (through the
Content Access Module).

[0132] The invention uses Content Engines as a source of
strings. One skilled in the art would understand that a string
may, for example, contain a URL of, or a reference to any
resource, including images and movies stored on a network
or local drive. Furthermore, strings may have metadata
associated with them. In ope embodiment, strings might
have a language code, creation date, modification date, efc.
Anentry in a dictionary may have metadata that relates to its
pronunciation, a list of meanings and possible uses, syn-
onyms, references, etc. A thesaurus term may have a scope
note, its notation, its source and its UDC coding as metadala,
for example. Metadata of an encyclopedia entry may include
its description, references, and links to multi-media objects
such as images and movies. A product database may have a
product code, category, description, price, and currency as
metadata. A stock quote may have metadata such as a
symbol, a company name, the time of the quote, etc.
Instructions to a control system may contain parameters of
those instructions as metadata. For example, the instruction
to open a valve can have as metadata how far it is to be
opened.

[0133] FIGS. 3A-3C contain three examples of the Quest-
lets that can be used with the system, i.c., the User Interface
Elements that access the QuestObjects system. In FIG, 3A,
a series of representations of an auto-completing entry field
are shown, such as might be used in an application window
or on & web form, that accesses a single QuestObjects
Service, and allows for auto-completion of, in this example,
a U.S. state name. FIGS. 3B and 3C depict two different
presentation forms of the same complex Questlet that access
a number of QuestObjects Services simultaneously.

[0134] Users should be able to clearly recognize the
availability of QuestObjects Services in an application. As
sbown in FIG. 3A, and particularly in the auto-complete
cntry field example screen element 302, clear symbols are
displayed at the right end of the field. A small disclosure
triangle 308 is displayed in the lower right-hand corner, and
serves as an indicator to the user that a QuestObject is being
used. A reserved space herein referred to as the “status area”,
and located above the disclosure triangle 301 is used to
display information about the state of the QuestObjects

Feb. 27, 2003

system. The successive shots of this screen element 302
through 307 show some of the different kinds of states in this
status area. Screen element 302 depicts an empty data field
with an empty status area. The screen element 303 shows the
same field immediately after the user enters a character “N”".
On receiving the “N”input, the Questlet immediately checks
its internal entry cache for available auto-complete
responses. If the cache does not contain a valid string (either
because the cache is empty, because the cache is incomplete
for the eotry character, or because one or more cached
strings have expired) the QuestObjects system sends a query
to the QuestObjects Service. This sending process is indi-
cated by a network access symbol in the status area 304
which is in this embodiment takes the form of a left and right
facing arrows.

[0135] Screen element 305 shows the entry field after the
Server has sent one or more aulo-complete strings back to
the Questlet. This example sitvation is typical of these
instances in which the user did not enter a second character
after the original “N” before the QuestObjects system
responded. The QuestObjects system is inhereptly multi-
threaded and allows the user to continuc typing during
access of the QuestObjects Service. The screen element
status area of 305 now displays a small downward facing
arrow indicating that there are morc available auto-complete
answers. In this case, the entry field has displayed the first
one in alphabetic order.

[0136] Screen element 306 shows the same entry field
after the user has hit the down arrow key or clicked on the
arrow symbol in the status area. The next available auto-
complete response in alphabetical order is displayed. The
double up and down pointing arows in the status area now
indicate that both a previous response (in this example,
“Nebraska”) and a next response are available.

[0137] Screen element 307 shows the same entry field
afier the user has typed two additional characters, “e” and
“v”. As shown in this example, the status area changes to a
checkmark indicating that there is now only one available
auto-complete match for the characters entered. The user can
at any point use the backspace key on their keyboard (or
perform other actions defined in the Questlet) to select
different states, or can leave the entry field to confirm his
sclection. At this time, the system may do several things. It
can automatically accept the string “Nevada” and allow the
user to move on with the rest of the entry form; or if it has
been configured such it may decide to replace the string
“Nevada” by the two-character state code. The QuestObjecis
Service not only returns strings, but also any corresponding
metadata. This cxample of an auto-complete entry field
Questlet is based on showing the response string, but other
Questlets (and even invisible Active Components) may
perform an action invisible to the user. In addition, a
response sent to one Questlet can trigger a response in other
Questlets that have a pre-defined dependency to that Quest-
let. For example, entering 2 city into onc Questlet can trigger
agother Questlet to display the corresponding state. It will be
evident to one skilled in the art, that although left, right, up
and down arrows are used to indicate usually the status of
the QuestObject field, other mechanisms of showing the
status within the scope and spirit of the invention.

[0138] Interdependent data (which in the context of this
disclosure is that data originating from a multitude of

MO000028

US 2003/0041147 Al

QuestObjects Services) can be combined into 2 complex
Questlet. Examples 309 shown in FIG. 3B and example 313
shown in FIG. 3C show a complex user interface element
(Questlet) that makes multiple QuestObjects Services avail-
able to the user. In both examples the upper part of the
Questlet is an entry field that may offer the auto-complete
functionality described in FIG. 3A. By clicking on the
disclosure triangle 308 shown in the earlier FIG. 3A (or by
another action), the user can disclose the rest of the Questlet,
which in this example comprises two functional areas 311
and 312. [n this example, the user interface allows the user
to choose a vertical presentation mode 309, shown in FIG.
3B or a horizontal presentation mode 313, shown in FIG. 3C
for the Questet. A close box 310 replaces the disclosure
triangle in the entry field, allowing the user to close areas
311 and 312. In FIG. 3C Area 314 shows a certain QuestO-
bjects Service, in this case a list of “Recent Terms” accessed
by the user. This Questlet allows the user to select a different
QuestObjects Service for area 314 by selecting it from a
popup list 319. In this example, an appropriate second
Service might be “Alphabetic Listing”.

[0139] In both examples of FIGS. 3B and 3C, area 312
displays a QuestObjects “Thesaurus Service” (Thesa) that
has been sclected. Additionally, in FIG. 3C areas 315
through 318 display four different Questers that take their
data from a QuestObjects Thesaurus Service. These
Questers all access the same Thesaurus and all have a
dependency on the selected string in the main list of arca
314. Once the user clicks on a string in arca 314 the
thesaurus lists 315 through 318 are automatically updated to
show the corresponding “Used For terms” UF, “Broader
Terms” BT, “Narrower Terms” NT, and “Related Terms” RT
from the Thesaurus Service. Questers 315 through 318 thus
have a different Qualifier that is used to access the same
QuestObjects Service. It will be evident to those skilled in
the art that this example is not intended to be a complete
description of features that a thesaurus browser (or any other
Service) provides. Most thesauri offer a multitude of term
relationships and qualifiers. A Questlet or part of a Quesdet
may provide access to a multitude of QuestObjects Services.
A possible way to do this is to show multiple tabbed panes
accessible through tab buttons named after the Services they
represent 320.

[0140] Data from the QuestObjects Services can be dis-
played by 2 Questlet in many forms. Thesaurus browser
Questlets generally display interactive lists of related terms.
Questlets can also allow users to lookup data in a reference
database (dictionary, encyclopedia, product catalog, Yellow
Pages, etc) made available as a QuestObjects Service.
Furthermore, Questlets can access QuestObjects Services
thal provide a standardized interface to search engines.
These search engines may be Internet-based or can be built
into existing database servers. Questiets can also access
pre-defined functions made available as QuestObjects Ser-
vices (such as a bank pumber check, credit card validation
Service or encryption/decryption Service). Questlets can
even access translation Services allowing on-the-fly trans-
lation of entry data. In some embodiments Questlets can
retrieve multi-media data formats by receiving a URL or
pointer to multi-media files or sireaming media from a
QuestObjects Service. In other embodiments Questlets can
be used to display current stock quotes, news flashes,
advertisements, Internet banners, or data from any other
real-time data push Service. Questlets can provide an auto-

Feb. 27, 2003

complete or validity checking mechanism on the data
present in specific fields or combinations of fields in rela-
tional database tables.

[0141] As described above, Questlets are well suited to
represent QuestObjects dala visually. However, a QuestO-
bjects Client system can also contain non-visual Active
Components, such as function calls from within a procedure
in a program to access a QuestObjects Service. A program
that needs to display a static or unchanging list of strings can
use a Quester in its initialization procedure (o retrieve that
list from a QuestObjects Server. By calling a Quester, a
stored procedure in a database can make a QuestObjects
Service available to any database application. By encapsu-
lating a Quester into an object supplied with a programming
language, a QuestObjects Service can be made available to
its developers. Another example of how QuestObjects Ser-
vices may be accessed is through a popup menu that a user
can access by clicking on a word, phrase or sentence in a
document. The popup menu can include one or more
QuestObjects Services by calling one or more Questers. In
an application that is controlled by speech, a sound conver-
sion engine that translates speech input into phonemes can
be used to send these phonemes to a QuestObjects speech
recognition Service through a Quester. As yet another
cxample, a control system can use a Quester to send sensor
readings to a Server, which then queries a special purpose
content engine to return actions that the control system must
petform given the sensor readings.

[0142] FIG. 4 shows a simplified event life cycle illus-
trating what happens in a QuestObjects system using an
auto-complete Service. The protocol of the present invention
is implemented in the Client Controller and the Server
Cootrolier 400. In an initial phase an Active Component on
the Client tells its Quester to start or initialize 401 a
corresponding Client Session on the current QuestObjects
Server by sending a Register message to its Client Control-
ler. The Server Controller starts a Client Session if it has not
been started already. For simplicity the event trace of FIG.
4 does not show typical error handling that normally oceurs,
for instance when a Session cannot be started. If the Quester
was used before in the same Active Component and appli-
cation, the Session may restore the Quester from a Persistent
Quester Store, which may even cause a Query to be trig-
gered immediately if the Result Set in the Quester is out of
date.

[0143] The Server Quester looks up the Service in the
Server’s list of known QuestObjects Services, which may or
may not be located on the same computer. Once the Service
is found, the Client is registered and optionally authenticated
by the Service. At this time, the Service 402 returns infor-
mation to the Server Controller at which time the Client
reccives a confirmation that it was registered successfully.
The Active Component can now start using the Quester it
has just initialized. 1f the Active Component has a user
interface (ie. it is 2 Questlet) then it will now allow the user
to start entering characters or cause other user events.

[0144] The next step in the process is to capture user input.
As shown in FIG. 4, at point 403 a character event is
generated to indicate the user has typed a character ‘a’ into
the Questlet. The Quester scnds a message to its Client
Controller telling it that character ‘a’ must be appended to
the input buffer (it will be evident to one skilled in the art

MOO000029

US 2003/0041147 A1

that if the cursor is not at the end of the input string, typing
‘a’ would, for example, generate a different event to insert
the character instead of append it). The Client Controller
uses the protocol to synchronize the input buffer in the
Server Quester by communicating to the Server Controller.
The Server Controller may look up query ‘a’in its Result Set
cache, in which case it can return a previous Result Set to the
Client without accessing the Service. Also, depending on
any rules specified by the Service (as specified by a list of
Query Patterns and Query Filters defined in tbe Query
Manager of the Content Channel) and depending on the time
interval between ioput buffer changes, the Server Quester
may decide not to immediately send the (perhaps incom-
plete) string to the Service, as shown here.

[0145] An additional character event 404 is generated
when the user has typed a second character ‘b’ into the
Questlet. As before, a corresponding event arrives at the
Server Quester. In this case, the Server Quester may deduct
that the input string represents a valid query and send the
appropriate query message ‘ab’ to the Service. After receiv-
ing a query, the Service executes it by accessing its Content
Engine through the Content Access Module unless the
Query Manager was able to Jookup the same Query with a
Result Set in the Content-based Cache. After an appropriate
Result Set 405 is retrieved, the Service will retum it to the
Client. In some embodiments, a large Result Set may be
returned to the Client in small batches. In other embodi-
ments an incomplete Result Set may also be returned if the
Content Engige takes a long time to come up with a baich
of results. A QuestObjects Service may automatically ‘push’
updated information matching the previous query to the
Client as it becomes available. A Query can also be set to
auto-repeat itself 406 if necessary or desired.

[0146] At step 407 the user types a third character ¢’ into
the Questiet. While this character is being sent to the Server,
a second and possibly third result set from the previous
query is on its way to the Client. When the Client Controller
decides 408 that the received Result Set ‘ab’ no longer
matches the current input string ‘abc’, the second update of
‘ab’ is not transmitted to the Active Component. Depending
on the sort order and sort attributes of the Result Set, the
Client Controller may still send the second and third Result
Sets 10 the Active Component if the second query ‘abc’
matches the first string of the Result Set for the first query
‘ab’409. In that case, the user typed a character thet matched
the third character in the second or third Result Set, thus
validating the Result Sets for the second query. Eventually
the Server Quester receives notice of the third character
appended to the input buffer, and sends a new query ‘abe’ to
the Service. The Server Quester will stop the ‘repeating’ of
query ‘ab’ and the Service will now execute 410 the new
query ‘abc’ at the Content Engine, or retreve it from the
Content-based Cache.

[0147] FIG. 5 depicts a flowchart illustrating the interface
between an Active Component and the present invention. As
shown therein a Client Quester is initialized (step 501) in
which each active component is associated with one or more
Client Questers. A loop is then entered that exits when the
Active Component is destroyed (step 502). In the loop,
events are sent to the Client Quester (step 503), such as
keyboard events, click events and focus events (i.e. events
that tell the system which user interface element currently
has input focus). When events are sent to the Client Quester,

Feb. 27, 2003

they may result in return events from the Client Quester,
such as events informing that the Result Set of the Client
Quester has changed. Those events are received by the event
receiver (step 504). The event receiver waits for events from
the Client Quester (step 506) and—if events have been
received (507)—processes them (step 508). It will be evi-
dent to one skilled in the art that the Active Component can
be multi-threaded, in that the event receiver can work
concurrently with the rest of the Active Component. The
Active Component may also use a cooperative multi-thread-
ing scheme where it actively handles client events and server
responses in 2 continuous loop.

[0148] FIG. 6 shows a flow chart illustrating the Client
side of the present invention. First, the Client Quester
registers itself with the Client Coatroller (step 601). It then
enters a loop that exits when the Client Quester is destroyed
(step 602). When that happens, the Client Quester deregis-
ters itself from the Client Controller (step 603). During the
loop the Client Quesler handles events from the Active
Component it belongs to. First, it waits for an event and
receives it (step 604). Then the type of the event is checked
(step 605). If it is not a character event, it is handled
depending on the type and content of the event (step 606).
An example of a non-character event is a double-click on the
input string, the click of a button that clears the input buffer,
the addition of characters to the input buffer by a paste-
action etc. If the event is a character event, the input buffer
is updated accordingly and Client Questers that have depen-
dencies with the input buffer or the Result Set also are
notified (step 607).

[0149] The next step is to get resulls based on the new
input buffer. First, the Client Quester checks if the results are
present in the client-side cache, which usually is a fast
short-term in-memory buffer (step 608); if so, they are
retrieved from the cache (step 609) and the Active Compo-
nent is notified of the results (step 610). If the results are not
found in the cache, the Client Quester uses the Client
Controller to send the new input buffer to the Server Quester,
so that a new query can be executed (step 611). To support
this, the protocol of the present invention provides 2 number
of messages that allow the Client Quester to send just the
changes to the input buffer, instead of sending the entire
input buffer. These messages include but are not limited to:
inputBufferAppend, inputBufferDeleteCharAt, inputBuffer-
InsertCharAt, inputBufferSetCharAt, inputBufferSetLength,
and inputBufferDeletc. After thus updating the Server
Quester's input buffer, the Client Quester activates the result
retriever to wait for new results and process them (step612).

[0150] The Client Quester is intended to be multi-
threaded, so that it can continue providing its services to its
Active Component while it waits for results from the
QuestObjects Server. Therefore, the Result Retriever can be
implemeated to run in a separate thread of execution. In this
embodiment the Result Retriever waits for results from the
Server Quester (step 613). If results have been received (step
614), it checks whether they are usable (siep 615). Results
are usable if they correspond to the latest query. If results are
from a previous query (which can occur because the system
is multi-threaded and multi-tier), they may also still be
usable if the Client Quester can filter them to maich the new
input buffer (this depends on the sort flags in the Result Set).
If results are usable, the Active Component is notified of the
new results. This notification is also sent to other Client

MO000030

US 2003/0041147 Al

Questers that have dependencies on the originating Client
Quester (step 616). Received results are stored in the client-
side cache, regardless of whether they were found to be
usable (step 617).

[0151] FIG.7 is a flow chart illustrating the Server side of
the present invention. The first thing a Server Quester does
when it is created, is to check whether its attributes can be
restored from the Persistent Quester Store (step 701), based
on the parameters with which it is created. If the attributes
can be restored, they are restored and registered with its
corresponding Service (step 702). In accordance with one
embodiment, one of the restored attributes is a Result Set
attribute; the Server Quester checks whether it is still up to
date (step 703). If not, a query is sent to the corresponding
Service if it is a pushing service or if the Query was
originally set to be auto-repeating (step 704) and (in a
separate thread of execution) the Server Quester waits for
the resulis of that query and processes them (step 705).

[0152] If the Server Quester’s attributes could not be
restored, it initializes itself and registers itself with the
correct service which is oue of the initialization parameters
(step 706). If the Client Quester was created with a default
input buffer, the Server Quester may automatically send the
corresponding Query to the Service. At this point, the
initialization process is complete and the Server Quester
cnters a loop that exits when the Quester is destroyed (step
707). During the loop, the Server Quester checks whether
the Query String is valid, using the validation attributes of
the Service (Query Pattern and Query Filter) (step 708). If
the query is valid, the Server Quester checks if the server-
side cache bas the results for the Query String (step 709). If
not, a new Query is sent to the Service (step 710). After that,
the results are retrieved (either from cache or from the
Service) and processed (step 711).

[0153] After validating (and possibly processing) the
Query String, the Server Quester waits for messages from
the Client Quester notifying of changes 1o the input buffer
(step 712). If such a message is received, the input buffer is
updated accordingly (step 713), and the loop is re-entered
(step 708).

[0154] The processing of query results is performed in a
separate thread of execution. The process performed in this
thread starts by obtaining the Result Set (step 714), either
from the server-side cache or from the Service depending on
the result of the decision in step 709. When thesc results are
obtained (step 715), they are sent to the Client Quester (step
716) either as part of the Result Set or as the entire Result
Set, depending on parameters set by the Client Quester and
are stored in the server-side cache (step 717). In addition, the
Service is notified of actual results that have been sent to the
client (step 718). If the results were pushed by the Service
(slep 719), this thread slarts waiting for new results to be
processed; otherwise, the thread stops.

[0155] FIGS. 8A-8D illustrate and object model of an
embodiment of the present invention. FIG. 8A illustrates the
base portion of the model containing the entities that are not
specific to either QuestObjects Clients, QuestObjects Serv-
ers, or QuestObjects Services. FIG. 8B displays the entities
that are specific to the QuestObjects client. FIG. 8C con-
tains the entities specific to the QuestObjects Server. FIG.
8D shows the entities specific to the QuestObjects Service.

[0156] Each of FIGS. 8A through 8D show object models
of one particular embodiment of the present invention, using

Feb. 27, 2003

UML (Unified Modelling Language) notation. Note that in
the figures some of the entities have a name that starts with
one of the words ‘base’, ‘client’, ‘server’, and ‘service’,
followed by two colons. Those entities are merely references
to entities in the subfigure indicated by the word before the
two colons. For example, the entity named ‘service::QoS-
ervice’ in FIG. 8A is a reference to the ‘QoService” entity in
the figure of the service part, namely FIG. 8D. It will be
evident to one skilled in the art that the model shown is
purely an illustrative example of one embodiment of the
invention and that other models and implementations may
be developed to practice the invention while remaining
within the spirit and scope of the this disclosure.

[0157] The base part of the system—depicted in FIG.
8A—comprises entities that are not specific to one of the
tiers of the QuestObjects system. One of the most important
entities shown in FIG. 8A is QoString, the QuestObjects
String. QoString models the strings that the QuestObjects
System handles. A QoString has at least a valie, which is the
sequence of (Unicode) characters itself. To guarantee a
minimum performance level, i.e. one in which the commu-
nication takes as little time as possible, this value has a
limited length (e.g. of 256 characters). Furthermore, a2 QoS-
tring may have a key and metadata. The key (if any is
present) is the identifier (i.c. the primary key) of the QuestO-
bjects String in the database from which it originates. This
key can be used to retrieve data from the database that is
related to the QuestObjects String. Metadata of a QoString
can be any additional data that is provided with the QoS-
tring’s value. Metadata of a QoString is XML formatted and
has a limited length (¢.g. 2048 bytes), in order to ensure that
QoStrings can be exchanged between the tiers of the
QuestObjects Syslem without compromising efficiency. If
the QoString originates from a Content Channel, it may also
have a fetch Time, namely the timestamp of when the
QoString was retrieved from the underlying content pro-
vider. It also may have an expiration Time indicating how
long the data in the QoString is to be considered valid.
Optionally a QoString can have a type, which is a reference
to a QoType object. (Note that for maximum efficiency the
types are not actually stored in the QoStrings, because it is
very likely that many QoStrings in a QoResuliSet have the
same type. Storing the types in the strings would unneces-
sarily increase network traffic.)

[0158] The QoType object models the concept of a string’s
type. It has a string typeString that contains the description
of the type and an indicator typelndicator that defines the
meaning of the description (typeString). Examples of string
types are: the DTD or Schema of the string’s value in these
cases in which it is XML formatted (or, altematively, the
URL of the DTD or Schema), the number formatter in the
case it is a number, and the date (and/or time) formatter in
the casc it is a date (and/or time). Table 1 shows an example
of the use of types, especially type indicators.

TABLE 1
Value of
typelndicator Meaning of typeString
0 typeSteing contsins the name of the type
64 typeString contains & string formatter
65 typeString contzins a number formatter
66 typeString contzins a date formatter

MOO000031

US 2003/0041147 A1

TABLE 1-continued

Value of
typelndicator Meaning of typeString
128 typeString contains @ DTD
129 typeString ins a Sch
160 typeStriag contains the URL of a DTD
161 typeString contains the URL of a Schema
255 custom type; typeString is the type's name

[0159] In the example shown in Table 1, bit 7 of the
typelndicator is on if typeString is XML related, bit 6 is on
if typeString is some formatter, and bit 5§ is on when
typeString is a URL. This name must follow the same
naming scheme as Java packages: They must use the Internet
domain name of the one who defined the type, with its
elements reversed. For example, custom types defined by
MasterObjects would begin with “com.masterobjects.”.

[0160] The QoQuery entity models the specification of a
QuestObjects Query. It includes a queryString that contains
the value the Content Channel is queried for (which is
named queryString in the figure). In addition to the que-
ryString, QoQuery has a property ‘qualifier’ that can hold
any other attributes of the query. The format and meaning of
the qualifier’s contents is defined by the Content Channel
that executes the query. Furthermore, it can be specified
which row numbers of the total result set must be returned
using the property ‘rownums’. The property ‘requested-
Types' can optionally hold 2 list of QoTypes, limiting the
types of the strings that will result from the query. The
‘timeout’ property can be used to specify a maximum
amount of time execution of the query may take.

[0161] Queries may include a type (QoQuerytype). Query
types are similar to QoType (i.c. String Types), and can be
used by QuestObjects Clients to find all QuestObjects Ser-
vices that support a certain kind of Query.

[0162] The result of 2 query is represented by the QoRe-
sultSet entity. QuestObjects Result Sets are collections of
QueslObjects Strings that are sent from a QuestObjects
Server to a QuestObjects Client in response to a query.
QoResultSets are created and filled by a QuestObjects
Service (to which QoResultSet has a reference named ‘ser-
vice’), based on the QoQuery to which the QoResultSet has
a reference. Actual results are stored as an array of QoS-
trings in the ‘strngs’ property. Elements of the QuestObjects
Result Set (ie. QoStrings) may be selected, as indicated by
the ‘selected’ property that is a list of indices in the strings
array of selected strings. Also, one of the QoStrings may be
marked as current as indicated by the ‘current’ property.
(When a QoString is marked as current it means that all
operations are performed on that QoString, unless another
one is explicitly specified.) QuestObjects Result Sets include
an attribute ‘ordered’ that indicates whether the QoStrings in
he QoResultSet are ordered. Sometimes, especially when a
QuestObjects Result Set is narrowed down by a new Query,
the fact that the QoResultSet is ordered may mean that the
QuestObjects Client does not need to actually execute a new
Query; instead, it can filter the previous QuestObjects Result
Set itself according to the new queryString.

[0163] As further described below, Server Questers may
have a QuestObjects Result Set, of which only a part is sent

13

Feb. 27, 2003

to the QuestObjects Client. At all times, the ‘rownums’
property of QoResultSet indicates the row numbers of
QoStrings that are actually present in the QoResultSet. The
rownums property may have different values for correspond-
ing QoResultSets on the QuesiObjects Server and the
QuestObjects Client. The same holds for the ‘strings’ prop-
erty. The ‘complete’ property is the percentage of the QoS-
trings in the server-side QoResultSet that is present in the
corresponding client-side QoResultSet as well. The property
‘totalNumberQOfStrings’ indicates the total number of QoS-
trings in the QoResultSet, whether actually present or not.
For server-side QoResultSets this number is always equal to
the length of the ‘strings’ array, but for client-side QoRe-
sultSets the number may be smaller.

[0164] Finally, result sets include an identifier ‘result-
Setld’. Every time a Client Quester uses the protocol of the
present invention to send something to the Server Quester
that may result in 2 new QuestObjects Result Set, it includes
a request identifier. This identifier is then copied in the
resultSetld when the QuestObjects Result Set is sent to the
Client Quester. In this way Client Questers know which
request the QuestObjects Result Set belongs to. (This is
important because the system is asynchronous and on occa-
sions it may occur that 2 newer QuestObjects Result Set is
sent to the client before an older one. The request identifier
and QuestObjects Result Set identifier allow the Client
Quester to detect and handle this.)

[0165] The core entity in the figure is QoQuester.
QoQuester is the superclass of both QoClientQuester (part
of the client and thus depicted in FIG. 8B) and QoServer-
Quester (depicted in FIG. 8C). The QoQuester entity mod-
els the Quester concept. Its primary task is to maintain an
input buffer, to make sure that QuestObjects Queries are
executed and to store and provide access to the QuestObjects
Result Sets returned by QuestObjects Services in reply to
QuestObjects Queries. At all times, a QoQuester holds one
QoResultSet that contains the results of the latest QuestO-
bjects Query. (Note that a QoQuester may hold other QoRe-
sultsSets as well, for example for optimization purposes.)
Client Questers and Server Questers exist in a one-to-one
relationship with each other: for every Client Quester there
is exactly one comresponding Server Quester, and vice versa.
All properties listed in QoQuester are present and equal,
both in the Client Quester and in the corresponding Server
Quester. An important exception is the resultSet property. In
the Server Quester, this is always the entire QuestObjects
Result Set of the latest Query. However, in order to minimize
network traffic the Server Quester is intelligent about the
portion it actually sends to the Client Quester. Questers
include a property ‘minimumBatchTime’ that indicates the
minimum amount of time that should pass before the Server
Quester sends results to the Client Quester. This allows the
Server Quester to accumulate results and send them as a
single action instead of as a separate action for each result.
There are two situations in which the Server Quester may
ignore this minimum batch time:

[0166] (a) when the result set is complete before the
minimum batch time has passed, and

[0167] (b) when the number of accumulated results
exceeds the number indicated by the ‘resultSet-
BatchSize’ property before the minimum batch time
has passed.

MO000032

US 2003/0041147 Al

[0168] If, for whatever reason, the Server Quester post-
pones sending the accumulated results to the Client Quester,
the (optional) ‘maximumBatchTime’ property indicates how
long it may postpone the sending. Even if no results are
available yet, when the maximumBatchTime passes, the
Server Quester must notify the Client Quester thereof.

[0169] Results are sent to the Client Quester in batches,
the size of which is indicated by the ‘resultSetBatchSize’
property. Occasionally, the Server Quester may deviate from
this batch size, notably when the number of results that is not
present on the client is smaller than the batch size or when
the maximumBatchTime has passed. This concept can be
taken even further, for example when the batch size is 10
resulis and the Server Quesler has 11 results, the Server
Quester may send them all, even though it exceeds the batch
size, because sending one extra result with the other 10 is
probably more efficient than sending a single result in a
separate batch at a later point. The Server Quester can use
the ‘clientMaximumLatency’ to make such decisions; it
indicales the maximum expected amount of time that elapses
between sending a message and receiving its response. The
bigher this value, the more likely it is that sending the
eleventh result with the other ten is more efficient.

[0170] Questers include an input buffer. The content of the
input buffer is what the QuestObjects Service will be queried
for. In the Client Quester, the input buffer is controlled by the
application that uses the QuestObjects system. For example,
an application with a graphical user interface may update the
input buffer according to key presses in one of its input
fields. The Client Quester keeps the input buffer of its
corresponding Server Quester up to date using the protocol
of the present invention.

[0171] Properties ‘highestReceivedResultSetld’ and ‘lat-
estRequestld’ are used to detect when QuestObjects Result
Sets are received out of order. As with the ‘resultSetld’
property of the QoResultSet, every QuestObjects Result Set
includes an identifier. The ‘highestReceivedResultSetld’
property stores the highest of all received QuestObjects
Result Set identifiers. If a Client Quester only needs the
latest results, it can simply discard received QuestObjects
Result Sets that have a lower identifier than ‘highestRe-
ceivedResultSetld’. The ‘latestRequestld’ is the identifier of
the latest request. The QuestObjects Result Set with an
identifier that matches ‘latestRequestld’ holds the results of
the latest request.

[0172] The remaining properties of QoQuesler store the
QuestObjects Service the Quester uses (‘service’), the
optional qualifier that Quenies to this QuestObjects Service
need (‘qualifier”), the types the Quester can handle (‘types’),
whether an application proxy is needed, and the optional
function of the Quester in the application (“applicationFunc-
tion’, used by the application proxy mechanism to determine
how the value of the Quester is to be passed to the appli-
cation/web server). In addition, if the update interval prop-
erty ‘autoUpdatelnterval’ is set to a non-zero value, the
Server Quester will automatically repeat the last Query with
that interval. This is useful for QuestObjects Services that
are not capable of pushing results themselves. A mechanism
is required 1o allow any other entity to be notified of changes
in the Quester. There are many ways this can be done. As an
.example in the embodiment shown in FIGS. 8A-8D an event
mechanism is included that involves event listeners and

Feb. 27, 2003

event handlers, very similar to the Java2 event mechanism.
An cntity that wants to be notified of changes must imple-
ment the QoQuesterChangeListener interface and then be
added to the Quester’s ‘changeListeners’ property (using the
method ‘addQuesterChangeListener’). When the Quester
changes, it will call the ‘questerChanged’ method of all
registered QoQuesterChangeListeners with a QoQuester-
ChangeEvent as a parameter. The QoQuesterChangeEvent
holds a description of the changes of the Quester; it has a
reference to the Quester that raised the event and an event
type. In FIG. 8 three event types are displayed (INPUT-
_BUFFER_CHANGED indicates that the Quester’s input
buffer has changed, RESULT_SET_CUR-
RENT_CHANGED indicates that the current item of the
Quester’s Result Set has changed, and RESULT SET_SE-
LECTED_CHANGED indicates that the list of selected
results in the Quester’s Result Set has changed). More event
types can be added as desired.

[0173] Another important entity in FIG. 8A is QoCon-
troller. QoController is the entity that implements the pro-
tocol of the present invention. In addition, it knows how to
buffer usage statistics and also handles the caching of result
sets. QoController includes two subclasses (QoClientCon-
troller and QoServerController), depicted in FIG. 8b and
FIG. 8¢, respectively. Buffering of usage statistics is an
oplimization that eliminates the need of exchanging usage
data between the layers of the system every time a result is
used. Instead, the QuestObjects Controller buffers that data
and flushes the buffer when the statisticsBufferFlushTime
has passed. Caching is an optimization as well. Caching is
done by the QoResultsCache entry, to which the QuestOb-
Jects Controller has a reference. The QoResultsCache bas a
list of cached entries (“resultsCacheEntries’). The entry of
the cache is modeled as QoResultsCacheEntry, an entity that
has a list of QuestObjects Result Sets for combinations of
query strings and qualifiers (as defined in QoQuery).

[0174] The last entity in FIG. 8A is QoQueryValidator.
QoQueryValidator is an abstract class that defines the
method ‘isValid’. This method has a query string as a
parameter and returns cither ‘true’ or ‘false’. QuestObjects
Services may declare and publish a QoQueryValidator. By
doing so, they allow the QuestObjects Server to verify the
validity of a query string without actually having to send it
to the QuestObjects Service, thus eliminating network traffic
for invalid query strings.

[0175] FIG. 8B displays the minimal entilies cvery
QuestObjects Client must have. Every client of the QuestO-
bjects System at least has a Client Controller QoClientCon-
troller. QoClientController is a subclass of QoController that
implements the client side of the protocol of the invention.
Applications using the QuestObjects System do so through
Client Questers, modeled as QoClientQuester. QoCli-
entQuester is the subclass of QoQuester that implements
client-specific Quester functionality. The figure contains the
entity ‘ActiveComponent’. It represents some entity that
uses the QuestObjects System through one or more Client
Questers.

[0176] FIG. 8C shows the server part of the embodiment
of the present invention, and includes the QoServerQontrol-
ler, one of the subclasses of QoController. QoServerCon-
troller implements the server-side part of the protocol of the
present invention. In addition, it maintains a list of sessions

MO000033

US 2003/0041147 Al

running on the server, and it has references to a Persistent
Quester Store, an optional Service Directory and a list of
optional Application Host Synchronizers. For security rea-
sons, one implementation of the QuestObjects System may
require that only certified clients can connect to the system.
A boolean ‘requiresCertification’ indicates this.

{0177] The QuestObjects System is session-based. This
means that clients that uvse the system are assigned 1o a
session, modeled by the QoSession entity. Every session has
a unique identifier, the ‘sessionid’. The QoSession entity
maintains a list of Server Questers that are active in the
session (stored in the ‘serverQuesters’ property). Further-
more, it has a reference to the Server Controller through
which a QuestObjects Client is using the session.

[0178] QoServerQuester is the server-side subclass of
QoQuester. 1t includes a reference to the session it is being
used in (the ‘session’ property). Furthermore, when the
QuestObjects Service that the Quester uses has a Query
Validator, QoServerQuester has (a reference to) a copy of
that Query Validator, so that query strings can be validated
before they are actually sent to the QuestObjects Service.
The QoPersistentQuesterStore is an entity that is able to
store a user’s session and to restore it at some other time,
even when the session would normally have expired or even
when the same user is connecting from a different chient
machine. To this end, QoServerQuester has two methods
‘store’ and ‘restore’. The first, ‘store’, returns a QoS-
toredQuester, which is a (persistent) placeholder of the
Server Quester that contains all relevant data of that Server
Quester. The second, ‘restore’, needs a QoStoredQuester as
an argument. The two are each other’s inverse, which means
calling ‘store” on a QoServerQuester and then calling
‘restore’ on the result creates a new QoServerQuester that is
an exact copy of the original QoServerQuester.

[0179] QoServiceDirectory acts as a Yellow Pages or
directory of QuestObjects Services. For each QuestObjects
Service it stores the name and address, as well as the address
of the QuestObjects Server through which the Service canbe
accessed. Furthermore, Services’ profiles are additionally
stored to allow clients to find all QuestObjects Services
satisfying desired criteria.

(0180] Finally, QoAppHostSynchronizer is the AppHost
Synchronizer. QoAppHostSynchronizer has its address as a
property (‘appHostAddress’).

{0181] FIG. 8D depicts the service part of the cmbodi-
ment of the present invention. Content is disclosed through
Content Channels (the QoContentChannel entity). Content
Channels use Content Access Modules (QoContentAccess-
Module) to obtain their data in a standardized way, so only
the Content Access Module knows how to communicate
with the underlying data source. Content Channels are
organized in Syndicators (the QoSyndicator entily), and
each syndicator includes a list of Content Channels. Each
Quester in the QuestObjects System uses a specific Content
Channel of a specific Syndicator. This is called a QuestO-
bjects Service, namely one of the Content Channels of a
Syndicator. The property ‘subscriptionRequired’ indicates
whether the user needs to be a registered user to be allowed
to use the Service. If it is false, only users listed in ‘users’
may use the Service. Users can be subscribed 1o QuestOb-
. jects Services, which is modeled by the QoSubscription
entity. Statistics are kept per Content Channel using the

Feb. 27, 2003

QoUsageStatisticsStore entity. Content Engines optionally
have a Query Validator that the QuestObjects Server may
use fo validate Query Strings before sending them off to the
QuestObjects Service. In addition, Content Channels have a
profile that consists of a Content Channel’s description, a list
of types (QoType) of QuestObjects Strings the Content
Channel can provide, an optional list of DTDs of that
metadata of QuestObjects Strings from the Changel con-
forms to, and an optional list of Query Types the Content
Channel accepts.

[0182] QuestObjects Servers communicate with QuestO-
bjects Services through the QoServiceSession. The QoSer-
viceSession has a static reference to the QuestObjects Ser-
vice it belongs to, as well as a static array of IP addresses of
QuestObjects Servers that are allowed to connect 10 the
QuestObjects Service. In some versions of the QoService-
Session the array of IP addresses can be replaced by a list of
addresses and netmasks, or by IP address ranges. Every
instance of QoServiceSession has the 1P address of the
server that is using the session (‘serverAddress’), a connec-
lion Timeout indicating the maximum period of idle time
before the Service Session is automatically ended, and a
serviceSessionld that can be used to refer to the Service
Session.

[0183] As described above, a QuestObjects Service is one
of the Content Channels of a Syndicator, so QoService has
a reference to both (‘syndicator” and ‘contentChannel’). The
property ‘listable’ indicates whether the Service may be
listed in a Service Directory (server::QoServiceDirectory).
If not, the Service can only be used if the application writer
(ie. the programmer using the QuestObjects to develop an
application) knows that it exists and where il is available.
The property ‘name’ is the Service’s name, used in the
Service Directory amongst others. This name must use the
same naming scheme as the names of custom types. The
boolean ‘subscriptionRequired’ indicates whether users
must be subscribed (modeled by QoSubscription) to the
Service in order to be allowed to use it. If the Content Engine
of this Service’s Content Channel requires login, ‘conten-
tEngincLoginName’ and ‘contentEngineLoginPassword’ are
the name and password with which is logged in. Finally,
‘pricinginfo’ contains information about the costs involved
in using the Service. It is formatted as XML, conforming to
a well-defined structure (i.c. DTD or Schema).

{0184] A Content Channel bas a name (the ‘name’ prop-
erty) and a profile (QoContentChannelProfile). The profile
provides information about the Content Channel, namely
about the Query Types it accepts (“queryTypes’), the types
of the Strings it can provide (‘Lypes’), and the DTDs that
QuestObjects Strings’ metadata conforms to. In addition, it
has a textual ‘description’ of the content the Content Chan-
nel discloses.

{0185] Content Channels also have properties that define
the criteria Query Strings have 1o satisfy. The property
‘queryStringMinlength’ defined the minimum length a
valid query has. Alternatively or additionally, *queryStrin-
gRegularExpressions’ may contain a list of regular expres-
sion describing valid Query Strings (meaning that Query
Strings have to maich at least one of the regular expres-
sions). The property ‘queryStringFilters’ may hold a list of
regular expressions and replacement strings that can trans-
form Query Strings in a well-defined manner (for example

MOO000034

US 2003/0041147 A1l

the way the standard Unix utility ‘sed’ does it). Instead of
using these three properties, Content Channels may define a
QoQueryValidator (described above in FIG. 8A). If there is
a Query Validator, ‘queryStringMinl ength’, ‘queryString-
RegularExpressions’, and ‘queryStringFilters’ are ignored.

[0186] As described above, Syndicators may have a list of
users. Users (QoUser) have a name and a password, as well
as a list of subscriptions (QoSubscription). QoSubscription
models a user’s subscription to a Service (the ‘service’
property). The properties ‘startDate’ and ‘expirationDate’
define the time frame during which the subscription is valid.
Outside that time frame the user will be denied access
through the subscription. The maximum number of queries
the user may run in the Service is stored in the ‘queryLimit’
attribute. The ‘queryLimitReset’ defines when the query
counter is reset. For example, if query limit is 10 and
queryLimitReset is 7 days, the user may run 10 queries per
week. (If query limit equals zero the number of queries is
unlimited and queryLimitReset is ignored.) The property
‘resultLimit’ stores the maximum number of results the user
may receive from the subscription. Similar to ‘queryLimi-
Reset’, ‘resultLimitReset’ defines how often the result
counter is reset. If ‘resultLimit’ equals zero the number of
results is unlimited and ‘resultLimitReset’ is ignored. The
property ‘pushAllowed’ indicates whether the user may use
the Service in pushing mode. If so, “pushlntervallimit’
indicates the minimum amount of time that has to pass
between two pushes. A ‘historyAllowed’ variable indicates
whether a history is kept of the use of the subscription; if so,
‘historyLimit’ indicates the maximum size of the history. If
the maximum size is exceeded, the oldest history data is
deleted so that the size of the history is below the maximum
size again. If ‘historyLimit’ equals zero, the size of the
history is unlimited. Finally, a ‘usageAnonymous’ variable
indicates that the QoUsagcRecords that are generated for
this subscription must not contain user information (this is
pecessary because of privacy issues).

[0287] If *keepServiceSltalistics’ is true, then the QoUsag-
eStatisticsStore can store three kinds of statistics:

[0188] statistics about Strings that have been dis-
played on the client; the ‘keepClientDisplayedSta-
tistics’ indicates whether this kind of statistics are
kept.

[0189] statistics about Strings that have actually been
selected on the client; the ‘keepClientSelectedStatis-
tics’ indicates whether this kind of statistics are kept.

[0190] statistics about Strings that have a used on the
client; the ‘keepClientUsedStatistics’ indicates
whether this kind of statistics are kept.

[0191] The Client Quester determines the exact meaning
of the three kinds of statistics. In the case of web applica-
tions, a string is generally considered displayed when the
Client Quester accesses it in its QuestObjects Result Set. It
is considered selected when a new Query is executed with
the String as Query String. It is considered used when the
form on which the Client Quester is active is submitted with
that String. The actual data is stored as a list of
QoUsageRecords in the propery ‘records’.

[0192] A QoUsageRecord holds usage information about a
QuestObjects String or a number of QuestObjects Strings. If,
in one Service Session, a Quester gets the same Result Set

Feb. 27, 2003

more than once (consecutively), the usage data of each of the
Strings in the Result Set is grouped in one QoUsageRecord.
However, if ‘stringKey’, ‘string Value’, ‘rowlnResultSet’, or
‘totalRowsinResultSet’ changes, a new QoUsageRecord
must be used from that point on. The properties of
QoUsageRecord mean the following:

[0193] stringKey: if available, this is the unique key
of the QuestObjects String as provided by the Con-
tent AccessModule.

(0194] stringvalue: the value of the QuestObjects
String.

[0195) rowInResultSet: the row of the QuestObjects
String in its QuestObjects Result Set.

[0196] totalRowsInResultSet: the number of rows the
QuestObjects String’s Result Set had.

[0197] dateRetumPFirst: the timestamp of the first
time the QuestObjects String was refurned by the
Content Channel.

[0198] dateReturnLast: if the QoUsageRecord repre-
sents a group of usage eveants, this is the timestamp
of the last event.

[0199] clientDisplayed: indicales whether the
QuestObjects Client that received the QuestObjects
String considers it to be displayed.

[0200] clientSelected: indicates whether the QuestO-
bjects Client that received the QuestObjects String
considers it to be sclected.

[0201] clientUsed: indicates whether the QuestOb-
jects Client that received the QuestObjects String
considers it to be used.

[0202] applicationName: the name of the application
to which the Quester that received the QuestObjects
String belongs.

[0203] appliationFunction: the function (if available)
of the Quester that recejved the QuestObjects String.

[0204] activeComponentld: the identifier of the
Active Component that received the QuestObjects
String.

[0205] user: the identifier of the user that saw/se-
lected/used the String. If the user’s subscription has
‘false’ as value of ‘usageAnomymous’, then this
property is empty.

[0206] Queries are executed by QoQueryExccutors. A
Query Executor has a reference to the Service Session in
which the Query is executed, it has a reference to the Query
itself, and it also has a reference to the Server Quester that
has the Query executed. This reference may be a remote
object when Corba is being used, for example. If some
proprictary protocol is used, it may just be the unique
identifier of the Server Quester.

[0207] FIG. 9 shows a method for using the present
invention in systems that have limited technical capabilities
on the Client side, such as, for example, web browsers with
embedded Java applets. If developers of client systems have
not integrated Client components of the present invention
into their client software, then Client components peeded for
the present invention must be present as Plug-ins, DLL’s, or

MOOO00035

US 2003/0041147 Al

an equivalent device, or they must be downloaded o the
client computer as applets. These applets can be written in
the Java language, when they are needed. For security
reasons, such Client systems including web browsers usu-
ally do not allow *foreign’ software (i.e. software that is not
an integral part of the web browser) to influence or change
data entered by the user before it is sent to the application
server (in this case the web server). Without an additional
infrastructure on the server side, the present invention could
not easily be used to enter data by users of systems with such
limited technical capabilities on the client, because data
entered and selected using the present invention would not
be communicated 1o the existing application/web server.
However, the modified invention and method described in
FIG. 9, referred to as an Application Proxy, offers a solution.

[0208] Although the system depicted in FIG. 9 can be
used to support clients in practically any server-based appli-
cation server, and particularly in the case of a web server
hosting an application used by end users to enter data that is
partially retrieved using the present invention, the system is
Dot limited to the web. The system provides an ideal solution
for current web-based applications that consist of web
browsers 903 on the client side and web host computers 901
with web server software 917 on the server side. To allow
the web server 917 o access data selected using the present
invention, this system provides a link between the web
server and the QuestObjects Server 902. In this case,
QuestObjects Server acts as a data-entry proxy between the
existing client system (web browser) and the existing web
server. Data entered by the client is submitted to the QuestO-
bjects Adaptor instcad of to the web server. The QuestOb-
jects Adaptor then fills in the values of the Questers and
passes the data (o the web server. An Application Proxy is
not required if the QuestObjects Client components can
directly insert data into the client eniry form on the web
browser, as is the case on certain platforms that allow
integration between Java applets or other components and
JavaScript in the web browser.

[0209] In FIG. 9, the web server runs on a host computer
901 typically associated with a fixed IP address or an
Internet host name. The web scrver is accessed by any
number of clients using web browsers 903. To allow users to
enter data and send data to the server, web pages make use
of HTML forms 904. To use the present invention, user
interface elements such as entry fields in these HTML forms
are associated with Questers 905 in the form of browser
Plug-ins or Java Applets. Through a QuestObjects Control-
ler 906 those Questers allow the user to access one or more
QuestObjects Services hosted by a QuestObjects Server 902
using the protocol of the present invention 907. The Server
Controller 908 forwards user actions generated in the Client
Questers 905 to their corresponding Server Questers 909
that thus are always aware of data sclected in the Client.
When a Server Quester is first activated, it checks whether
it is being used by a client system that requires the use of an
Application Proxy. If the answer is yes, then the Quester
creates a corresponding AppHost Synchronizer 911 that
contacts the QuestObjects Adaptor 914 on the host computer
901 using a standardized protocol 915. The QuestObjects
Adaptor then knows which QuestObjects Server to contact
to retrieve QuestObjects data 915 after the user submits form
data 912 (o the application hos! using the existing applica-
tion protocol 913, such as HTTP POST or HTTP GET. The
QuestObjects Adaptor then replaces the appropriate form

Feb. 27, 2003

field data with the strings selected in the Server Questers 909
before forwarding this form data, now including data
selected using the present invention, to the web server 917.

DESIGN IMPLEMENTATION

[0210] The preceding detailed description illustrates soft-
ware objects and methods of a system implementing the
present invention. By providing a simple and standardized
interface between Client components and apy oumber of
Content Engines that accept string-based gueries, the present
invention gives content publishers, web publishers and
software developers an attractive way to offer unprecedented
interactive, speedy, up-to-date and controlled access to con-
tent without the need to write an access mechanism for each
content source.

[0211] In addition to acting as a standardized gateway to
any content engine, the present invention can intelligently
cache query results, distribute Services over a network of
Servers, validate user and other client input, authorize user
access and authenticate client software components as
necded. Thesc and other optional services are provided by
the present invention without requiring additional work on
the part of software developers or content publishers, Pub-
lishers can also keep track of usage statistics, on a per-user
basis as required allowing flexible billing of content access.
Content Access Modules allow software developers and
vendors of Content Engines such as database vendors and
search engine vendors to create simplified ways for devel-
opers and implementers of such content engines to disclose
information through the present invention.

[0212] End users of the present invention cxperience an
uaprecedented level of user-friendliness aceessing informa-
tion that is guaranteed to be up-to-date while being effi-
ciently cached for speedy access as the number of simulta-
Deous USers grows.

[0213] The present invention can be implemented on any
client and server system using any combination of operating
systems and programming languages that support asynchro-
nous petwork connections and preferably but not necessarity
preemptive multitasking and multithreading. The interface
of the present invention as it appears 1o the outside world
(i-e. programmers and developers who provide access to end
users and programmers who provide Content Access Mod-
ules to Conteot Engines used by content publishers) is
independent of both the operating sysiems and the program-
ming languages used. Adapters can be built allowing the
tiers of the system to cooperate even if they use a different
operating sysiem or a different programming language. The
protocol of the present invention can be implemented on top
of networking standards such as TCP/IP. It can also take
advantage of inter-object communication standards such as
CORBA and DCOM. The object model of the present
invention cap be mapped to most other programming lan-
guages, including Java, C++, Objective C and Pascal.

[0214] Third-party vendors of software development and
database management fools can create components that
encapsulate the present invention so that users of those tools
can access its functionality without any knowledge of the
underlying protocols and server-side solutions. For example,
2 4GL. tool vendor can add an ‘auto-complete field’ to the
toolbox of the development environment allowing develop-
ers to simply drop a Questlet into their application. In order

MOO000036

US 2003/0041147 Al

to function correctly, the auto-complete field would only
need a reference to the QuestObjects Server and one or more
QuestObijects Services, but it would not require any addi-
tional programming.

[0215] Examples of Applications in which the invention
may be used include: Access system for database fields (for
lookup and auto-complete services); Enterprise thesauri
system; Enterprise search and retrieval systems; Enterprise
reference works; Enterprise address books; Control systems
for sending sensor readings to a server that responds with
appropriate instructions or actions to be taken; Client access
to dictionary, thesaurus, encyclopedia and reference works;
Access to commercial products database; Literary quotes
Library; Real-time stock quote provision; Access 1o real-time
news service; Access to Internet advertisements; Access to
complex functions (bank check, credit card validation, etc);
Access to language translation engines; Access to classifi-
cation schemes (eg, Library of Congress Subject Headings);
Access to lookup lists such as cities or countries in an order
form; Personal address books; and, Personal anto-complete
histories.

[0216] The foregoing description of preferred embodi-
ments of the present invention has been provided for the
purposes of illustration and description. It is not intended to
be exhaustive or to limit the invention to the precise forms
disclosed. Obviously, many modifications and variations
will be apparent to the practitioner skilled in the art. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical
application, thereby enabling others skilled in the art to
understand the invention for various embodiments and with
various modifications that are suited 1o the particular use
contemplated. It is intended that the scope of the invention
be defined by the following claims and their equivalence.

‘What is claimed is:

1. A system for session-based retrieval at a client system
of content from a server system, said server system serving
a string-based content, said string-based content including a
plurality of strings, comprising:

a communication protocol that provides a session-based
connection between a client system and a server sys-
tem, and allows said client system to query said server
system for content;

a client object, in communication with a client software at
said client system, said client object capable of trams-
mitling 1o a server object a plurality of queries to
retricve content from said content engine, wherein each
of said plurality of queries comprises a single string
character, and wherein each subsequent of said plural-
ity of queries extends the query; and,

a server object, in communication with a server software
at said server system, said server object furthermore in
communication with said client object via said com-
munication protocol, said server object records each of
said plurality of queries, and in response to each of said
queries returns increasingly appropriate content infor-
mation to the client object as the query is being
extended.

2. The system of claim 1 wherein said client sofiware

operales on or at a first computer and said server software
operates on or at a second computer, and wherein both of

Feb. 27, 2003

said first and said second computers are connected via a
communication network protocol.

3. The system of claim 1 wherein said server software and
said client software runs on the same computer.

4. The system of claim 1 wherein said server software
runs on a plurality of separate computers, and wherein said
client queries are distributed over said separate servers,

5. The system of claim 1 wherein said server software
stores previously used strings and returns said stored strings
to the client in response to new client queries, without
accessing said content engine.

6. The system of claim 1 wherein said client software is
embedded into a software application that provides a visual
interface to an operator.

7. The system of claim 1 wherein said client software is
used as a content engine for another software system.

8. The system of claim 1 wherein said client software
accumulates a plurality of said single character querjes as
they are entered into the client, before sending them together
to said server software as a string.

9. The system of claim 1 wherein said client software
stores previously received responses and uses these as the
response 10 a new query by the user, without re-accessing the
server.

10. The system of claim 1 wherein said client software
stores a pre-defined string and automatically transmits it to
the server as the client software is first accessed, and
wherein additional eatry of query characters is not required
before server responses are sent to the client.

11. The system of claim 1 wherein said server software
stores the state of query and response of the client software,
and restores the state of the client software after any inter-
ruption in said communication protocol.

12. The system of claim 1 where said client software adds
a qualifier to the query that is passed to the content engine
by the server, whereby the content engine can use said
qualifier to execute the query and return appropriate results
based on both the query string and its qualifier.

13. The system of claim 1 where said client software
identifies a user of the system 1o the server software whereby
the server can sfore statistics and provides a history of
queries and corresponding responses appropriate to said
user.

14. The system of claim 1 where said server software is
distributed within a server tier and a syndication tier, and
wherein said client software communicates to the server tier
on a single computer, and wherein each query is forwarded
by the server tier to an appropriate syndicate of content
channels connected to the server tier on a different computer.

15. The system of claim 1 where said server software
applies a content engine dependent pattern and filter to
characters received from the client before queries are trans-
mitted to the content engine.

16. The system of claim 15 wherein the number of querics
transmitted to the content engine is limited.

17. The system of claim 1 where server responses com-
prise lists of strings, wherein each string is accompanied by
corresponding metadata, whereby the metadata contains
logical links to other data sources or Uniform Resource
Identifiers.

18. The system of claim 16 where each string in the server
response list is a link to another data source or a Uniform
Resource Identifier.

MOO000037

US 2003/0041147 Al

19. A system for retdeval of content in a distributed
client-server system, comprising:

a content engine, for providing string-based content;

a session protocol, for providing a session-based connec-
tion between a client system and a server system;

a client object, at said client systers, for transmitting to
said server syslem a successive plurality of queries to
retrieve content from said content engine, wherein a
first of said plurality of queries initially comprises a
single character, and wherein each successive query
thereafter extends the query; and,

a server object, at said server system, in communication
with said client object via said session protocol, for
recording each of said plurality of single character
queries, and in response to each successive query
returns increasingly content to the client object appro-
priate to the extended query.

20. A system for session-based retrieval of content from

a string-based content engine system, comprising:

a user interface, for inputting a plurality of queries to a
client object, for subsequent transmission of said plu-
rality of queries to a remote server object, wherein said
remote server object is in communication with said
content engine, wherein further each of said plurality of
queries comprises a single string characler;

a session protocol manager that maintains a session
between said client object and said server object;

a client object, in communication with said user interface,
for transmitting to sajd remote server object, during a
session, a subset of said plurality of queries, and for
receiving from said server object, content information
appropriate to said session and to said subset of queries;
and,

an input status mechanism for visually indicating the
status of said content information appropriate to said
session.

2]1. A system for session-based delivery of content from a

string-based content enginc to a client, comprising:

a server, for receiving a request for content from a client
object at said clien, said request comprising a plurality
of single string character querics;

a session protocol manager that maintains a session
between said client object and szid server object; and,

a server object in communication with said server, for
providing content information appropriate to said ses-
sion, said server object records each of said plurality of
single character queries, and in response to each of said
queries returns increasingly appropriate content infor-
mation to the client as the query is being extended.

22. A system for session-based retrieval at a client system

of a string-based content from a server system, comprising:

a content engine, for serving a string-based content, said
string-based content including a plurality of strings;

19

Feb. 27, 2003

a communication protocol that provides a session-based
connection between a client system and a server sys-
tem, and allows said client system to query said content
engine;

a client object, in communication with a client software
application, said client object capable of transmitting to
a server object a plurality of queries to retrieve content
from said content engine, wherein each of said plurality
of queries comprises a single string characler, and
wherein each subsequent of said plurality of querics
extends the query; and,

a server object in communication with said client object
via a communication protocol, said server object
records each of said plurality of single character que-
ries, and in response to each of said queries returns
increasingly appropriate contemt information to the
client object as the query is being exiended.

23. A system for session-based retrieval at a client system

of a string-based content from a server system, comprising:

a content engine, for serving a string-based content, said
string-based content including a plurality of strings;

a communication protocol that provides a session-based
connection between a client system and a server sys-
tem, and allows said client system to query said content
engine;

a client object, in asynchronous communication with a
client software application, said client object capable of
continuously transmitting to a server object a plurality
of queries to retrieve content from said content engine,
wherein each of said plurality of queries comprises a
single string character, and wherein each subsequent of
said plurality of queries extends the query; and,

a server object, in asynchronous communication with said
client object via said communication protocol, said
server object continuously records each of said plural-
ity of single character queries, and in response to each
of said queries returns increasingly appropriate content
information to the client object as the query is being
extended.

24. A user interface mechanism, for use with a client
application of a session-based content retrieval system, said
user interface mechanism indicating both the availability of
a session between said client application and a remote
content server, and the status of said session, said mecha-
nism comprising:

a user interface element, in communication with said
client application, said user interface clement allows a
user to input data for transmission to a remote content
server;

a session indicator, said session indicator displayed within
a first portion of said user interface element, for indi-
cating the presence of a session between said client
application and said content server; and,

a status indicator, said status indicator displayed within a
second portion of said user interface element, for
indicating the status of available content at said content
server for selection by said user at said user interface
element.

MO000038

US 2003/0041147 A1
20

25. The mechanism of claim 24, wherein said user inter-
face element is an application imput field.

26. The mechanism of claim 24, wherein said session
indicator displays a triangular display element to indicate the
presence of said session, and does not display said triangular
display element fo indicate the absence of said session.

Feb. 27, 2003

27. The mechanism of claim 24, wherein said status
indicator displays ome, or a plurality of, arrow display
elements to indicate the transfer of data from said client
application to said server during said session, and the
presence of available session-specific content at said server.

* ¥ ¥ ¥ X

MOO000039

N

MOO000040

a9 United States

!
Y R 0
US 20060075120A1

a2 Patent Application Publication (o) Pub. No.: US 2006/0075120 Al

Smit

(54) SYSTEM AND METHOD FOR UTILIZING
ASYNCHRONOUS CLIENT SERVER
COMMUNICATION OBJECTS

(76) Inventor: Mark H. Smit, Maarssen (NL)

Correspondence Address:

FLIESLER MEYER, LLP

FOUR EMBARCADERO CENTER

SUITE 400

SAN FRANCISCO, CA 94111 (US)
(21) Appl. No.: 11/257,912
(22) Filed: Oct. 25, 2005
Related U.S. Application Data

(63) Continuation-in-part of application No. 09/933,493,
filed on Aug. 20, 2001.

(60) Provisional application No. 60/622,907, filed on Oct.
28, 2004.

(43) Pub. Date: Apr. 6, 2006
Publication Classification
(51) Int. CL
GO6F 15/16 (2006.01)
(52) Us.CL 709/227
57 ABSTRACT

A session-based client-server asynchronous information
search and refrieval system for sending character-by-char-
acter or multi-character strings of data to an intelligent
server, that can be configured to immediately analyze the
lengthening string and return to the client increasingly
appropriate search information. Embodiments include inte-
gration within an Internet, web or other online environment,
including applications for use in interactive database search-
ing, data entry, online searching, online purchasing, music
purchasing, people-searching, and other applications. In
some implementations the system may be used to provide
dynamically focused suggestions, auto-completed text, or
other input-related assistance, to the user.

| 120
126
Client
; ; 138 | 130
Il —
i i Persistent
oeeenn...Sesslon lmﬁeLSt_oreJ M
Server
144
150
’1154 ’155 ’_1‘58 152
User Preference Usage
Manager Manager | |Statistics Stor
Syndicator
lTlso
162
----- ==
64 166 168}
)) _—=v)
Query Content Content-based | |
Manager Access Module Cache H
Content Channet -~
174
Service

MO000041

US 2006/0075120 A1

Patent Application Publication Apr. 6,2006 Sheet 1 of 30

BRYI0

ISIORET|
}
aseqejeq

—

$82.Nn0§ jusjuo)

SnOLEA

~ $80AI8S S}08lgOIsant

w,\,% U [auueYy)
A g, L m
dv@1 447 jautey m
&% | [BuUBy) :
(doo) (pHsenD) m

1aAJ8g s}os[qoiseny [000J0.d S)33[qQIsaNd) juelp) soslqoisany L

sjonpoud peHIsany

MOO000042

Patent Application Publication Apr. 6,2006 Sheet 2 of 30 US 2006/0075120 A1

QuestObjects
Client

|

LI 104

QuestOb jects
Server

108

NS

1

i

QuestObjects
Service

FIG. 2

102
NS

106

110

MO000043

US 2006/0075120 A1

Patent Application Publication Apr. 6, 2006 Sheet 3 of 30
120
e T V7 —
I s I o
124 P 126
Quester Controller
o Questlet !~
Client
L}dms '

i 130
[Ty 132 136 >
; 134 o ,g
i ' Controller
; Quester : 138 _140
; ' Persistent
L _Session: Quester Store Time Server

, Server
144
150
—
T VA 156 158 :
| K i T
: i~
; User Preference Usage !
g Manager Manager Statistics Store| !
e] Syndicator |
160
162
prommmmmmmsmmcmsemcoomee oo coe oo oo ==
PUTTTTTTTTTT T gy T, 66 168 1 ! -
:) —~ RN
' Query Content Content-based| i | :
' Manager Cache Pl
... Gontent Channelr-i
Service

MOO000044

Patent Application Publication Apr. 6,2006 Sheet 4 of 30 US 2006/0075120 A1

P \\
S /\4 back-end

A v
= N dat
(1 - v atastore
QuestField
2001 A N w
back-end
datast
2021 N SE atastore
210
uestiet ------eene-- !
? Y A , 212
: /—\\E__/
FIFTH AV N w 5
; i |— QuestFields
L S

MOO000045

Patent Application Publication Apr. 6,2006 Sheet 5 of 30 US 2006/0075120 Al

220 222

Client fJ Server rJ
A Nv] //A\\‘ RN

;

back-end

it | [N | et | | N (850
Con C 26

230 240 250 260
Client Ter_— Server Ter ~ pey Service Tier~ Content Tt~
A v V’A\) el IR T dtata"
.............. B [| store
Results] | W | R RESH 7SN

I R Q::'__ﬂ‘: ’E
FIG. 8

MOO000046

Patent Application Publication Apr. 6,2006 Sheet 6 of 30 US 2006/0075120 Al

302 306
304 326 233 '
AppWeb |, _ y App/Host
Server 120 QO Adapter 398/ | Synchronizer |
4 lication/
TAPP W:b 36— — 318
L
Host Controller
Quester
329 QuestObjects Server
300
M 308
Application/Web Form
330
Submit Button
10
3 312
[
Quester Controller 314
Client App/Browser
FIG. 9

MOO000047

Patent Application Publication Apr. 6,2006 Sheet 7 of 30

350

—~

US 2006/0075120 A1

)

The Music Store

Music DVD Video ViewCal WishLlis! Account Help

|

Music
@@ Search Music f 352
Select Category: (A9 Cagoris [£)—"
Search For: | ~ 1
Casa
Copyright ® 2003 MasierObjects ®
(Strictly Confidential)
Category: L 171
Artist: [Beatles 17 360 -
Album: [Abbey Road 47

FIG. 1

MO000048

Patent Application Publication Apr. 6,2006 Sheet 8 of 30

US 2006/0075120 A1

<l-

->

<script type="text/javascript” language="javascript”

src="go-common.js” > /script>

<script type="text/javascript” language="javascript”

src="scripts/qo-questlet.js" ></script>

<script type=“text/javascript™ language="javascript”>

var config = {};

config.connectString ="/qo-server”;
config.contentChannel ="artist-name”;
config.postString =*/your-application”;
config.helpLink = “http://www.questobjects.com/";
config.helpTarget ="help”;

config.helpParameters =“top=30,left=30,width=760,height=560";
config.questFieldName ="ArtistField”;
config.questFieldFile =*qo-autocomplete-questfield.swf”;
config.questFieldWidth =250;

config.questHeldHeight =20;

config.popUpFile =*qo-autocomplete-popup.swf”;
config.popUpWidth = =350;

config.popUpHeight =(14*17)+4;

config.popUpToLeft =false;

config.bgColor =“#FFFFFF;

golnsertPopUpQuestField (config);

</script>

™
<370

FIG. 12

MO000049

Patent Application Publication Apr. 6,2006 Sheet 9 of 30 US 2006/0075120 Al

380
- .
The Music Store
Music OQVD Video ViewCart Wish List Account Help
@ 7 Music
& - -
Aist {Beatles ANd]
Album: [Abbey Road M|
1
T

FIG. 13

MOO000050

Patent Application Publication Apr. 6,2006 Sheet 10 of 30 US 2006/0075120 A1

IEQ""D"'“ - TradHional Music Store - MicrosoRt iniemal Explorer L=l

The Musi¢ Store

Weicome to the Music Store (traditional
version)...

wingdow

Search Muslc... 390
"""" N your sear 13 al e
button,

SOisN Note: This simple demo will only retum results for

392

Category: (Al Categories] v

i O SearchFor:L_%:::l
394

Copyright ® 2001-2004 MaslerQbjects. Afl rights reserved U.S. and inlemational patents pending.

Use ! il she s rubjact 10 e Iimas atlne.
you Ravy recched i1 5300 wlhou recshing @piich periasion,
Yoo may ta I vickakon of appltatie bwa,

FIG. 14

MO000051

Patent Application Publication Apr. 6,2006 Sheet 11 of 30 US 2006/0075120 Al

|§0uuwbhns-1ndhhmal Bisic Stare « MiCrssof bntama) Explorer @

The Music Store
Welcome to the Music Store (traditional dlose window
version)...
Search Musle...
Vo Eea v

o

Copyright ® 2001-2004 MaslerQbjecis. Af rights reserved L.5|Soundtrack patbnis pending.

Usa of thig sitmis subfac) o the Janus ot s, 396
¥ you have reached Iis pege withou! recelving explich pasmission,
Yo reay be in violation of appiicabie hws.

FIG. 15

MO000052

Patent Application Publication Apr. 6,2006 Sheet 12 of 30 US 2006/0075120 A1

The Muslc Store

Welcome to the Music Store - Enabled Music close window
Slore!

§ Plaase enler arfis! andior CD.

21 Note: These QuestFiaids access a copy of the 402
% "FreeDB" database, containing over a milion CDs
B and more than a hundred thousand arfists. Some
duplicates and mistakes exist in the originel data.

8 Artist: [T
cD: | —.I+1L—406
N

404

Copyright ® 2001-2004 MasterOblects. Al rights reserved U.S. and inlemational patents pending.

Use of this xfta s aubjact 1o $he Jerma of Usa.
11 you have enached thix page withoul fecaiving sapliit permizsion,
you mamy be I vickaion of spplicalibs ews.

=

FIG. 16

400
S

MOO000053

Patent Application Publication Apr. 6,2006 Sheet 13 of 30 US 2006/0075120 A1

3 - v — P—
IEnmﬁ-umsmEﬂm.w-ummmm @1

The Music Store

Welcome to the Music Store - Enabled Music close window
Slore!

Surch Muslc...

d Ploaso enter artist andior CD.

£} Nola: These QuestFields access 2 copy of the 402

8 cuplicates and mistokes exlnmmzoﬁghéldau/" 0
B Artist: [Roky oI 0

4 CD: \
//

410 412

i

4]

Copyright ® 2001-2004 MasiarObiecis. Al rights reserved U.S. and inlemalional palents pending.

Uss o1 B ake Ja swblect o (b Taemalilae.
you raay be In vidafion of wpplkatls lewa,

Hyou

FIG. 17

MOO000054

Patent Application Publication Apr. 6,2006 Sheet 14 of 30 US 2006/0075120 Al

[me-m:&wumnmg-uw Intseral Expiorer - @l

The Music Store

Welcome fo the Music Store - Enabled Music close window
Store!

Search Music...

Please enter arist andior CD.

d Note: These QuestFields access a copy of the

“FreeDB” dalabase, conlaining over a mllion CDs
and more than a hundred thousand artists. Soma
i duplicates and mistakes exist In the original data, . 400

v
o

. {)
CD' Ro (Caterine 341 - Sun Ro)
RO{CORO)
RO(CO.RO)
4ig)Rimr 416

Ro {0J Nike Orvz Presants Inaya Dy 8 Chins Ro)
ro {Lony Escudiro)
ro {Liny Escudero) g

Copyrighl ® 2001-2004 MasierObjects. Al rights reserved U.S. and inlemetionsl patents pending.

Use of tis alla b subject 1o the Terma of Use.
1 yob huvs reached Bhis page withou! tecaiving sxphi peiasion,
you Dy b in viclefion of aoficable ws.

FIG. 18

MOO000055

Patent Application Publication Apr. 6,2006 Sheet 15 of 30 US 2006/0075120 A1

"E QnulObEch + Mualc Store Euulom nnhbg = MicrosoRt Intsmal Explorer @]

The Music Store

Welcome to the Music Store - Enabled Music

tose wi
Store! "

Search Music...

§ Peaso enter arkist andior CO.

Nole: These QuesiFisids access a copy of the

“FreeDB" database, containing aver 8 million COs
and move than 3 hundied thousand artists. Some
W dupticatas and mistale axist bn the origing! data.

Ariist: i R ,.\.4/00

ch: von cat M
Roxy Cast {Tim Qurry & The Crigina! Roxy Cast)
Cl
£ 418 [ry bt 420

Roxy Music {Bryan Farty - Roxy Music)
Raoxy Myslc {Brysn Ferry and Roxy Music)
Rowy Mysic For Your Pleasure

Capyright © 2001-2004 MaslerObizcls. All rights reserved U.S. and internationa! patents pending.

Vo of Nl alle s wbject = the Tuomof Mea.
youwy bé b vicladon pppicabie bret.

FIG. 19

MOO000056

Patent Application Publication Apr. 6,2006 Sheet 16 of 30 US 2006/0075120 Al

[G uestoblects - Wuic Stors (GuectOblacts enabic) - Kicrusof ntamad Explorr =

The ﬁuslc Store

Waelcome to the Music Store - Enabled Music close window
Store!

Search Muslc..,

8 Ploase onter atist andlor CD.

Note: These QuestFields access a copy of the

“FreeDB" dalabase, containing over 8 milion COs
and more than & hundred thousend arists. Some
duplicates and mistakes exisl in the original data.

Ardist; [Roxy Music ARG _.\4/00
co: [}
7
422

K1

Copyright ® 2001-2004 MasterObjects. All fights reserved U.S. and intemaiional patents pending.

Use of L shials subject 1o the Tarma of lisa.
M yod Ninve reactied [hls pags WAL sanel ving explicl pemission,
you may be In viclaBon of eppicable bews.

FIG. 20

MOO000057

Patent Application Publication Apr. 6,2006 Sheet 17 of 30 US 2006/0075120 A1

[[@auserabjects -Wisic Store [GuectCbjeets snabiad)- Mrosok iacrnal Expiorr @

The Muslc Store

Welcome to the Music Store - Enabled Music close window
Store!

Please enler arfist endlor CO.

Note: Thess QuesiFields access a copy of the

FreeDB" datsbase, containing over @ milion CDs
and mom than 3 hundred thousand artiste. Some

duplicales and mistakes exist in ho original data.
-ft_ 400

Roxy Music (Bryan Ferry - Roxy Muslc)
Roxy Music {8ryan Ferry and Roxy Music)
Roxy Music For Your Pleasure

424

Copyrighl ® 2001-2004 MasierDbiecis. All rights reserved LS. and inlernational palanis pending.

Usa of this shva lu subject io the Teomas.cd Usa.
B you hawe reached N page without recaiving sxphdi peamlssion,
yourney be s violalon of woplicadle lews.

FIG. 21

MOO000058

Patent Application Publication Apr. 6,2006 Sheet 18 of 30 US 2006/0075120 Al

M =
g Wmﬁbg - Musk Stors IOHHIDDEB Cnlbllgz = Microsofs taternal EIEI . [=Iofx]

The Music Store

Welcome to the Music Store - Enabled Music close window
Store!

Search Music...

Please enter arisl andfor CD.

Note: These QuestFields accass a copy of the 426
“FreeDB" database, conlaining over 2 miion CDs
and mors than a hundred thousand arfiss. Some
duphicales and mistakes exist in the origina! dala. /‘ 400

Artist: [Roxy Music Q 4+]
CD: AT aQiv]

428

Copyright © 2001-2004 MasterOhjacts. All rights reserved U.S, and international patents pending.

Use o thix slie s subject & the Tamoa st Usa.
L . recaviag
you rawy be In victalion of applicable b,

fyu

FIG. 22

MOO000059

Patent Application Publication Apr. 6,2006 Sheet 19 of 30 US 2006/0075120 Al

= e — m—
IE Qun@ds - Musle Blors 101-% onahhq - Microsoft internal Eghnr

The Music Store

Welcome to the Music Store - Enabled Music close window
Store!

d Pleass enter artist and/or CD,

Note: These QuesiFields access a copy ol the
¥ *FreeDD" database, containing over & milion CDs.
and more than a hundred thousand arfists. Soma
54 dupiicates and mistakes exist in the original data. 400

4 Artist: [Roxy Music Ty

CD: K v

430

Copyright ® 2001-2004 MarsterObjests. Al ights ressrved U.S. and inlsmafonal palents pending.

Use ol this siie by sadiect 08w Jeoa at the.
You rmay be In viciian of acplicatie iwes.

FIG. 23

MO000060

Patent Application Publication Apr. 6,2006 Sheet 20 of 30 US 2006/0075120 A1

|g annl_!m + Paopls Finder Demo - Wicresoh inlsmal E:glnm mER
Welcome to the QuestObjects-Enabled People close window v
Finderl

Note: This demno acoessss a databasa containing the
names of the 500 riches! people in the world.

Flnd...
Opfion 1: Search by typing the first few letiers
of elther fist name or last name.
Name: [pga |
-
442 50 |
450 440
Option 2; Search by typing Inta the first name
and/or last name fields. Thess fiekls are 446
terdep and will aut y be
compleled |/
L
Last [T
3 | A7)
k\
448

FIG. 24

MOO000061

Patent Application Publication Apr. 6,2006 Sheet 21 of 30 US 2006/0075120 A1

g Ounmg-hogl Finder Dsmo - Microsoh Intemal gm
Welcome 1o the QuestObjects-Enabled People close window v

Findest

Nota: This demo accessas g database containing the
names of the 500 richest peopls in the world.

Opfion 1: Search by typing the first few lelers 442
of elthar fies! name or last nama.
Nama: [gate] =
k\
452 454 440

Oplion 2 Search by typing Into the first name
and/or [ast name fields. These Relds are
Inlerdependent and will mtomatcally be
completed.

FIG. 25

MOO000062

Patent Application Publication

1'2 OuulE-ca - P-nEc Finder Dormo - Microsoft interma) Explorer
Finder!

Apr. 6,2006 Sheet 22 of 30 US 2006/0075120 Al

Welcome lo the QuesiObjecis-Enabled People close window T
Note: This demo accasses & database containing the
names of the 500 richest people in the world.
Find.
- Option 1: Search by typing the first lew letters

of either firs\ name or last name.

Name: [Gatas Wilfaw 1 1] [Unid Stales] 7]

—
456 458 440

andlor st name helds. These fields are
terdependent snd il automatcally be

FIG. 26

MOO0000863

Patent Application Publication Apr. 6,2006 Sheet 23 of 30 US 2006/0075120 Al

|12 QuestObjects - Paople Finder Dexo - Kicrosoft intarnal Explors
Welcome to the QuestObjects-Enabled People close window v
Finder!

Note: This demo accesses 3 database contalning the
names of the 500 riches! people In 18 world.

Option 1: Search by typing the frst fow tetiers
. of elther first name of last name.

f Name: [T

 Lest [Gotel 0 3]

Fist [Willen W1~~~ © 3fv]

462

FIG. 27

MOO000064

Patent Application Publication Apr. 6,2006 Sheet 24 of 30 US 2006/0075120 A1

qu_mpm ~Tho Sky 1s The Limk Demo - I-Inm.cn Tl Explorer
- 484 486 L]
PSSt i Y I
T Tolaphons +1 234 S67 8910
Volcaball 12345678910 488

Primary E-iall whoatay@micmsoh com
Aboul s CTO

480

FIG. 28

MO000065

Patent Application Publication Apr. 6,2006 Sheet 25 of 30 US 2006/0075120 A1

Smith Boeyen +1 804 278-3079 =3 (]
Smith Caresani +1 206 817-7416 =3 8
Smith Elwood +1 510 247-9058
Smith Gorfine +1 213 659-5276 =2
Smith Heddell +1 415 919-6135 ,\igo
Smith Howley +1 303 7564232 =2
Smith Maoya +1 804 394-9224 =
Smith Nishith +1 510 587-1573 =3
'Smith Pissup +1 804 215-3212 =3
" | Smith Schulte +1 213 902-4906 =3
Smith Shirinlou +1 818 120-3026 =
Smith Ste +1 804 484-7529 =3
Smith Swazey +1 804 348-4465 = [v]
=|i| 50 results

FIG. 29

[] Enable QuestField
¥ Pop-Up List Automatically

Search Formats
Last Name,

First Name, 492
Last Name <comma> First Name, or _/
First Name <space> Last Name.

(Alileral match is performed if only one or two characters were entered)

Nicknames may not display in the list.
This LDAP content channel contains fake data.
QuestField Help

—
v

=|i| fwestObjects

FIG. 30

MOO000066

Patent Application Publication Apr. 6,2006 Sheet 26 of 30 TS 2006/0075120 A1

Sy BEtadapur B Edandr

@uestObjects

Enterprise QuestField (c) 2004 MasterObjects

QuestField |d: LimitedQuestField
QuestField Version; 1.0,0 rc 2 B
Flash Player Version: MAC 7,0,24.0

Content Channel: Persons limited to 100 LDAP results

Serverid: servert —

Server Version: 1.0.0rc 2 .

Server Path: /questobjects/server =1
(N
(oK)

FIG. 31

ISBN: | 0-06-251587-x Q

FIG. 32

MOO000067

Patent Application Publication Apr. 6,2006 Sheet 27 of 30 US 2006/0075120 A1

Management (Financial)

Management (Retail). I n
Manufacturing a
Marketing and Advertising ol Fork Boot ($8)
Detrg SVille; NG .| ®|Fork Pilot Pine ($3)
a | Fork Push Rod ($33)]
Detroit-Halifax, Nova Scotia E:L;P:;?s} Auto ($2) T
Detroit-Kitchener-Waterloo, On —
Detroit-New York, Stewart Airpo =
| Detroit-Northwest Arkansas Regi—
Detroit-Rochester, NY 1 504
FIG. 33

MO000068

US 2006/0075120 Al

Patent Application Publication Apr. 6,2006 Sheet 28 of 30

au%osse

a»

‘platisany) 1apui4a)doad ay) uiIM Bl

Em:_s 52 % 91 KBojouyoe) sjaafgoiseny 197 '(Had) plelfisand sncmm_no&

PI030L U} pay) youeas apejs [

AW ToTSER

“ 10 syJewspel} aze 050| molty D) ay) pue

‘sprelooisend ™ "pleldisany) Jepuns|doa ay) ‘Abojouyss) s1oelgoiseny uo ijing

40D _uo_umoso ‘pie1disenp ¥

L

-+ padA) 5] JeYM Jnoge ¥Jeqpas) SNOGUBJUB)SU} Al[BNYHA SIAIS3) 1aSN 8y}

‘uonnjos Jejjeq Jej e sapiaoid ‘platdisenp e pejied ‘pp

I} pasamod- 81904018800 ¥ T

* Q]iGOW SMOPUIM PUE 'SMOPUIM '1}080101) ‘8SUA0Y 18pUN pasn ‘Ag s1vefqoisany

10 syeweye) 8 060 Moy [BU) PUB "dOD 1BISIND

‘pielfiseng .muo_no.z_a

* -RAYN #3U [nyemod € 'sjaa[gIsentd) YHM (RISIFISND B ST 1BUM

J0 SyreweyR.) 88 0Boj MOLIY O aY) PUB "dOD aNsent)

‘pla|q1saND) _zouro.mn:a A
AI015 5500918 A

“piedisany sjy) ynoqy

spnpold yoreg A
sofied qam youees A

SY2esg JUSVY I

[[2 oS Pue sje3
pooy jed

(o

[palyisenb pue %o_%_sa Ay _o

Ippinsenb pue salqojsanb au] |

seyBED
L,

O

®

MOO00069

Patent Application Publication Apr. 6,2006 Sheet 29 of 30 US 2006/0075120 A1

Alaska - x
North Carolina =4 United States of America |~
United States of America)
USA

A/

508
_J
Recent terms v |?2]H]1 Thesa | Sounds | Prefs] [Z

| the QuestObjects tecnology il | 510

FIG. 36

MOO000G70

US 2006/0075120 A1

Apr. 6,2006 Sheet 30 of 30

Patent Application Publication

A3 M

LE "'Old

8|qew weiboid .oz feuondo SBA S3A SOA >u=%.wwmhow

salianb

Auy aldnni eldiiniy b b l snoeue) IS

b [eeuey | e | P _ s

8|qewwelBougy | s din } 4 b sinduy

VN [euondo jpuondo SOA SOA ON)sj| dndod

(leuondo) (leuondo) ata1dwosomn

N pIOM 1527 [leuondo DIOM 58 Indut |ind leuondo 1l ny

YN jeuopdo wojsng payuey pezijageyd|y 8UON Bunsiy

A sj|nsai

uy umouy umouy umouun umouy L 10 Joquiny

Kuy Auew-o0y-Aue | |Auew-o0y-Aue pejejaiun Auew-03-sup 8U0-0}-3UQ o) diysu o:.w_uwm
Piel}send pPle|disenD | pjelfisanD pi2idisand pl8idisenp plaiqisand

punoJfyaeg wio49ald |euolje}ay Yoreagoiny dnyooony dnyoooiny edfy plaidisand

S31143d0ONd a13141S3Nn0

MOO000071

US 2006/0075120 Al

SYSTEM AND METHOD FOR UTILIZING
ASYNCHRONOUS CLIENT SERVER
COMMUNICATION OBJECTS

CLAIM OF PRIORITY

[0001] This application is a continuation-in-part of U.S.
patent application Ser. No. 09/933,493, entitled “SYSTEM
AND METHOD FOR A SYNCHRONOUS CLIENT
SERVER SESSION COMMUNICATION™, filed Aug. 20,
2001; and also claims the benefit of U.S. Provisional Patent
Application Ser. No. 60/622,907, entitled “SYSTEM AND
METHOD FOR UTILIZING ASYNCHRONOQOUS CLIENT
SERVER COMMUNICATION OBJECTS”, filed Oct. 28,
2004; both of which applications are incorporated herein by
reference.

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

[0003] The invention relates generally to client-server
communication systems, and particularly to systems and
methods for utilizing asynchronous client server communi-
cation objects for interactive database searching, data entry,
online purchasing, and other applications.

BACKGROUND

[0004] The world has moved to embrace the Internet. In
fact, the Internet has become a world of its own: a world of
information, a world of marketing, a world in which virtu-
ally anything can be brought to anyone, anywhere. If the
Internet is a world in itself, then intranets are enterprises in
themselves. Knowledge and domain components—from
purchasing orders, insurance policies and tax returns to
shoes, chainsaws and paper clips, as well as customers,
employees, and infrastructure—everything is available
through Web applications, or soon will be. The Internet
offers an enonnous connectivity advantage: the ability to
maintain information and business rules in one place, acces-
sible by anyone we wish it to be accessible to.

[0005] Like most modern software applications, browser-
based applications typically use a client that runs in a web
browser or on a handheld wireless device, a server that
provides a centralized application that centrally manages
application data and the business logic, and a protocol that
governs the communications between the client and the
server. However, applications designed for the Internet are
far more primitive and far less powerful than LAN-based
client/server applications because web browsers must work
on as many platforms and systems as possible, and because
the protocols that made the Internet a worldwide success
were, by design, limited in features. As such, missing from
Web applications are manageable windows, multiple docu-
ment interfaces, drag-and-drop, in-line editing, automatic
completions, different views on the same data, updating
while typing or selecting, automatic spell checking, intelli-

Apr. 6, 2006

gent lookups, instant calculations, and many other powerful
interactive end user tools that are now standard features on
personal computers and workstations everywhere. Typically,
users have to press Submit, Search, Continue, Next, or a
similar button for their input to have any effect, often
resulting in a completely new page loading into their
browser. As Web applications attempt to handle increasingly
complex business data, users find themselves filling in huge
forms, then being notified about typos or incompleteness
only after pressing Submit.

[0006] To address the deficiencies and limitations of the
web browser, a new class of client technologies has
emerged. These technologies enable developers to create
“rich™ Internet applications (R1As). RIAs are friendly, data-
driven applications that run in web browsers and other
“thin” client environments, providing advanced Ul features
that significantly enhance the browser user’s experience.

[0007] RIAs can be developed using frameworks and
technologies based on several popular platforms, including
Macromedia Flash, Sun Java, Microsoft ASP. NET, DHTML
(Dynamic HTML), JavaScript, H-TML, Extensible Markup
Language (XML), cascading style sheets (CSS), the Docu-
ment Object Model (DOM), and the Microsoft XMLHT-
TPRequest object.

[0008] What, then, are users missing, from an interaction
perspective, in current Web pages? It is not the mouse, which
is an intrinsic part of any Web experience and is often the
only device available to interact with a Web page. It is also
not the WYSIWYG nature of modern GUI-based applica-
tons. HIML in itself is quite rich in formatting text, adding
pictures, movies and everything else that make web pages
appealing. HTML is designed primarily for the presentation
of such information. However, because it must display this
information using different browsers across a diverse range
of platforms and systems, HTML offers only a simple user
interface that is relatively primitive by modern server-based
application standards. Consequently, Web applications are
seriously handicapped when delivering interactive applica-
tions. Alternatives, such as replacing HTML pages by Java
applets or full-page Flash applications, can enhance inter-
action but they have other disadvantages, which is a reason
many companies tend to stick with HTML and JavaScript
when moving their applications to the Web.

[0009] What users are primarily missing from their Inter-
net or online environment is feedback. Web applications
cannot provide users with feedback, the essential element of
intelligent interaction that users have come to expect from
their persopal computers and workstations. Web pages are
relatively static. They cannot be automatically responsive to
user input. Instead, users must push a Submit button and
wait for the page to redraw before getting any useful
feedback on the data they typed into a form, This is totally
contrary to the user experience provided by today’s stand-
alone or client/server applications (e.g. Microsoft Word)
where instantaneous feedback is a common and expected
feature (e.g, highlighting of spelling mistakes). The ability to
provide immediate feedback on user actions would be
advantageous in tuning Web applications into interactive
applications.

SUMMARY

[0010] As described herein, the QuestObjects system and
method is a technology that adds interaction to Web appli-

MOO000072

US 2006/0075120 Al

cations. Working hand-in-hand with HTML, the technology
allows Web servers to act on string input on a per character
basis, thus enabling intelligent auto completion and complex
lookups using server side data. In short, the system enables
interactive data-driven bebavior based on incremental string
input. For Web applications, this offers: Improved data entry
speed and accuracy; Dramatically faster access to relevant
data; Improved data security; and Improved user friendli-
ness. In some implementations the system may also be used
to provide dynamically focused suggestions to the user.

[0011] By enhancing rather than replacing HTML, the
system enables server interaction and improves interface
usability and responsiveness without changing the nature or
look-and-feel of Web applications. This architecture allows
services to easily and transparently blend in with current
Web applications. Moreover, clients work with the vast
majority of Internet browsers now in use—with no addi-
tional software for the end user to install. Additionally, as a
standards-based Web service, the system functions seam-
lessly with moderm Java-based, .Net, and other architectures,
and imposes no restrictions on networks or firewalls.

BRIEF DESCRIPTION OF THE FIGURES

[0012] FIG. 1 shows an illustration of an example of a
QuestObjects system and architecture in accordance with an
embodiment of the invention.

[0013] FIG. 2 shows an illustration of a system in accor-
dance with an embodiment of the invention.

[0014) FIG. 3 shows an illustration of a system in accor-
dance with an embodiment of the invention.

[0015] FIG. 4 shows an illustration of an asynchronous
session-based search system including a front-end client
search field and a back-end server datastore.

[0016] FIG. 5 shows an illustration of an asynchronous
session-based search system including multiple front-end
client search fields, multiple channeis, and a back-end server
datastore.

[0017] FIG. 6 shows an illustration of an asynchronous
session-based search system including multiple front-end
client search fields.

[0018] FIG. 7 shows an illustration of an asynchronous
session-based search system including a front-end client
search fields, a server, result storage, and a back-end server
datastore.

[0019] FIG. 8 shows an illustration of a multi-tier asyn-
chronous session-based search system including client tier,
server tier, service tier, and content tier.

[0020] FIG. 9 shows an illustration of an asynchronous
session-based search system for use with web forms or other
web interfaces.

[0021] FIG. 10 shows an illustration of a web interface in
accordance with the prior art.

[0022] FIG. 11 shows an illustration of a web-based
search field in accordance with an embodiment of the
invention.

[0023] FIG. 12 shows a listing of a html and JavaScript
code in accordance with an embodiment of the invention.

Apr. 6, 2006

[0024] FIG. 13 shows an illustration of a web-based
search field as it is used to receive data from a server in
accordance with an embodiment of the invention.

[0025] FIG. 14 shows a screenshot of a music search input
screen in accordance with the prior art.

[0026] FIG. 15 shows a screenshot of a music search input
screen in accordance with the prior art.

[0027] FIG. 16 shows a screenshot of a music record
search input screen in accordance with an embodiment of
the invention.

[0028] FIG. 17 shows a screenshot of 2 music record
search input screen in accordance with an embodiment of
the invention.

[0029] FIG. 18 shows a screenshot of a music record
search input screen in accordance with an embodiment of
the invention.

[0030] FIG. 19 shows a screenshot of a music record
search input screen in accordance with an embodiment of
the invention.

[0031] FIG. 20 shows a screenshot of a music record
search input screen in accordance with an embodiment of
the invention.

[0032] FIG. 21 shows a screenshot of a music record
search input screen in accordance with an embodiment of
the invention.

[0033] FIG. 22 shows a screenshot of a music record
search input screen in accordance with an embodiment of
the invention.

[0034] FIG. 23 shows a screenshot of a music record
search input screen in accordance with an embodiment of
the invention.

[0035] FIG. 24 shows a screenshot of a person search
input screen in accordance with an embodiment of the
invention.

[0036] FIG. 25 shows a screenshot of a person search

input screen in accordance with an embodiment of the
invention.

[0037] FIG. 26 shows a screenshot of a person search
input screen in accordance with an embodiment of the
invention.

[0038] FIG. 27 shows a screenshot of a person search

input screen in accordance with an embodiment of the
invention.

[0039] FIG. 28 shows a screenshot of a multiple field
search input screen in accordance with an embodiment of
the invention.

[0040] FIG. 29 shows a screenshot of an alternate person
search input screen in accordance with an embodiment of
the invention.

[0041] FIG. 30 shows a screenshot of an alternate person
search input screen in accordance with an embodiment of
the invention.

[0042] FIG. 31 shows a screenshot of an alternate person
search input screen in accordance with an embodiment of
the invention.

MO000073

US 2006/0075120 Al

[0043] FIG. 32 shows an illustration of a QuestFields type
in accordance with an embodiment of the invention.

[0044] FIG. 33 shows an illustration of a QuestFields type
in accordance with an embodiment of the invention.

[0045] FIG. 34 shows an illustration of a QuestFields type
in accordance with an embodiment of the invention.

[0046] FIG. 35 shows an illustration of a QuestFields type
in accordance with an embodiment of the invention.

[0047] FIG. 36 shows an illustration of a QuestFields type
in accordance with an embodiment of the invention.

[0048] FIG. 37 shows a table comparing different Quest-
Field types in accordance with an embodiment of the
invention.

DETAILED DESCRIPTION

[0049] As described herein, the QuestObjects system and
method is a technology that adds interaction to Web appli-
cations. Working hand-in-hand with HTML, the technology
allows Web servers to act on string input on a per character
basis, thus enabling intelligent auto completion and complex
lookups using server side data. In short, the system enables
interactive data-driven behavior based on incremental string
input. For Web applications, this offers: Improved data entry
speed and accuracy; Dramatically faster access to relevant
data; Improved data security; and Improved user friendli-
ness. In some implementations the system may also be used
to provide dynamically focused suggestions to the user.

[0050] By enhancing rather than replacing HTML, the
system enables server interaction and improves interface
usability and responsiveness without changing the nature or
look-and-feel of Web applications. This architecture allows
services to easily and transparently blend in with current
Web applications. Moreover, clieats work with the vast
majority of Internet browsers now in use—with no addi-
tional software for the end user to install. Additionally, as a
standards-based Web service, the system functions seam-
lessly with modern Java-based, .Net, and other architectures,
and imposes no restrictions on networks or firewalis.

[0051] The system offers a highly effective solution to the
aforementioned disadvantages of both client-server and
Internet systems by providing a way to synchronize the data
entered or displayed on a client system with the data on a
server system. Data input by the client can be immediately
transmitted to the server, at which time the server can
immediately update the client display. To ensure scalability,
systems built around the QuestObjects concept can be
divided into multiple tiers, each tier being capable of cach-
ing data input and output. A plurality of servers can be used
as a middle-tier to serve a large nurober of static or dynamic
data sources, herein referred to as “content engines.”

[0052] A variety of embodiments may be designed to suit
a correspondingly wide variety of applications. As such the
system offers a standardized way to access server data that
allows immediate user-friendly data feedback based on user
input. Data can also be presented to a client without user
input, i.e. the data are automatically pushed to the client.
This enables a client component to display the data imme-
diately, or to transmit the data to another software program
to be handled as required.

Apr. 6, 2006

[0053] The system can also be used to simply and quickly
retrieve up-to-date information from any string-based con-
tent source. Strings can be linked to metadata allowing user
interface components to display corresponding information
such as, for example, the meaning of dictionary words, the
description of encyclopedia entries or pictures correspond-
ing to a list of names.

[0054] Embodiments of the system can be used to create
a user interface component that provides a sophisticated
“auto-completion” or “type-ahead” function that is
extremely useful when filling out forms. This is analogous to
simple, client-side auto-complete functions that have been
widely used throughout the computing world for many
years. As a user inputs data into a field on a form, the
auto-complete function analyzes the developing character
string and makes intelligent suggestions about the intended
data being provided. These suggestions change dynamically
as the user types additional characters in the string. At any
time, the user may stop typing characters and select the
appropriate suggestion to auto-complete the field.

[0055] Today’s client-side auto-complete functions are
useful but very limited. The system, however, in its various
embodiments, vastly expands the usefulness and capabilities
of the auto-complete function by enabling the auto-complete
data, logic and intelligence to reside on the server, thus
taking advantage of server-side power. Unlike the client-side
auto-complete functions in current use, an auto-complete
function created by the system generates suggestions at the
server as the user types in a character string. The suggestions
may be buffered on a middle tier so that access to the content
engine is minimized and speed is optimized.

{0056] The simple auto-complete schemes currently in
popular use (such as email programs that auto-complete
e-mail addresses, web browsers that auto-complete URLS,
and cell phones that auto-complete names and telephone
numbers) require that the data used to generate the sugges-
tions be stored on the client. This substantially limits the
flexibility, power, and speed of these schemes. Embodiments
of the system, however, store and retrieve the auto-complete
suggestions from databases on the server. Using the system,
the suggestions generated by the server may, at the option of
the application developer, be cached on the middle tier or on
the client itself to maximize performance.

[0057] The system provides better protection of valuable
data than traditional methods, because the data is not present
on the client until the moment it is needed, and can be further
protected with the use of user authentication, if necessary.

[0058] The system is also useful in those situations that
require immediate data access, since no history of use needs
to be built on the client before data is available. Indeed, data
entered into an application by a user can automatically be
made available to that user for auto-completion on any other
computer, anywhere in the world.

{0059] Unlike existing data-retrieval applications, server
data can be accessed through a single standardized protocol
that can be built into programming languages, user interface
components or web components. The system can be inte-
grated into and combined with existing applications that
access server data. Using content access modules, the sys-
tem can access any type of content on any server.

[0060] In the detailed description below, embodiments of
the present invention are described with reference to a

MOO000074

US 2006/0075120 Al

particular embodiment named QuestObjects, created by the
MasterObjects company. QuestObjects provides a system
and method for managing client input, server queries, server
responses and client output. One specific type of data that
can be made available through the system from a single
source (or syndicate of sources) is a QuestObjects Service.
Other terms used to describe the QuestObjects system can be
found in the glossary given below. It will be evident that the
technology described herein may be utilized in other
embodiments, and with other systems, in addition to the
QuestObjects system.

[0061] FIG. 1 shows an example of the QuestObjects
architecture 100. Generally described, QuestObjects is a
powerful uitra-thin smart client/server technology used to
create intelligent online data entry and retrieval applications
called QuestFields. QuestFields, the products based on the
QuestObjects technology, are deployed in web browser and
handheld wireless device applications and enable up to
millions of simultaneous users to have direct, virtually
instantaneous access to enterprise data on remote content
sources.

[0062] QuestFields compete primarily in the RIA market.
However, unlike competitive products, a QuestField is an
integrated “end-to-end” client-server solution that is more
powerful, more universal and easier to deploy—all at a
substantially Jower cost than typical R1As.

[0063] QuestFields are comprised of three integrated and
highly optimized parts: the QuestObjects client, the QuestO-
bjects Server, and the QuestObjects Protocol (QOP). The
different parts of QuestFields can be distributed over mul-
tiple computers to provide load balancing and optimal
performance.

[0064] The QuestObjects client typically comprises one or
more QuestFields that enable each user to efficiently query
remote content sources by providing a friendly but powerful
user interface that communicates directly with the QuestO-
bjects Server over the Internet. The QuestObjects Server
easily handles many simultaneous user sessions and pro-
vides the interface to the underlying content sources (such as
databases, directories, or search engines). The QuestObjects
Server enables administrators to easily configure any num-
ber of content channels, each of which queries one of
potentially many content sources that are typically present
on a remote }ocal area network (LAN).

Advantages of the QuestFields

[0065] Compared to existing RIA client technologies,
QuestObjects-based products offer several important advan-
tages, including: Far better performance; Proven function-
ality in large-scale corporate environments; No rewriting of
existing web application code or redesign of web page
layout; Compatibility with more than 99% of web browsers
currently in use; Substantially faster implementation time;
and Substantially lower implementation and maintenance
cost.

[0066] QuestFields are designed to be compatible with
virtually all “thin™ client platforms. QuestField products can
be designed to look like a “combo box™ input field, that are
used primarily in web browsers. However, future Quest-
Fields can come in many more shapes, sizes, types and uses.
Unlike other RIA technologies, QuestFields are tuly uni-
versal because they can be developed in virtually any

Apr. 6, 2006

programming language that is supported by web browsers.
Consequently, QuestFields will always be able to take
advantage of the best available client technologies, even
those yet to be developed.

Advantages of the QuestObjects Server

[0067] The QuestObjects Server campetes with custom
web application development environments, dedicated Web
Services, groupware, and connectivity products that also
provide a means to access content sources from within the
browser. The QuestObjects Server has several advantages
over competing server products, including: Easily config-
urable “black box™ application requiring no programming
and virtually no maintenance; Enables users to retrieve
information from virtually any content source without the
need to develop and maintain 2 custom application or Web
Service; Provides a highly optimized service that enables
many simultaneous users to access content with minimal
impact on the customer’s network or content engines;
Usable in a far broader market than other groupware and
connectivity products that typically replace full applications;
Significantly enhances other, more complex, web applica-
tions, groupware, and connectivity products; and Runs 24/7,
automatically connects to redundant content sources, and
requires virtually no systems management.

Advantages of the QuestObjects Protocol

[0068] The QuestField and the QuestObjects Server com-
municate with each other using the QuestObjects Protocol
(QOP). QOP is a standards-compliant communications pro-
tocol fully compatible with Service Oriented Architectures
(SOA). SOA is an architectural approach that segments and
isolates application functionality into smaller, discrete and
usable components, otherwise known as “services.”” The
primary goal of a SOA is developing application functions
that are reusable and standardized so that once created they
can be leveraged across multiple projects. This approach
greatly reduces time, effort and cost of imcorporating new
functionality apd extending existing applications. The
QuestObjects technology enables organizations to do pre-
cisely that and to do it simply, quickly, and easily.

[0069] QOP uses the same transport mechanism that is
used by standard web pages: HTTP over TCP/IP. As with all
modern SOAs, this allows QOP to transparently communi-
cate over the Internet without imposing unusual require-
ments on routers and firewalls. By contrast, legacy applica-
tion protocols typically rely on dedicated ports and required
specialized drivers to be installed on client and server.

QuestObjects Server

[0070] In accordance with an embodiment, the QuestOb-
jects Server is an application that runs in a standard Java
Servlet Container, compatible with open-source and com-
mercial Java application servers that are used in enterprises
throughout the world. A QuestObjects Server provides its
QuestObjects Services through content channels. Each con-
tent channe] returns a specific kind of data from a specific
back-end content source. For handling different kinds of
back-end data, the QuestObjects Server enables the use of
multiple Content Access Modules (CAMs) that each provide
a means to communicate with a specific kind of content
engine on the content source, such as SQL, LDAP, or a
proprietary legacy database. QuestObjects Server features
include:

MOO000075

US 2006/0075120 Al

[0071] Request Management—The QuestObjects Server
manages the load of incoming client requests and queries to
the content source. Request management enables the server
to scale to very large numbers of users and queries.

[0072] User Session Management—The QuestObjects
Server provides efficient metering and auditing by using the
data in each user’s session to keep track of the queries a user
performs and the results that have been sent back.

[0073] Unified Query Cache—The QuestObjects Server
caches query results in a cache that is common to all users,
thus improving performance on recurring queries and lim-
iting the load imposed on content engines.

[0074] Unlimited Content Sources—The QuestObjects
Server can query ooe or more content sources. Support for
both SQL databases and LDAP directories is built-in, and a
modular Java interface provides a simple API that enables
MasterObjects and its customers to easily and quickly create
custom interfaces to legacy data.

[0075] Query Merging—Without requiring any additional
programming, a QuestObjects content channel can perform
one or more queries on the back-end database or directory
and intelligently combine their results into a single results
list. This makes it very easy to implement QuestFields that
enable users to perform queries in alternate ways, such as
looking up a person by first name, last name, email address,
or any combination thereof. A single content channel can
even combine results from multiple different content
sources.

QuestObjects Protocol (QOP)

[0076] In accordance with an embodiment, to enable the
QuestObjects technology to communicate efficiently over
the Internet, a protocol, called the QuestObjects Protocol
(QOP), is used for communication between large numbers of
simultaneous QuestField users and any number of QuestO-
bjects Servers. QOP uses the very same network infrastruc-
ture that is used by standard web pages. This means that if
a web page loads correctly into the browser, QOP works as
well. Consequently, neither users nor administrators need to
worry about the details of the communication protocol. In
accordance with an embodiment, QOP client-server mes-
saging is based on web standards. The application-layer
protocol is based on XML wrapped in optional SOAP
envelopes using HTTP(S) as the transport layer. QOP does
not require the use of cookies in the browser and is designed
to be compliant with existing Internet and security stan-
dards.

Security

[0077] QOP can be configured to run over Secure Sockets
Layer (SSL) for complete security of user queries and data
received from the server. Either the entire web page or
individual QuestField queries can be securely encrypted.
This means that a web page using QuestFields can load very
quickly by keeping its images unencrypted, yet still fully
securing content that appears in its QuestFields.

{.oad Balancing

[0078] The QuestObjects technology is specifically
designed for large intranet and Internet applications. The
QuestObjects Server, QuestObjects Service and/or the con-
tent source can reside simultaneously on multiple machines,

Apr. 6, 2006

permitting load balancing and capacity expansion simply by
adding more hardware. A QuestObjects Server uses “sticky”
session connections so that a client can logically connect to
any server machine in the system. Once a session i estab-
lished, all communications from the client IP address go to
and from the same server.

QuestObjects Services

[0079] In accordance with an embodiment, each QuestQ-
bjects Server can be configured to provide QuestObjects
Services that are available to users of independent websites.
This makes virtually any content that is available on the
Internet accessible to QuestFields. QuestObjects Services
can be provided from Intemet domains other than the
domain that serves the web pages. Thus, QuestField users
can subscribe to multiple QuestObjects Services that are
hosted by different providers on the Intemet. To manage
these services, the QuestObjects technology uses Syndica-
tors, which offer content provided through QuestObjects
Servers. Syndicators offer subscription-based access to spe-
cific content channels to managed user groups, enabling the
QuestObjects Server to automatically collect usage statistics
and provide billing information for commercial use of the
service.

Glossary
AutoComplete QuestField

[0080] A type of QuestField that closely resembles the
“combo box” of traditional applications, whereby user entry
is automatically completed, and multiple results can be
displayed in a popup list.

AutoLookup QuestField

[0081] The simplest type of QuestField, which performs a
direct lookup based on the user’s input and displays the
corresponding single result.

AutoSearch QuestField

[0082] A type of QuestField that is used to enter user
queries (such as Boolean) and to display corresponding
results in 2 filtered and ranked result list.

Background QuestField

[0083] A type of QuestField that has no user interface, but
rather is integrated into an application where it runs in the
background accessing data from QuestObjects Services.

CAM
[0084] See Content Access Module.
Css

[0085] Cascading Style Sheets (CSS) is a style sheet
language used to describe the presentation of a document
written in HTML (or other markup languages). It allows the
“look” of a web page to be modified without changing the
underlying HTML or web application, and thus separates the
“presentation Jogic™ from the “application logic” and busi-
ness rules. An embodiment of the invention takes advantage
of CSS to enable customers to change the “look” of Quest-
Fields so they “blend in" to their own web pages. Customers
can easily modify the colors and widths of QuestField
borders, as well as the images used for QuestField buttons.

MOO000076

US 2006/0075120 Al

Content Access Module

[0086] A Content Access Module (CAM) provides a stan-
dardized mechanism to link the QuestObjects system to a
specific type of content engine. A CAM is the “middleware”
between the QuestObjects system and the data it accesses.
QuestObjects currently includes CAMs that communicate
with any JDBC-compliant database or any LDAP-compliant
directory server, as well as a Java CAM that allows cus-
tomers to easily integrate the QuestObjects Server with their
legacy or proprietary databases by using a powerful yet
simple open Java APL

Content Chanpel

[0087] A configuration on the QuestObjects Server that
defines a specific method of querying one or more specific
content sources, allowing QuestField users to perform que-
ries and retrieve comresponding results. A content channel
accesses one or more content engines, each through a
specific Content Access Module. A single cantent channel
can be configured to perform multiple queries to retrieve
data from the content sources, whereby the QuestObjects
Server merges the results from these “sub queries” into a
single result set for the QuestField user. For example, in a
PeopleFinder application the content channel can be con-
figured to query the underlying content engine by last name,
first name, email address, and any combination thereof. The
QuestField user receives a consolidated list of person names
that were retumned by any of the sub queries in the content
channel.

Content Engine

[0088] A content engine is a third-party application that
runs on the content source that is capable of performing
string-based queries and returning string-formatted answers
to the QuestObjects system. Examples include relational
databases, corporate directories, and search engines. A
simple content engine could read information directly from
a file, or could perform a query to access a Web Service over
the Internet. The QuestObjects Server simultaneously
accesses different content engine types through Content
Access Modules.

Content Source

[0089] A server computer that provides the data that is
accessed by the QuestObjects system. The content source
makes its data available through a content engine. For best
performance, the content source must be located on the same
LAN as the QuestObjects Server, and could even be hosted
on the very same server computer. The QuestObjects Server
can be linked to any number of content sources. To retrieve
specific information from the content source, one or more
content channels are configured on the QuestObjects Server.

DHTML QuestField

[0090] A version of QuestField that is based on DHTML
technology. DHTML enables the QuestField to run in mod-
em web browsers without requiring Flash or other plug-in
technology. QuestObjects technology enables QuestFields
to detect the browser, and to automatically activate the
appropriate QuestField for each individual user. Future
QuestFields may be built using alternative client technolo-
gies, such as J2ME.

Apr. 6,2006

ECMAScript
[0091] See JavaScript.
Flash

[0092] Multimedia authoring program and a correspond-
ing runtime environment called the Macromedia Flash
Player, written and distributed by Macromedia, that utilizes
vector and raster graphics, program code and bidirectional
streaming video and audio. Strictly speaking, Macromedia
Flash is the authoring environment and Flash Player is the
virtual machine application used to run the Flash files, but in
colloquial language these have become mixed: “Flash” can
mean either the authoring environment, the player or the
application files. The Flash files, which usually have an SWF
file extension, may appear in a web page for viewing in a
web browser, or standalone Flash players may “play” them.
Flash files occur most often as animations or design ele-
ments on web pages, and more recently Rich Internet
Applications. They are also widely used in web advertise-
ments, due to the fact that a flash file can contain much more
information than a GIF or JPEG file of the same size.

Flash QuestField

[0093] A version of QuestField that is based on Flash
technology, allowing it to run in any browser that has the
Flash Player installed.

FreeForn QuestField

{0094] A type of QuestField that consists of a large text
area and provides data management services such as remote
spell checking and auto-save.

HTTP

[0095] HTTP (Hypertext Transfer Protocol) is the set of
rules for transferring files (text, graphic images, sound,
video, and other multimedia files) using the Internet protocol
(TCP/IP) on the World Wide Web.

HTTPS

[0096] HTTPS (HTTP over SSL) is an extension to HTTP
that provides security by encrypting and decrypting user
page requests as well as the pages that are returned by the
web server.

Java

[0097] Java is an object-oriented programming language
developed by Sun Microsystems. Specifications of the Java
langnage, the JVM (Java Virtual Machine) and the Java AP]
are community-maintained through the Sun-managed Java
Community Process.

Applets

[0098] Small applications written in Java that run in any
web browser that supports a JVM (Java Virtual Machine).
Client-side Java applications and Java applets have never
become a predominant client technology.

JavaScript
{0099] Object-based scripting programming language that

is built into web browsers, also known as ECMAScript after
the standards body that now governs the language. JavaS-

MOO000077

US 2006/0075120 A1

cript is best known for its use in websites, but is also used
to enable scripting access to objects embedded in other
applications.

Java Servlet Container

[0100] Part of Java application servers such as IBM Web-
Sphere, BEA WebLogic, and Apache Tomcat that allows
multiple Servlet-based applications to be hosted on a web
server. A serviet container controls the servlets that are
deployed within the web server, and is responsible for
forwarding the requests and responses for them. It has the
functionality of mapping a URL to a particular servlet and
of ensuring that the process requesting the URL has the
correct access rights.

JDBC

[0101] Java Database Connectivity, or JDBC, is an API for
the Java programming language that defines how a client
may access a database. It provides methods for querying and
updating data in a database. JDBC is oriented towards
relational databases that use SQL. An embodiment of the
invention includes a Content Access Module that allows
QuestObjects to query databases through JDBC. JDBC is
supported by virtually all commercial and open-source SQL
databases including Oracle, IBM DB2, Microsoft SQL
Server, MySQL, etc.

J2ME

[0102] Acronym for Java 2 Platform, Micro Edition
(recently renamed by Sun to Java ME, but still most often
referred to as J2ME), a collection of Java APIs targeting
embedded products such as PDAs, cell phones and other
consumer appliances. J2ME has become a popular option
for creating games for cell phones, as they can be emulated
on a PC during the development stage and easily uploaded
to the phone.

JVM

[0103] Acronym for Java Virtual Machine. All applica-
tions that were built in Java run in a JVM, which is available
for virtually all operating systems and embedded devices.

LDAP

[0104] The Lightweight Directory Access Protocol, or
LDAP, defines 2 relatively simple and efficient protocol for
updating and searching directories running over the Internet
protocol, TCP/IP. It 1s in common use in enterprises world-
wide. Virtually all commercial and open-source directory
servers use LDAP, allowing applications to access directory
information in a standardized way, similar to the way in
which JDBC provides a way to access SQL databases. An
embodiment of the invention includes a Content Access
Module that allows QuestObjects to query directories
through LDAP.

PeopleFinder QuestField

[0105] Product name used for a specific kind of AutoCom-
plete QuestField: Configured to access a content channel
that retrieves personnel records, enabling users to use their
web browser to quickly find names, addresses, phone num-
bers, etc. in a corporate directory or personnel database
without leaving the HTML page they are on.

Apr. 6, 2006

Qop
[0106] See QuestObjects Protocol.
QuestField

[0107] A user interface element in a browser-based “Rich
Internet Application™ that sends queries to, and receives
results from the QuestObjects Server. Forms the client part
of the QuestObjects technology. Six different types of Quest-
Fields are envisioned: AutoLookup, AutoComplete, Auto-
Search, Relational, FreeForm, and Background

QuestObjects Enterprise Server

[0108] Commercial name for the QuestObjects Server
product that is optimized and licensed for use in a closed
intranet setting, where the total number of users is known.

QuestObjects Protocol

[0109] The QuestField and the QuestObjects Server com-
municate with each other using the QuestObjects Protocol
(QOP). QOP is a standards-compliant communications pro-
tocol that fits well into Service Oriented Architectures
(SOA). It is based on small XML -formatted data packages
that are exchanged over the Internet using HTTP.

QuestObjects Server

[0110] A Java server application that implements the
server part of the QuestObjects product. It communicaies
with the QuestObjects Client (QuestFields) through the
QuestObjects Protocol, and communicates with one or more
content engines through Content Access Modules.

QuestObjects Service

[0111] A logical name for one or more content channels
that provide a valuable service for QuestField users on the
Internet. A QuestObjects-specific Web Service.

Relational QuestField

[0112] A type of QuestField that provides muitiple inputs
to the user allowing navigation through complex relational
data structures configured in multiple content channels.

Service Oriented Architectures

[0113] SOA is an architectural approach that segments and
isolates application functionality into smaller, discrete and
usable components, otherwise known as Web Services. The
primary goal of a SOA is developing application fanctions
that are reusable and standardized so that once created they
can be leveraged across multiple projects. This approach
greatly reduces time, effort and cost of incorporating new
functiopality and extending existing applications. The
QuestObjects technology enables organizations to do pre-
cisely that and to do it simply, quickly, and easily.

Servlet

[0114] A servlet is an object in a Java server application
that receives requests and generates a response based on
each request. The QuestObjects Server implements servlets
to perform these basic yet essential tasks, leveraging stan-
dard Java Servlet Container technology for optimal perfor-
mance and full compatibility with other server technologies
in common use. See Java Servlet Contaiger.

MOO000078

US 2006/0075120 Al

Site Search QuestField

[0115] An AutoSearch QuestField that is customized and
optimized for performing web searches. Site Search Quest-
Fields access a content channel that performs queries on the
full-text index of one or more websites, as well as databases
used by dynamic websites.

Site Search Service

[0116] A QuestObjects Service that is accessed by Site
Search QuestFields.

SOA .
[0117] See Service Oriented Architectures.
SOAP

[0118] Simple Object Access Protocol (SOAP) provides a
standardized structure for XMl -based information used for
exchanging structured and typéd information between peers
in a decentralized, distributed environment. It is most com-
monly used to package XML-formatted data that is
exchanged in Service Oriented Architectures.

SQL

[0119] Structured Query Langnage (SQL, often pro-
nounced as “sequel™) is the most popular computer language
used to create, modify and retrieve data from relational
database management systems. It is in common use in
enterprises worldwide. Virtually all commercial and open-
source databases use SQL, allowing applications to access
database information in a standardized way, similar to the
way in which LDAP provides away to access corporate
directories. An embodiment of the invention includes a SQL
Content Access Module that allows QuestObjects to query
databases through JDBC.

SSL

[0120] The Secure Sockets Layer (SSL) is a commonly
used protocol for managing the security of message trans-
mission on the Internet.

Syndicator

[0121] A logical component in QuestObjects Server that
manages a group of content channels for a group of users. A
Syndicator manages user access privileges through subscrip-
tions to one or more content channels, performs metering,
and can be used as a source for billing information.

‘Web Service

[0122] A Web Service is a collection of protocols and
standards used for exchanging data between applications or
systems that implement a Service Oriented Architecture.
Software applications written in various programming lan-
guages and running on various platforms can use Web
Services to exchange data over computer networks like the
Internet in a manner similar to inter-process communication
on a single computer. This interoperability is due to the use
of open standards. :

[0123] Embodiments of the present invention provide a
system and a method that allows clients or client applica-
tions to asynchronously retrieve database information from
a remote server or server application. The terms “client” and
“server” are used herein to reflect specific embodiments of
the invention, although it will be evident to one skilled in the

Apr. 6, 2006

art that the invention may be equally used with any imple-
mentation that requires communication between a first pro-
cess or application and a second process or application,
regardless of whether these processes comprise a typical
client-server setup or not. The invention includes a Server,
that handles requests for information from clients, and a
communication protocol that is optimized for sending char-
acters from a Client to the Server, and lists of strings from
the Server to the Client. In one embodiment, as the Server
receives a single character from the Client, it immediately
analyzes the lengthening string of characters and, based on
that analysis, returns database information to the Client in
the form of a list of strings. Clients are not restricted to
programs with a user interface. Generally, any process or
mechanism that can send characters and receive string lists
can be considered a client of the system. For example, in an
industrial or power supply seiting, the control system of a
power plant could send sensor readings to the system, and in
return receive lists of actions to be taken, based on those
sensor readings.

[0124] The system’s protocol is not restricted to sending
single characters. In fact, Clients can also use the protocol to
send a string of characters. For example, when a user
replaces the contents of an entry field with a new string, the
Client may then send the entire string all at once to the
Server, instead of character by character.

[0125] 1In accordance with one embodiment of the inven-
tion the system is session-based, in that the server knows or
recognizes when subsequent requests originate at the same
Client. Thus, in responding to a character the Server receives
from a Client it can use the history of data that has been sent
to and from the current user. In one embodiment, the system
stores user preferences with each Service, so that they are
always available to the Client, (i.e., they are independent of
the physical location of the client). Furthermore, client
authentication and a billing system based on actual data and
content use by Clients are supported. For faster response, the
Server may predict input from the Client based on statistics
and/or algorithms.

[0126] The system is bi-directional and asynchronous, in
that both the Client and the Server can initiate communica-
tions at any moment in time. The functionality of the system
is such that it can run in parallel with the normal operation
of clients. Tasks that clients execute on the system are
pon-blocking, and clients may resume normal operation
while the system is performing those tasks. For example, a
communication initiated by the Client may be a single
character that is sent to the Server, that responds by returning
appropriate data. An example of a communication initiated
by the Server is updating the information provided to the
client. Because the system is session-based it can keep track
of database information that has been sent to the Client. As
information changes in the database, the Server sends an
updated version of that information to the Client.

[0127] Embodiments of the system may be implemented
as a multi-tier environment This makes it scalable because
the individual tiers can be replicated as many times as
necessary, while load balancing algorithms (including but
not limited to random and round robin load-balancing) can
be used to distribute the load over the copies of the tiers. One
skilled in the art would appreciate that it is not necessary to
replicate the tiers. Indeed, there may be only a single copy

MO000079

US 2006/0075120 A1l

of each tier, and that all tiers (Client, Server, and Service)
may be running on a single computer system.

[0128] FIG. 2 illustrates one example of a system that
embodies the present invention. As shown in FIG. 2 there
may be various Clients 102 using the system. These Clients
use a communication protocol 104 to send information,
including but not limited to single characters, and to receive
information, including but not limited to lists of strings and
corresponding metadata. At least one Server 106 receives
information from the Client, and sends information to the
Client. In a typical embodiment if there is a plurality of
Servers, then the system can be designed so that each Client
connects to only one of them, which then relays connections
to other Servers, possibly using load-balancing algorithms.
Servers have a communication link 108 to a Service 110,
which they use to obtain the information that they send to the
Client.

[0129] FIG. 3 is a schematic illustrating an embodiment
of the present invention, and displays a five-tier system that
has a user interface in which user interface elements use the
present invention to assist the user in performing its tasks.
For purposes of illustration, FIG. 3 displays just one session
and one content Service. In an actual implementation there
may be multiple concurrently active sessions, and there may
be more than one content Service that Clients can use. As
shown herein, the first of the five tiers is a Client tier 120.
The Client tier contains the user interface and the Client
components that are needed to use the system. The second
tier is a Server or server process 130, which handles the
queries that Clients execute, and in return displays results to
the Client. Service 150, which corresponds to 110 of FIG.
2, is a logical entity comprising three more tiers: a Syndi-
cator 152, a Content Channel 162 and a Content Engine 174.
The Syndicator provides access to a number of Content
Channels and performs accounting services based on actual
data use. The Content Channe] provides a specific type of
information from a specific source (i.e. the Content Engine).
The Content Engine is the actual source of any content that
is made available through the QuestObjects system. The
Client tier 120 corresponds to the client 102 in FIG. 2. In
this example, the Client may be an application (and in some
embodiments a web application) with a user interface that
accesses the system of the present invention. As used in the
context of this disclosure a user interface element that uses
the present invention is referred to as a “Questlet,” A Client
can contain ope or more Questlets 122 (e.g. an input field or
a drop down list. A Questlet is always associated with at least
one Client Quester 124. Questers are objects that tie a
QuestObjects input buffer (containing input from the Client)
to a QuestObjects Result Set returned from a QuestObjects
Server. Questers exist on both the Client and Server, in
which case they are referred to as a Client Quester and a
Server Quester, respectively. Every Client Quester has one
corresponding Server Quester. In accordance with the inven-
tion, any event or change that happens in either one of them
is automatically duplicated to the other so that their states are
always equal. This synchronization mechapism is fault-
tolerant so that a failure in the communication link does not
prevent the Questers from performing tasks for which they
do not need to communicate. For example, a Client Quester
can retrieve results from the cache, even if there is no
communication link to the Server. Each single Quester
accesses exactly one QuestObjects Service, i.e. one specific
Content Channe] offered by one specific Syndicator. At

Apr. 6,2006

initialization of the Client, the Questlet tells its Quester
which Service to access. In one embodiment a Service is
stored or made available on only one Server within a
network of Servers. However, this is transparent to the
Client because each Server will forward requests to the right
computer if necessary. The Client does not need to know the
exact location of the Service.

[0130] To communicate with its Server Quester 134, each
Quester in a session uses a controller 126. The system
contains at least one Client Controller 126 and a Server
Controller 136, which together implement the network com-
munication protocol 128 of the present invention. Client
Controllers may cache results received from a Server, thus
eliminating the need for network traffic when results are
reused.

[0131] Client Questers are managed by a Questlet, which
create and destroy Questers they need. In a similar fashion,
ServerQuesters are managed by a Session 132. When a
Client Quester is created, it registers itself with the Client
Controller. The Client controller forwards this registration
information as a message to the Session using the Server
Controller. The Session then checks if the Persistent Quester
Store 138 contains a stored Quester belonging to the current
user matching the requested Service and Query Qualifier. If
such a Quester exists, it is restored from the Persistent
Quester Store and used as the peer of the Client Quester.
Otherwise, the Session creates a new Server Quester to be
used as the Client Quester’s peer.

[0132] A Time Server 140 provides a single source of
timing information within the system. This is necessary,
because the system itself may comprise multiple indepen-
dent computer systems that may be set to a different time.
Using a single-time source allows, for example, the expira-
tion time of a Result Set to be calibrated to the Time Server
so that all parts of the system determine validity of its data
using the same time.

[0133] Server communication link 144 is used by the
Server to send requests for information to a Service, and by
a Service to return requested information. Requests for
information are Query objects that are sent to and interpreted
by a specific Service. Query objects contain at least a string
used by the Service as a criterion for information to be
retrieved, in addition to a specification of row numbers to be
returned to the Client. For example, two subsequent queries
may request “row numbers 1 through 5, and “6 through
107, respectively. A query object may also contain a Quali-
fier that is passed to the appropriate Service. This optional
Qualifier contains attributes that are needed by the Service
to execute the Query. Qualifier attributes may indicate a
desired sort order or in the example of a thesaurus Service
may contain a parameter indjcating that the result list must
contain broader terms of the Query string. Services use the
communication link to send lists of strings (with their
attributes and metadata) to Servers. Server communication
link 144 is also used by Server Questers to store and retrieve
user preferences from a Syndicator’s Preference Manager.

[0134] Questers use Services to obtain content. A Service
is ope of the Content Channels managed by a Syndicator.
When a Quester is initialized, it is notified by its QuestField
(Active Component) of the Service it must use. The Service
may require authentication, which is why the Syndicator
provides a User Manager 154. If a Client allows the user to

MOO000080

US 2006/0075120 A1l

set preferences for the Service (or preferences needed by the
QuestField), it may store those preferences using the Syn-
dicator’s Preference Manager 156. The Server (i.e. Server
Quester) only uses the Syndicator for authentication and
preferences. To obtain content, it accesses the appropriate
Content Channel directly. The Content Channel uses its
Syndicator to store usage data that can be later used for
accounting and billing purposes. Usage data is stored in a
Usage Statistics Store 158.

[0135] Content communication link 160 is used by Con-
tent Channels to send usage data to their Syndicator, and to
retrieve user information from the Syndicator. The Content
Channel is a layer between the QuestObjects System, and
the actual content made available to the system by a Content
Engine 174. Each Content Channel has a corresponding
Query Manager 164 that specifies the type of query that can
be sent to the corresponding Content Engine, and defines the
types of data that can be returned by the Content Channel.

[0136] Specification of query type comprises a set of
Query Patterns and Query Filters that are used by the Server
Quester to validate a string before the string is sent to the
Content Channel as a QuestObjects Query. For example, a
query type “URL” may allow the ServerQuester to check for
the presence of a complete URL in the input string before the
input string is sent to the Content Channel as a query. A
query type “date” might check for the entry of a valid date
before the query is forwarded to the Content Chanpel.

[0137] The Query Manager optionally defines the types of
string data that can be returned to the Client by the Content
Channel. Specific QuestFields at the Client can use this
information to connect to Services that support specific
types of data. Examples of string types include: simple
terms, definitional terms, relational terms, quotes, simple
numbers, compound numbers, dates, URLs, e-mail
addresses, preformatted phone numbers, and specified XML
formatted data etc.

[0138] The Query Manager 164 retrieves database infor-
mation through a Content Access Module 166. The Content
Access Module is an abstraction layer between the Query
Manager and a Content Engine. It is the only part of the
system that knows how to access the Content Engine that is
linked to the Content Channel. In this way, Query Managers
can vse a standardized AP] to access any Content Engine. To
reduce information traffic between Content Channels and
Content Engines, Content Channels may access a content-
based cache 168 in which information that was previously
retrieved from Content Engines is cached. Engine commu-
pication link 170 is used by Content Access Modules to
communicate with Content Engines. The protocol used is the
native protocol of the Content Engine. For example, if the
Content Engine is an SQL based database system then the
protocol used may be a series of SQL commands. The
Content Access Module is responsible for connecting the
Content Engine to the QuestObjects System.

[0139] Content Engines 174 are the primary source of
information in the system. Content Engines can be located
on any physical computer system, may be replicated to allow
load balancing, and may be, for example, a database, algo-
rithm or search engine from a third-party vendor. An
example of such an algorithm is Soundex developed by
Knuth. Content Engines may require user authentication,
which, if required, is handled by the Syndicator (through the
Content Access Module).

Apr. 6, 2006

[0140] The invention uses Content Engines as a source of
strings. One skilled in the art would understand that a string
may, for example, contain a URL of, or a reference to any
resource, including images and movies stored on a network
or Jocal drive. Furthermore, strings may have metadata
associated with them. In one embodiment, strings might
have a language code, creation date, modification date, etc,
An entry in a dictionary may have metadata that relates to its
pronunciation, a list of meanings and possible uses, syn-
onyms, references, etc, A thesaurus term may have a scope
note, its notation, its source and its UDC coding as metadata,
for example. Metadata of an encyclopedia entry may include
its description, references, and links to multi-media objects
such as images and movies. A product database may have a
product code, category, description, price, and currency as
metadata. A stock quote may have metadata such as a
symbol, a company name, the time of the quote, etc.
Instructions to a control system may contain parameters of
those instructions as metadata. For example, the instruction
to open a valve can have as metadata how far it is to be
opened.

[0141] Further details of an embodiment of the system are
provided below, and also in copending U.S. patent applica-
tion Ser. No. 09/933,493, entitled “SYSTEM AND
METHOD FOR ASYNCHRONOUS CLIENT SERVER
SESSION COMMUNICATION™, filed Aug, 20, 2001, and
incorporated herein by reference.

QuestField Products

[0142] The QuestObjects technology was designed to be
compatible with any platform, including traditional client/
server environments, but it is especially powerful for appli-
cations developed for use in web browsers and on handheld
wireless devices (cell phones, PDAs, etc.). Products based
on the QuestObjects technology, called QuestFields, have
significant technological features and competitive advan-
tages, many of which have never before been available for
web browser applications. These include:

[0143] Easy Integration—QuestFields are very easily
added to existing HTML pages. Contrary to other rich
Internet technologies, QuestFields can be implemented in
most web browser applications without changing the exist-
ing application’s source code or web page design. Moreover,
using standard CSS (cascading style sheets), the borders and
buttons of a QuestField can easily be modified to reflect each
custorner's individual style.

[0144] Discrete Components—A QuestField is comprised
of standardized components that can easily be combined and
reused. In addition, multiple dependent QuestFields
deployed on a single web page can automatically share the
same user session.

{0145] Ultra-Thin—QuestFields have been designed as
high performance, ultra-thin clients that nevertheless offer
the user extremely high functionality and friendliness. By
keeping track of session information on the QuestObjects
Server, a QuestField effectively acts as an efficient, continu-
ously updated “window” on server data.

[0146] Field Dependencies—QuestFields can have depen-
dencies on each other’s data, enabling data in one field to be
automatically updated after a change in another field. More-
over, this can be accomplished without any additiona! client-
side or server-side coding. Dependencies can be created

MO000081

US 2006/0075120 Al

between any content channels. Thus, a QuestField querying
an SQL database can be dependent on the values of a
QuestField linked to an LDAP directory.

[0147] Ubiquitous—QuestFields can use Macromedia's
Flash Player, which is now installed on 98% of the com-
puters connected to the Internet. This means that more than
500 million computers can use any Flash-based QuestOb-
jects product without installing any additional software.
Nevertheless, a DHTML QuestField is currently under
development to ensure that QuestFields continue to offer the
highest performance for the most users.

[0148] Interchangeable—QuestFields can be implemented
in any programming language. By simultaneously support-
ing multiple client technologies and by dynamically select-
ing the appropriate technology for a specific application
user, QuestFields can be used by virtually all Internet and
intranet users—a much wider user reach than any other Rich
Internet Application technology.

Support for Web Services

[0149] Embodiments of the system may utilize web ser-
vices to provide some or all functionality. Web services are
open standards-based functional compopents that allow
applications to connect over the Internet on demand, using
loose coupling. Today, Web services are the core IT strate-
gies of the computer industry’s leaders, including IBM,
Microsoft, and Sun. To address today’s business needs,
applications have an ever-increasing need to work closely
together. By their very nature, Web services offer interop-
erability across all platforms that implement a Web services
stack, regardless of programming language or operating
system. Web services support this in a standard, well-defined
manner. Web services created using Sun’s J2EE-based tech-
nologies are fully interoperable with Microsoft’s .NETweb
services.

[0150] By definition, QuestObjects is a document-type
Web service, MasterObjects has designed the product to be
fully compliant to open standards.

QuestObjects System Implementation

[0151] As described herein, the QuestObjects implemen-
tation of the system is ideally suited for Intra-enterprise
component reuse. QuestObjects enhances legacy applica-
tions, which often use proprietary connections to the data-
base, by adding a second service-based mechanism to access
the information. This can be done while maintaining current,
proprietary invocation mechanisms. QuestObjects can also
be used for Componentized E-Services (B2B), where infor-
mation is provided through a QuestObjects Service on a
subscription basis.

[0152] QuestObjects brings interaction to static Web
pages. As a result, it enables Web applications to deliver to
users, through a Web browser, much of the interactive
richness of the user’s typical personal computer or work-
station. QuestObjects is a powerful yet simple concept that
can be summed up in one sentence: “QuestObjects enables
Web clients to interact with servers using string-based input
on a per character basis.”

[0153] FIG. 4 shows an illustration of an asynchronous
session-based search system including a front-end client
search field 190 and a back-end server datastore 192.
QuestObjects’ power lies in its ability o leverage the textual

Apr. 6, 2006

nature of the Web. Text is the basis of everything users find
on the Internet. Consequently, Web applications are all about
string-based data. The primary purpose of the Web is to find
information, but whether the user is looking for a book to
buy, searching train schedules, browsing holiday brochures,
gathering data on company customers or employees, or
getting stock quotes, all of the data presented to the user by
the Web is delivered in the form of text—including images
which are represented, in text, by their URL. Working
together, it is rather astonishing what HTML and Web
browsers can accomplish just with text, but the final result
still falls far short of the wser’s typical personal computer
and workstation experience because there is no interaction
and no automatic, instantaneous feedback. Instead, new
information is presented only after the user enters some
string-based data into a form, presses the Submit button, and
waits for the Web page to analyze the input and redraw the
entire page.

[0154] By contrast, today's powerful, non Web-based
applications that are accessed directly by personal comput-
ers and workstations provide a vast array of instant help and
feedback. Automatic type-aheads, selection lists, wiggly
lines indicating spelling mistakes and other interactive fea-
tures provide users with real-time feedback based on real
data in some kind of data store. Efficiently and effectively,
QuestObjects adds this same kind of instant feedback to
regular Web pages by linking user actions to data stored
anywhere on the Internet.

[0155] Providing instant feedback is a powerful enhance-
ment to Web applications, but the QuestObjects technology
offers more. Multiple fields containing dependent data can
automatically update themselves when one or the other
changes. QuestObjects collects statistics, provides user his-
tories, and allows accurate accounting of data returned to the
user. QuestObjects does all this easily and transparently.
Depending on the implementation, the product is no more
than a black box between the user and content located
anywhere on the Internet.

QuestObjects Architecture

[0156] QuestFields—QuestObjects enables dynamic
interaction between client-side Ul elements and back-end
data. These enabled Ul elements are called QuestFields.
QuestFields are connected to a data source through a Con-
tent Channel.

[0157] FIG. 5 shows an illustration of an asynchronous
session-based search system including multiple front-end
client search fields 200, 202, multiple channels 204, 206,
and a back-end server datastore 208.

[0158] Questlets—QuestFields live within a lightweight
application called a Questlet. A typical Questlet is a little UT
application, very much like a Java applet, an ActiveX
component, or a Flash movie. Questlets are not intended to
take over the HTML page. Rather, they enhance the typical
behavior of related U elements as might otherwise be used
in prior art systems.

[0159] FIG. 6 shows an illustration of an asynchronous
session-based search system including multiple front-end
client search fields.

[0160] QuestObjects service providers bundle and deliver
their services through Content Channels. Service providers

MO000082

US 2006/0075120 Al

are also known as Syndicators because they can subscribe to
each other’s Content Channels.

[0161] Questlets are separate from the Web application:
They typically do not interact or interfere with current
business logic. Questlets are connected to an existing Web
application at only two points: the user interface and the data
store.

[0162) As shown in FIG. 6, a Questlet 210 contains
QuestFields 212, 214 that replace some or all of the input
fields in the Web application’s user interface. QuestFields do
not usually change the semantics of input values; they
simply add dynamic interactivity to the application.

[0163] A Questlet and its QuestField(s) interact with the
database to accommodate the interactive behavior of the
user interface.

[0164] Because QuestObjects adds interactive behavior to
client-side elements based on server side data, it might seem
that network traffic would be substantially increased and
performance degraded. However, network traffic is reduced
10 a minimum by sending partial datasets rather than com-
plete ones. For example, suppose a Web application has an
auto-completing QuestField using a Content Channel con-
taining artist names in a music database. When a user starts
typing, the QuestField requests data from the data source
through the Artist Channel. If the first letter is a c, the result
set containing all artists starting with a ¢ is probably quite
large. The QuestField can be configured to just ask, for
instance, for just the first 20 artists. The QuestField retrieves
more results as the user scrolls through the drop-down list
contained in the QuestField.

[0165] Even if the QuestField asks for more results, only
the difference between the QuestField’s current data set and
the QuestField’s requested data set is transmitted over the
network, thus further reducing traffic.

[0166] The QuestField’s “data retrieval intelligence” has
important architectural implications. The client is not the
only location where the result set is maintained. The
QuestObjects Server itself also maintains this information in
order to calculate information to be sent to the client.

[0167) FIG. 7 shows an illustration of an asynchronous
session-based search system including a front-end client
search fields 220, a server 222, result storage 224, 226, and
a back-end server datastore 228.

[0168] The QuestObjects system can be deployed over
multiple tiers as shown in FIG. 8, which shows an illustra-
tion of a multi-tier asynchronous session-based search sys-
tem including client tier 230, server tier 240, service tier
250, and content tier 260.

[0169] QuestObjects Client—The Client Tier runs the
Questlet and its QuestField(s). It is typically deployed in a
Web page, where a Web server such as Apache or Microsoft
1IS serves the Questlet.

[0170]) QuestObjects Server—The Server Tier manages
client sessions. It maintains an administration for each
QuestField. As mentioned above, this administration
reduces network traffic.

[0171] The QuestObjects Server runs as a servlet in a
standard servlet container such as Tomcat or JBoss.

Apr. 6, 2006

[0172] QuestObjects Service—Service providers called
Syndicators offer information disclosed by QuestObjects.
The Service Tier runs these Syndicators, which provide their
services through Content Channels. A Syndicator offers
subscription-based access to its Content Channels for man-
aged user groups. A Syndicator collects statistics and pro-
vides billing information.

f0173] Like the QuestObjects Server, QuestObjects Ser-
vices run as a servlet in a standard servlet container.

[0174] Content Engine—Content is stored in another tier,
called the Content Engine, which is usually located outside
the QuestObjects system. Syndicators use Content Access
Modules (CAMSs) to link each Content Channel to a data
store disclosed by the Content Engine. A CAM provides an
abstraction layer between the QuestObjects system and any
data store. QuestObjects currently includes CAMs that
access any SQL-compliant database through JDBC or any
enterprise directory through LDAP.

QuestObjects Clients

[0175] Client applications that take advantage of QuestO-
bjects will usually comprise multiple windows or web
pages. BEach window or web page in a client application may
use one or more QO Client elements: Visible or invisible
client components that implement QuestObjects behavior.
Some user interfaces may dynamically add or remove QO
Client elements to a window (e.g., when a user opens a new
tab pane in the application), at which time other QO Client
elements may remain active, or are destroyed (e.g., when a
web page is replaced by another page). QO Client elements
may be only a small part of the client-side application,
although some QO Clients may remain active during the
entire life of the client application. A QO Client Controller
may refuse a Quester (perhaps because it isn’t connected to
a server that has the Channe] requested by the Quester) by
passing it a reference to a different controller. This can be
transparent to the QuestField.

[0176] Multiple QO Client elements in an application (or
multiple client applications running in an OS or virtual
machine) can share connections to the database. This is
achieved by having them communicate through a single
“QO Client Controller”. The QO Client Controller is respon-
sible for the QO Protocol (QOP), maintaining the Quester
registry (including waiting requests and matching results),
handling of dependencies (probably through a separate
object), and request buffering for network optimization.
When QO Client elements share a connection to the data-
base, the connection is only established once. Additional QO
Client clements an register themselves with an existing
session; QO Client elements that are no longer used dereg-
ister themselves. The QO Client Controller is independent of
QO Client elements: Conceptually, the Client elements find
a suitable controller rather than the other way around, This
ensures that a QO Controller may survive the life of QO
Client elements: QO Client elements can be instantiated and
destroyed during the life of a QO Controller. Client-server
connection state (a.k.a. controller state) can be displayed by
any QuestField that has a Quester connected to the corre-
sponding QO Client Controller. In order pot to unnecessarily
complicate the user interface, only the first currently visible
QuestField may actually display the connection state.

[0177] QO Client software is fault-tolerant. If communi-
cation errors occur, the clieat-side objects can function in

MOO000083

US 2006/0075120 Al

off-line mode. An auto-completing QuestField, for example,
will allow users to keep typing into the field, and the value
in the entry field can still be submitted to the web applica-
tion.

[0178] A QO Client’s full state, including the current input
buffer, results, selection state, etc, may be “frozen” and
“restored” at a later date. This allows a QO Server to restore
the QO Client after the client has been away. This could be
necessary if the client application crashed, lost its connec-
tion, or if the client page was refreshed by using the
back-button in a browser. A related feature is suspension and
resumption of active sessions during client-side sleep.

[0179] A QO Client may allow users to store local pref-
erences. For example, a user of an auto-completing Quest-
Field may switch autocompletion on or off. Or a user of a
drop-down list may set a preference to have the drop-down
list open itself automatically as soon as results are received
from the QO Server.

[0180] Through the concept of “String Types" and “Query
Types”, QO Clients may interrogate directory services for
QuestObjects Services and Channels that return specific
types of content using specific types of queries. This makes
it possible to create clients that work with result sets that
contain data in a known format, without making those
clients dependent on a specific channel.

[0181] QO Servers and Content Services may send mean-
ingful (textual) messages for display by the Client. The
Client sends optional language information to the Server at
registration, allowing Server or Service to return appropriate
messages for the Client locale. Clients do not need to be
aware of possible server-side messages and are thus generic.

[0182] A web-based QO Client is able to submit its input
buffer (either the entered part or the auto-completed string),
current result string, or selected result strings (or corre-
sponding keys) to the server using the non-QO specific
browser submit mechanism (through GET or POST), allow-
ing users to keep using form fields in the “old” way. QO
Clients can therefore be used to enhance existing web-based
applications, without needing to rewrite server-side appli-
cation code.

[0183] Depending on rules set by the Channel, a QO
Client may validate a query before sending it to the server
(note that the server must still know the latest input buffer in
order not to send the previous query results to the client).

[0184] - A QO Client may define a default (initial) value for
its input buffer, causing the QO Server to perform a query as
soon as the Quester is registered. This may be necessary to
support browser “back” functionality, where a QuestField
retrieves its previous input buffer value from a form input
field.

[0185] A Client receives the expiration date/time for each
result set, which may be overridden by individual strings in
the result set. A client can use this to automatically re-query
an expired result set or to avtomatically re-query metadata
for strings that have expired (which may be necessary in a
document management system that returns a list of docu-
ments, some of which may have very time-sensitive infor-
mation).

[0186] A QO Client’s value and query may depend on
values in other fields in the application. If these other fields

Apr. 6, 2006

are also QO Clients, these dependencies may include: the
key of a specific index in the result set; the string at a specific
index in the result set; a set of keys for all selected indices
in a result set; a set of strings for all selected indices in a
result set; a set of keys in an index range; a set of strings in
an index range; all result keys, or all result strings.

Web Page Integration

[0187] FIG. 9 shows a method for using the present
invention in systems that have limited technical capabilities
on the Client side, such as, for example, web browsers with
embedded Java applets, Flash movies, or other browser
components or plug-ins. If developers of client systems have
not integrated Client components of the present invention
into their client software, then Client components needed for
the present invention may be present as Plug-Ins, DLL’s, or
an equivalent device, or they can be downloaded to the client
computer as applets. These applets can be written in the Java
language, ActionScript, or other browser component lan-
guage, when they are needed. '

[0188] Although the system depicted in FIG. 8 can be
used to support clients in practically any server-based appli-
cation server, and particularly in the case of a web server
hosting an application used by end users to enter data that is
partially retrieved using the present invention, the system is
not limited to the web. The system provides an ideal solution
for current web-based applications that consist of web
browsers 300 on the client side and web host computers 302
with web server software 304 on the server side. To allow
the web server to access data selected using the present
invention, this system provides a link between the web
server and the QuestObjects Server 306. In this case,
QuestObjects Server acts as a data-entry proxy between the
existing client system (web browser) and the existing web
server. Data entered by the client is submitted to the QuestO-
bjects Adaptor instead of to the web server. The QuestOb-
jects Adaptor then fills in the values of the Questers and
passes the data 1o the web server. An Application Proxy is
not required if the QuestObjects Client components can
directly insert data into the client entry form on the web
browser, as is the case on certain platforms that allow
integration between Java applets or other components and
JavaScript in the web browser.

[0189] In FIG. 9, the web server runs on a host computer
302, typically associated with a fixed IP address or an
Internet host name. The web server is accessed by any
number of clients using web browsers 300. To allow users to
enter data and send data to the server, web pages make use
of HIML forms 308. To use the present invention, user
interface elements such as entry fields in these HTML forms
are associated with Questers 310 in the form of browser
Plug-Ins, Java Applets, Flash Movies, or other browser
components, or Client-script language implementations
including QuestObjects Clients built in JavaScript or
VBScript. Through a QuestObjects Controller 312 those
Questers allow the user to access one or more QuestObjects
Services hosted by a QuestObjects Server 306 using the
protocol 314 of the present invention. The Server Controller
316 forwards user actions generated in the Client Questers
310 to their corresponding Server Questers 318 that thus are
always aware of data selected in the Client. When a Server
Quester is first activated, it checks whether it is being used
by a client system that requires the use of an Application

MO000084

US 2006/0075120 Al

Proxy. If the answer is yes, then the Quester creates 320 a
corresponding AppHost Synchronizer 322 that contacts the
QuestObjects Adaptor 326 on the host computer 302 using
a standardized protocol 328. The QuestObjects Adaptor then
knows which QuestObjects Server to contact to retrieve
QuestObjects data 326 after the user submits form data 330
to the application host using the existing application proto-
col 332, such as HTTP POST or HTTP GET. The QuestO-
bjects Adaptor then replaces the appropriate form field data
with the strings selected in the Server Questers 318 before
forwarding this form data, now including data selected using
the present invention, to the web server 320, and thence to
the client 322.

[0190] QuestFields may be easily and seamlessly inte-
grated into a current Webpage. The first step is to determine
which nop-interactive HTML search fields are to be replaced
by interactive QuestFields, as shown in FIG. 10. FIG. 10
shows an illustration of a web interface 350 in accordance
with the prior art.

[0191] In this example, the *“Category”352 and
“Search”354 fields are to be replaced with QuestFields, and
because QuestFields are able to find and display records “on
the fly”, the “Search” button is now unnecessary and can be
removed. To provide the user with additional information, a
QuestField called “Album™ is added.

[0192] The next step is to build the Questlet containing the
QuestFields with the same look-and-feel as the target Web
page. MasterObjects provides a default Questlet implemen-
tation built using Macromedia Flash. FIG. 11 shows an
illustration of a web-based search field 360 in accordance
with an embodiment of the invention.

{0193] Finally, the client is added to the Web page after
removing old form fields or afier making thern invisible.
FIG. 12 shows a listing of a htm] and JavaScript code 370
in accordance with an embodiment of the invention.

[0194] FIG. 13 shows an illustration of a web-based
search field 380 as it is used to receive data from a server in
accordance with an embodiment of the invention.

Configuration

[0195] QuestObjects configuration is done wusing a
straightforward text files for each Server, each Content
Channel, and each database or directory connection. The
configuration file of Content Channels that communicate
through the JDBC Content Access Module includes the
actual database queries with appropriate bind variables.

[0196] The configuration file of Content Channels that
communicate through an LDAP connection contain the
actual LDAP queries performed on the enterprise directory.

QuestObjects Protocol

[0197] QuestObjects uses a powerful protocol called the
QuestObjects Protocol (QOP). QOP does not rely on the use
of cookies and is designed to be compliant with existing
Internet and Security standards. QOP is used for communi-
cation between Questlets and QuestObjects Servers. This is
done transparently using XML in optional SOAP envelopes
using HTTP(S) as the transport layer. Additional details
defining an embodiment of QOP are provided below.

Apr. 6, 2006

[0198] Security

[0199] QOP can be configured to run over SSL for com-
plete security. Either the entire Web page, or just Questlet-
Server communications can be securely encrypted. QuestO-
bjects is designed so that neither users nor administrators
need to worry about the details of the communication
protocol.

Load Balancing,

[0200] QuestObjects is designed for large Internet appli-
cations. The QuestObjects Server, QuestObjects Service
and/or the Content Engine (database) can reside on a plu-
rality of machines, allowing for load balancing and capacity
expansion simply by adding more hardware. A QuestObjects
Server uses “sticky” session connections. A client can logj-
cally connect to any server machine in the system. Once a
session is established, all communications from the client IP
address go to and from the same server.

Use of System for Interactive Database Searching

[0201] The system described above may be utilized in a
Web, online, or similar environment, for purposes of inter-
active database searching, data entry, online purchasing, or
other applications. This section describes how an embodi-
ment of the invention may be incorporated iato such an
online environment.

[0202] FIG. 14 shows a screenshot of a typical search
screen interface 390 in accordance with the prior art, that
may be used, for example, with a database application, an
online application, or an online purchasing system. In this
example, the interface is part of an online music store
application, and allows a user to search for music records. As
is typical with such applications, the user may select a
category (in this instance from a pull-down list 392,
although in other instances the user may select from a
bullet-list). When the category has been defined, the user
may enter their search criteria in the window 394 provided.
While a category pull-down is not essential, it is commonly
used in online and other environments to allow the user to
narrow down the potential search results. When a category
list is not provided, the system typically returns more hits
than is desired.

[0203] FIG. 15 shows a screenshot of the same search
screen interface 390 in accordance with the prior art, ills-
trating the selection by the user of a particular category 396.
One of the problems with the traditional interface is it
provides no feedback to the user as to available options.
Using the interface shown in FIGS. 14 and 15, ail of the
communication is one-way, i.e. from the user. But when the
user selects a category, they have no knowledge as to
whether there are any database records matching that cat-
egory. Similarly, when the user enters a search criteria, there
may be no matching hits. Furthermore, there is no feedback
provided to the user that, for example, a more appropriate
search might be useful, or that there may be slightly different
spellings of that search term.

[0204] FIG. 16 shows a screenshot of a search screen
interface 400 in accordance with an embodiment of the
present invention, illustrating how the QuestObjects tech-
nology can be used to assist a user with the search and
selection of a database resource, and particularly address the
feedback problems discussed above. Similarly, this example

MOO000085

US 2006/0075120 A1

illustrates the interface as part of an online music store
application, and allows a user to search for music records. In
this embodiment a pair of pull-down lists are provided, one
for Artist name 402 apd one for CD name 404. However, in
other embodiments neither of the search fields may neces-
sarily include a pull-down portion. Each search field indi-
cates, in this instance by means of a small triangular arrow
406, that the search field is enabled for use with .the
QuestObjects system. Depending on the embodiment, other
indicators may be used, or indeed no indicator may be nsed.

[0205] FIG. 17 shows a screenshot of a search screen
interface in accordance with an embodiment of the present
invention, illustrating how the system responds when a user
enters data into a QuestObjects enabled search field. As
shown in FIG. 17, as the user enters search data 410, in this
instance the first letter, or a few letters, of the Artists name,
the search field displays an icon, in this instance a pair of
rotating arrows, to indicate that the search field is commu-
nicating, via the QuestObject, search data to the server. The
rotating arrow icon also indicates that the client is receiving
corresponding information from the server as a resuit of the
search data that has been sent.

{0206] FIG. 18 illustrates the type of information that is
dynamically returned to the user as they enter input data.
Although there is no “submit™ or similar button, since the
client maintains a session with the server, and automatically
sends and receives information from the server as data is
entered, the server provides the client with increasingly
appropriate information from the database. In the example
shown in FIG. 18, as the user enters the text “r, 0, .. . " etc.
414, the server automatically responds with a Tist of records
416 matching this input data. In the embodiment shown, the
records are presented as a list, from which the user may
select one or more of those entries. Alternatively, if the
desired record is not currently shown, the user can continue
to enter input data to focus the search, and receive at the
client more appropriate results,

{[0207] FIG. 19 shows the same example as the user enters
more input data 418. As the data is received, the server
suggests increasingly more appropriate records 420 from
which the user can select. In this manper the system may
also be used to provide dynamically focused suggestions to
the user.

[0208] FIG. 20 shows the same example as the user enters
more input data. 422 As the data is received, the server
suggests increasingly more appropriate records from which
the user can select. At this point the user has entered almost
a complete Artist name. Again, as described above, the
rotating arrow icon 412 indicates that input data is being
automatically sent from the client to the server, while
appropriate search records are retricved for subsequent
display on the client.

[0209] FIG. 21 shows the same example as the user is
presented with appropriate Artist name records 424 from the
server, based upon the input data.

[0210] FIG. 22 shows the same example as, this time the
user has selected an Artist 426, and is repeating a similar
search sequence with the CD name 428.

[0211] FIG. 23 shows the same example as the user is
presented with appropriate CD name records 430 from the
server, based upon the input data.

Apr. 6, 2006

Use of System for Interactive People Searching

[0212] FIG. 24 shows a screenshot of a search screen
interface 440 in accordance with an embodiment of the
present invention, illustrating how the QuestObjects tech-
nology can be used to assist a user with the search and
selection of a name database resource, for use in people
searching, In one embodiment (shown as Option 1 in FIG.
24) a pull-down list 442 is provided for the persons Name.
In another embodiment (shown as Option 2 in FIG. 24) a
pair of pull-down lists 446, 448 are provide for the persons
Last Name, and First Name. As above, in other embodiments
neither of the search fields may necessarily include a pull-
down portion. Also as above, each search field indicates, by

" means of a small triangular arrow 450 or other device, that

the search field is enabled for use with the QuestObjects
system. Depending on the embodiment, other indicators may
be used, or indeed no indicator may be used.

{0213] FIG. 25 shows a screenshot of a search screen
interface in accordance with an embodiment of the present
invention, illustrating how the system responds when a user
enters data into a QuestObjects enabled search field. As
shown in FIG. 25, as the user enters search data 452, in this
instance the first letter, or a few letters, of the persons Name,
the search field displays an jcon, in this instance a pair of
rotating arrows 454, to indicate that the search field is
communicating, via the QuestObject, search data to the
server. The rotating arrow icon also indicates that the client
is receiving corresponding information from the server as a
result of the search data that has been sent.

[0214] FIG. 26 illustrates the use of Option 1, and the type
of information that is dynamically returned to the user as
they enter input data. As above, although there is no “sub-
mit” or similar button, since the client maintains a session
with the server, and automatically sends and receives infor-
mation from the server as data is entered, the server provides
the client with increasingly appropriate information from the
database. In the example shown in FIG. 26, as the user
enters the text “g, a, .. . ” etc. 456, the server automatically
responds with a list 458 of name records matching this input
data. In the embodiment shown, the records are presented as
a list, from which the user may select one or more of those
entries. Altemnatively, if the desired record is not currently
shown, the user can continue to enter input data to focus the
search, and receive at the client more appropriate results.

[0215] FIG. 27 illustrates the use of Option 2, and the type
of information that is dynamically returned o the user as
they enter input data. In the example shown in FIG. 27, as
the user can enter either the Last Name 460 and/or the First
Name 462 of the person. Matching records are returned
using a similar process as described above.

Use of System for Other Applications

[0216] FIG. 28 shows a screenshot of a complex search
screen interface in accordance with an embodiment of the
present invention, illustrating how the QuestObjects tech-
nology can be used to create a multi-level search interface,
with multiple smart search fields or devices. In this example
the search interface includes QuestObjects-enabled fields for
First Name 482, Last Name 484, City 486 and Country 488,
As above, depending on the embodiment, the search fields
may or may not include a pull-down portion. In the example
shown in FIG. 28 the pull-down lists also include pictorial

MO000086

US 2006/0075120 A1

representation of the field entry, making it more intuitive for
the user. Also as above, each search field may indicate by
means of a small triangular arrow or other device that the
search field is enabled for use with the QuestObjects system,
FIG. 28 provides only an example of the type of interface
that may be created using the QuestObjects system. It will
be evident that a wide range of other interfaces may be
similarly built with some or all of the QuestObjects features.

Variations on the Person Search Input Screen

[0217] FIG. 29 shows a screenshot of an alternative
person search input screen 490 in accordance with an
embodiment of the invention. FIG. 29 shows a screenshot of
a formatted results list including email hyperlink buttons and
an indication of the number of results found.

[0218] FIG. 30 shows a screenshot of an alternative
person search input screen 492 in accordance with an
embodiment of the invention. FIG. 30 shows a screenshot of
an information pane that allows users to configure the
QuestField and that shows QuestField- and Content-Chan-
nel-specific information and help.

[0219] FIG. 31 shows a screenshot of an alternative
person search input screen 494 in accordance with an
embodiment of the invention. FIG. 31 shows a screenshot of
an About Box that shows technical information and copy-
right information for a QuestField.

Variations on the Types of QuestFields

[0220] Using the QuestObjects technology, at least six
basic types of QuestFields can be created, some of which are
shown in the above examples. These QuestField types differ
in complexity, but they all have one thing in common: they
can enhance any web browser or handheld wireless device
application that is used to enter, find, retrieve and/or manipu-
late information stored in remote databases.

AutoLookup QuestField

[0221] FIG. 32 shows a screenshot of an AutoLookup
QuestField 502. This is the simplest kind of QuestField.
Upon user input (or after a dependent QuestField is modi-
fied), the QuestField does a “direct lookup” in the underly-
ing content source where the data returned has a one-to-one
relationship with the user input. Examples include a simple
City QuestField that automatically displays the city for a
specific Zip code, a Bank Number QuestField that verifies
the validity of an account number, 2 Translation QuestField
that automatically looks up the translation of text that the
user has entered, a Stock Quote QuestField that returns a
stock quote for a specific ticker symbol, or a Calculator
QuestField that returns the result of a specific calculation
performed on the user’s input.

AutoComplete QuestField

[0222] FIG. 33 shows a screenshot of an AutoComplete
QuestField 504. An AutoComplete QuestField assists the
user during data entry by looking up multiple possible
matches directly based on the user's character-by-character
input. As the user types, the “best match” for the input is
autocompleted into the input field. An optional popup list
can display altemate choices to the user. The user input
typically has a one-to-many relationship with the data that is
returned by the content source, and the number of records
returned is usually known. Examples include the Peo-

Apr. 6, 2006

pleFinder QuestField that looks up persons in a directory, a
Product QuestField that helps the user find products, or an
Account QuestField that helps the user in finding and
entering customer account numbers.

AutoSearch QuestField

[0223] FIG. 34 shows a screenshot of an AutoSearch
QuestField 506. An AutoSearch QuestField interprets the
user input as a discrete search query that can be in any query
format supported by the underlying search engine. The input
is not usually autocompleted in the input field because of the
nature of the input, although some AutoSearch QuestFields
will suggest queries from a word-index or from a user query
history list. Similar to the AutoComplete QuestField, search
results are immediately displayed in a formatted popup list.
The number of results returned from the server is typically
unknown and limited by the search engine. Results in the
AutoSearch QuestField popup list are usually filtered and
ranked before they are displayed. Examples include a Site
Search QuestField that enables users to find pages on a
website based on full text Boolean searches, or a Document
Search QuestField that allows users to retrieve documents or
files based on full text as well as other criteria. A publishing
company, for example, can use AutoSearch QuestFields to
allow users to quickly and efficiently search newspaper and
magazine archives.

Relational QuestField

[0224] FIG. 35 shows a screenshot of a Relational Quest-
Field 508. A Relational QuestField provides a complex user
interface consisting of multiple entry fields adapted for a
specific use. A Relational QuestField simultaneously
accesses multiple content channels and allows users to enter
multiple values or click on results to “navigate™ through
relationa] content. Relational QuestFields provide a sophis-
ticated user interface that typically feels like a “browser” or
“navigator” because it can use multiple columns, tree lists,
or even three-dimensional ways to display the results.
Examples include an Address QuestField that can be used to
enter full addresses (street, city, state, zip, etc), a Thesaurus
QuestField that allows users to navigate through a taxonomy
of terms, and a File Browser QuestField that behaves similar
to Windows Explorer, yet operates efficiently and securely
on remote content.

FreeForm QuestField

[0225] FIG. 36 shows a screenshot of a FreeForm Quest-
Field 510. A FreeForm QuestField is a text area that allows
users to enter blocks of text of any size. Rather than treating
the entire input as a query, a FreeForm QuestField inte]li-
gently interprets the user input as it is typed, providing the
user with wide range of “on the fly” text editing enhance-
ments. Examples include a SpeliCheck QuestField that
checks and corrects the user’s spelling or grammar based on
remote dictionaries while the user is typing, or an AutoSave
QuestField that eutomatically saves the user's input
remotely while the user is typing into the browser.

Background QuestField

[0226] A Background QuestField does not have its own
user interface. Instead, it is a QuestField that can be invoked
to run in the background of an application, invisibly access-
ing a QuestObjects service. For example, a Background

MO000087

US 2006/0075120 Al

QuestField could be a real-time stock price lookup function
available to stored procedures in a relational database.

[0227} FIG. 37 shows a table 512 that compares six basic
QuestField types. From these basic types, complex Quest-
Fields can be derived that combine the properties of multiple
QuestField types.

Protocol (QOP) Implementation Details

[0228] This section describes in detail an embodiment of
the QuestObject Protocol (QOP). As described above, the
QuestObjects Client and the QuestObjects Server may com-
municate over the Internet using the QuestObjects Protocol.
QOP is an application-layer protocol. Messages may be
XML formatted. They can be transported in the body of
HTTP(S) messages over TCP/IP, according to the HTTP
specification. The implementation of QOP described here
uses XML over HTTP, but other implementations of the
protocol using different transport mechanism may be pro-
vided. To prepare for different physical variations of the
protocol, the Adapter design pattern may be used in the
software. The description below provides the minimum
number of messages that are needed to implement QuestO-
bjects functionality. The message names, element names,
and attribute names provide a possible implementation, but
other implementations of the protoco] using different names
are envisioned. To implement specific optional features of
the QuestObjects technology such as pushing, additional
messages may be implemented.

[0229] Ina load balancing environment using the simplest
implementation of QOP, the load balancer ensures that
sessions are “sticky”: QOP then assumes that communica-
tion from a specific QO Client takes place with a single QO
Server instance. QOP may be mixed with other XML in the
same HTTP request, or wrapped into a SOAP envelope
(Simple Object Access Protocol). QOP XML can support
full Unicode characters sets (typically using UTF-8 encod-
ing). Each QOP XML message contains a block of QOP
messages, for example:

<Mxml versian="1.0" e.ncodmgz"UTF 8" >
<messages xmIns="http //www.q) Y V10" .. >

QP

<Imcssagas>

[0230] The messages block contains messages that vali-
date against an XML schema. Elements in the messages
block automatically adopt its default namespace. The rec-
ommended qop: namespace prefix is therefore optional,
resulting in the smallest possible XML message size.

[0231] Each element of the QOP messages block is
referred to as a QOP message. Every QOP message has a
unique element name that logically describes its purpose.
QOP messages and their attributes use so-called Wiki nam-
ing conventions: They start with a lowercase character and
capitalize the first letter of each subsequent word. No
consecutive capitals are ever used.

[0232] QOP messages sent from QO Clients are requests
that have a unique messagelndex attibute coptaining a
positive integer that js incremented for each message, start-
ing at 1. The QO Server does not need to reorder requests

Apr. 6, 2006

that it receives according to the message index. It only uses
the message index as an attribute in its reply so that the QO
Client can match the reply to the original request. So, QOP
relies on the fact that in most cases TCP/IP will deliver
requests in their consecutive order. Since this is not guar-

anteed to happen, however, the QO Server may return an
error or “no operation” results message to the QO Client if
it receives a request that it cannot currently handle.

<enyReguestMessage messagelndex=“12345" ... >

</anyRequestMessage>

[0233] Each QOP messages block that the QO Client
sends to the QO Server (except the first messages block)
includes a sessionld attribute containing the session id that
was returned by the QO Server in the sessionStarted mes-
sage.

<?xml version="1.0" escoding="UTF-8” 7>
<messages. xmins="http://www.questobjects.com/qo/protocoliv1 0"
sessionld="4A74547885 DAC49DDEDS25B6A01 61BD5 >

</messages>

[0234] Each QOP message sent from the QO Server is a
reply to a QOP request from a QO Client. Each reply has a
reply to attribute that matches the messagelndex of the
corresponding request.

<anyReplyMessage replyTo="12345" ... >

</anyReplyMessage>

QOP Client Requests
startSession

[0235] This is a single QOP message sent by a QO Client
10 a QO Server in the very first request. It is used to create
a unique session, which the QO Server confirms by returming
a sessjonStarted message. The QO Client must wait for
sessionStarted until it can send any additional messages. If
the QO Server cannot start a session, then it replies by
returning an error message.

«<startSession messagelndexw"12345">
<timeOffset> PT10783043238 </timeQOffset>
<clientControllerVession>0.3.1 </clientControllerVersion>
<clientRuntimeNames Flash </clientRuntimeNames
<clientRuntime Version>MAC 7,0,19,0</clientRuntimeVersion>
<clientOs>Mac OS 10.3.2 <clientOs>
<clientBrowser>Mozille/s.0 (Macintosh; U; PPC Mac OS X; en)
AppieWebKit/124 (KHTML, like Gecko) Sn.fnnllZSdchcanmwm
</startSession>

[0236] The value timeOffset is an XML duration indicat-
ing the QO Client’s current time in seconds from 00:00 AM

MOO000088

US 2006/0075120 A1l

on Jan. 1, 1970. In the example implementation it uses
standard XML notation for durations in seconds. clientCon-
trollerVersion is the QO Client communication controller’s
version number, formatted as a string consisting of major
version (one digit), minor version (one digit) and patch
version (one or more digits) separated by decimal points
(periods). A QO Server can theoretically refuse to grant
sessions to deprecated client controllers depending on this
version string and any of the optional version elements
(described below). The other startSession elements are
optional. These elements have a default value and may thus
be omitted. The QO Server uses the data for logging.
clientRuntimeName is a string containing the name of the
QO Client’s runtime environments. In the example imple-
mentation, this is set to “Flash” and the default is an Empty
string. clientRuntimeVersion is a string containing the ver-
sion number of the QO Client’s runtime environments. In
the example implementation, this is the version string of the
Flash Player and the default is an Empty string. clientOS is
a string that contains the name and version of the QO
Client’s operating system with a default of Empty string.
clientBrowser is a string that contains the name and version
of the QO Client’s web browser. It is only mandatory if the
QO Client runs in a browser environment. Default value:
Empty string,

registerQuester

[0237] This message is sent by the QO Client after it has
received a sessionStarted reply. The QO Server replies by
either returning a cowesponding questerRegistered or an
error message. Multiple registerQuester messages may be
grouped into a single messages block. An optional block of
requestDependency messages may follow these register-
Quester messages, as long as all the registerQuester mes-
sages for Questers referred to in the dependencies precede
the dependency request. The QO Server does not queue
requestDependency messages: A requestDependency will
fail if any of the corresponding registerQuester requests
arrives later.

Apr. 6, 2006

received. The QO Server replies by either returning a
corresponding dependencyGranted or an error message.

<requestDependency messagelndex="12345" pame="artist-on-titie">

q '{ rtistQuester</q Name>
<onQuesterNamestitieQuester</onQuesterName>
<trigger>inputBuffer</trigger>

<requestDependency>

[0240] The value of the requestDependency name
attribute is a string that uniquely identifies the dependency.
questerName is the name of the Quester that requests to be
dependent on the Quester specified in on QuesterName. on
QuesterName is the name of the Quester that should trigger
the dependency. The requestDependency message must con-
tain one or more frigger elements that define the events that
rigger the dependency query. The element contains one of
any number of constants reflecting dependency types.
Query

[0241] The QO Client sends query messages only after it
has received the questerRegistered message for the corre-
sponding Quester. The QO Server should either perform the
query and retumn a results message containing data, refuse to
perform the query and return a results message with a
no-operation element explaining the reason, or return an
error message if the query resulted in an error. Depending on
user input speed, a Quester may send multiple query mes-
sages, but they should normally be sent as separate HTTP
requests (thus containing 2 messages block with only a
single query element), because the QO Server will only send
a reply after processing all messages in the request.

<query messagelndex="12345" querylndex="59">
<questesId>5 </questerld>
<requestedRange from="0" to="2" />
<string>be</string>
<qualifier~-CUSTOMER _APP__SESSIONID__ABCD OR
WHATEVER <qualifier>

</query>

<registerQuester messagelndex="12345"
name="com.masterobjects.artist™>
hannelld>artist</channelld>
<registerQuester>

[0238] The registerQuester name attribute contains the
name for the Quester as it was configured in the Questlet.
This name must be unique among Questers that share a
connection (session) and should be unique among Questers
in a client application. channel d contains a string that
matches the name of the Content Channel configuration file
on the QO Server.

requestDependency

[0239] This message is used by a QO Client to request a
dependency on another Quester. The request must be sent
after the registerQuester message for both Questers, but may
be grouped into the same messages block. The reason this
message works with Quester names instead of Quester ID's,
is that this allows the dependency requests to be sent by the
client before the corresponding questerRegistered have been

[0242] Each query sent by a Quester increments the que-
ryIndex attribute, which is a positive integer, starting at 1 for
the first query. The QO Server copies this number into the
results message so that the client Quester can match those
results to its original query. The QO Server will only return
results for the latest query: it will return a results message
containing a nop element if the query was skipped because
a newer one was received.

[0243] The QO Server will return a results message con-
taining a nop if the querylndex received is Jower than the
previous querylndex received for the same Quester. ques-
terld is the id of the Quester as it was originally retumed by
the questerRegistered message. requestedRange is an empty
element has two mandatory attributes from and to, which tell
the QO Server which “view” of the result set the user wants.
The first result in a result set corresponds to from value “0™;
1o is exclusive. The QO Server may return a results message
containing fewer results than requested, and indicate that
this matches the total number of available results. The QO
Client displays the results and indicates to the user that no

MO000089

US 2006/0075120 A1l

more results are available. The query process is finished. The
QO Server may also return a results message containing the
exact number of requested results or more: The QO Client
displays them and the query process is finished. The QO
Server may also return fewer results thao indicated by the
range, but indicate that the total number of results is bigger:
The QO Client displays the received batch and may send a
getRange message for the remainder of the result set. The
string element contains the input string.

[0244] Qualifier contains the query qualifier, a string that
can be used by a Content Channel to adjust its query. It is
usually passed into the Questlet by the client application, or
set by the user as a QuestField preference. Default value:
Empty string,. -

getRange

{0245] A QO Client sends a getRange message to the QO
Server to request a range of results. It is an optimized way
for the Quester to ask for batches of results for the current
query: The QO Server only returns results for results that
were not yet sent in a previous results message for the same
query (unless the server retums dropPrevious with value
“1”, meaning that previously sent results have expired).
Otherwise, getRange resuits in the same behavior as a
regular query message. A getRange should only be sent by
the QO Client afier receiving a reply to the corresponding
query.

<getRange messegelndex="12345" querylndex="60">
<questerlds>5</questeslds>
<requestedRange from="2" to="4" />

</getRange>

[0246] In each getRange message, queryIndex from the
previous query or getRange is incremented by 1. The QO
Server will only return results for the getRange with the
highest querylndex received from the QO Client; getRange
requests with a lower queryIndex receive a nop reply.

stopSession

[0247] This message is sent by a QO Client to stop the
session, thus allowing the QO Server to cleanup its corre-
sponding resources. Note that, as always, the session id is
derived from the sessionld attribute in the messages ele-
ment. When the session is stopped by the QO Client, is
includes the reason in the reason attribute, such as “submit™,
“disable”, “suspend”, “quit”, or “unload” indicating that the
Questlet stopped the session.

«<stopSession message Index="12345" reason="submnit™/>
QOP Server Replies
sessionStarted

[0248] The QO Server returns this message in reply to a
QO Client’s startSession message.

<sessionStarted replyTo="12345"
id="4A74547885DAC49DDEDI25B6A01 61 BD5™
urlSuffix=";jsessionid="
timeout="PT3600S">

Apr. 6, 2006

-continued

<serverid>serverl </serverlds

<serverVersion>1.0.0</serverVersion>

«<serverBujld>RC1 </serverBuild>

<providerNi Refe G </providerName>

<providerDescription>Reference Server</providerDescription>
</sessionStarted>

[0249] The id attribute contains the unique session id that
was generated by the QO Server, identifying the unique
client session. After receiving this id, the QO Client includes
it as the value of sessionld in consecutive messages blocks
that it sends to the QO Server.

[0250] The wurlSuffix attribute tells the QO Client to
append its value to the URL of any subsequent HTTP
requests for the same session. timeout is an XML duration
that informs the QO Client about the QO Server’s session
timeout. serverld is the unique id of the QO Server instance
running on the server machine. serverVersion is the QO
Server's version number, formatted as a string consisting of
major version (one digit), minor version (one digit) and
patch version (one or more digits) separated by decimal
points (periods). A QO Client may theoretically refuse to
work with a server that jt knows does not support its features
by checking this version string. serverBuild is a normalized
string identifying the build of the server. For example “RC1"
for release candidate 1. The other elements have a default
value and may thus be omitted. providerName is a string that
reflects the value that was configured on the QO Server. It
will usually contain the name of the company that is hosting
the server. providerDescription is a string that reflects the
value that was configured on the QO Server. It will usually
contain a textual description of the services provided.

questerRegistered

{02511 This message is sent as the reply to a successful
registerQuester message. It tells the QO Client which id is
to be used for any subsequent communication for the
Quester, and passed textual information about the Content
Channel back to the client.

<questerRegistered reply Tow"12345" jd="5">
<channelName>Person Name Scarch</channelNames>
<channelHelpText>Entes the fist characters of the first or Jast
name of the person you are looking for.</chennelHelpText>
<channelCopyrightText>For usc by Reference Customer
employees only. </channelCopyrightText>
<JquesterRegistered>

[0252] The id attribute is a QO Server-generated id that is
unique within the server session and replaces the Quester
name as the unique identifier for the Quester used in
subsequent client-server communication for the session.
channelName is a human-readable string as it was defined in
the Content Channel configuration. Along with provider-
Name (which was returned by sessionStarted), this uniquely
identifies the Content Channel to the user.

[0253] Optional questerRegistered elements chapnelHelp-
Text and channelCopyrightText contain strings containing
help text, copyright text and/or usage restrictions (as it
relates to the content returned by the channel) to be dis-
played to the user.

MO000090

US 2006/0075120 A1

dependencyGranted

{0254] This message is sent as a reply to the requestDe-
pendency message, confirming that the QO Server will
include dependent data in any subsequent Content Query
sent to the Content Access Module.

[0255] <dependencyGranted replyTo="12345"/>
results

[0256] The QO Server sends this message as the reply to
a query or getRange request. The message either contains
one or more ranges containing zero or more results, or 2 “no
operation” element with an explanation of the reason why no
results were returned. There is no guarantee that results
messages arrive on the QO Client in the same order in which
the QO Server sent them. Therefore, the QO Client must
maintain a queue of results received, and handle them in the
order of queryIndex, unless a new results message includes
dropPrevious with value “1”.

[0257] results message variant 1

<results replyTo=""12345" queryIndex="1" dropPrevious="0">
aange from="0" to="2" total="1000" isComplete=true
expires="PT107830438599S">

<result>
<valuesfirst result string</value>
<key>AS57948 key>
«ametadata>
<item>first metadata field</itern>
<item>second metadata field</item>
<item>thind metadata feld</item>
</metadata>
resuit>
<resilt> <value>second result string</values </result>
</range>

<range from=*3" to="5" total=“1000" jsComplete=true
expires="PT1078304389995">
<result> <values>fourth result string</value> </result>
<result> <value>fifth result string</value> <Jresult>
</range>
</results>

[0258] results message variant 2

<results replyTo="12345" querylndex="1" dropPrevous="1">
<nop resson="invalidQuery” />
<resuits>

[0259] The querylndex attribute matches the querylndex
that was included in the corresponding query or getRange
request. The optional dropPrevious attribute, which defaults
to “0”, indicates whether the QO Server wants the QO Client
to forget any previous results that were returned for the same
query. In that case, dropPrevious has value “1”. The results
message either contains one or more range blocks, or a
single nop element. An empty nop element indicates to the
QO Client that the QO Server did not perform the query, or
that the server refused a getRange request. The mandatory
reason attribute explains the reason why by including a
constant value such as invalidQuery or querySkipped. Each
range block contains zero or more result blocks and has three
mandatory atiributes and one optional attribute. The from
attribute is the index of the first result of the range. The to

Apr. 6, 2006

attribute is the index one after the last result in the range
(exclusive). The total attribute is the total number of avail-
able results. This is used by the QO Client to update the Ul
(usually, scroll bar) and possibly to automatically send
another getRange message if fewer results are sent back in
this range than requested while total indicates that more
results exist. The optional is Complete attribute indicates
whether the server retrieved the complete result set for the
query in question or whether the result set was cut-off at a
certain maximum size, in which case the actual number of
results might be bigger than the amount specified in the total
attribute. The optional expires attribute indicates the time at
which the result expires, using the number of seconds since
1970 (corrected by the difference of timeOffset and QO
Server time at receipt of the startSession message). If the
value is “PTOS” or if the attribute is omitted, the results do
not expire. For each result set entry that exists in the
specified range, the range block includes a result element. If
no results exist in the range, then the range block is empty.
Each result contains a value element and optional key and
metadata elements. The value element contaics a string that
was received from the Content Engine. The optional key
element contains a string that uniquely identifies the result in
the Content Channel. Using the value of key, elements value
and optional metadata can be fetched from the Content
Engine. The optional metadata block in each result element
of a range contains an ordered set of item elements. Each
item is a string that matches the corresponding metadata
field as it was fetched from the Content Engine. As such, an
item element may be empty to represent an empty metadata
string, but an empty item is pever omitted. The order of the
item tags matches the order in which the Content Query was
defined in the Content Channel definition. If no metadata is
available for a result, the metadata block is omitted from the
result element and the Quester considers all metadata items
empty strings.

emror

[0260] The QO Server returns an error message whenever
it encounters a server-side error situation.

<error replyTo="12345" number="1001" sessionAlive="1">
<errarText>An errar has occurred in the QuestObjects
server.</erorText>
<Jerror>

[0261] Each error has a mandatory number attribute. The
optional noSession attribute indicates that there is no (longer
a) session after the error occurred (value “1”). The QO
Client may reconnect by calling startSession again. If this
attribute is omitted or “0”, then the session is either still
alive, or the QO Server does not know about session state,
The latter is true if, for example, the server was unable to
parse the request. The errorText element contains a human-
readable string that is displayed to the user. It must include
any leading and trailing punctuation marks.

sessionStopped

[0262] This message is sent to the QO Client after the QO
Server has successfully closed its session and cleaned up the
corresponding resources.

MOO000091

US 2006/0075120 A1l

ceese

<sessionStopped replyTo="12345"/>
Additional Optional Features—QuestObjects Client
Multi-Controller Dependencies

[0263] Multiple Client-side controllers (communicating to
multiple Servers) are aware of each other so that they can
register dependencies with each other. Multiple controllers
on a Client communicate dependency triggers using a com-
mon notification center concept.

“Lossy” and “Non-Lossy” Pushing

[0264] Server denies a connection if it cannot guarantee
queuing push replies between life beats, the interval of
which is specified by the client, with 2 minimum enforced by
the server.

Client Quester History

[0265] A Client Quester may have a history implemented
as a cache in the Client controller.

Quester Context

[0266] A Quester has a unique name within jts context
(usually, window instance); dependencies assume the same
context unless a specific context is specified.

Additional Optional Features—QuestObjects Protocol
Server Referral Mechanism

[0267] A“Dummy Server” can be installed on the “old” IP
address/port so that Clients are automatically moved to a
new Server. The Server sends a “Moved Permanently”
message.

Client-Server Date Synchronization

[0268] Client and Server do not necessarily have to be set
to the exact same date. Instead, the Client “tells” the Server
its current date when it first connects, by sending a reference
date, a time zone, and the number of seconds that have
passed since that date. The Server will “translate” dates
before sending them to the client, sending the number of
seconds relative to the client’s reference date.

Metadata Optional

[0269] The Client tells the Server whether metadata is
required in each string transmitted to the Client. There are
three moments at which metadata can be transferred to the
Client: With every string in the result set, or With the current
string in the result set (i.e., metadata is received antomati-
cally when a string is made the current string), or At request
of the Client (the protocol allows the Client to request
metadata for a range of strings). If metadata is not required,
the Server only sends it to the Client at specific request.

“Metadata Displayed™ Statistic

[0270] The Client tells the Server whether metadata for a
string was displayed to the user or not.

Client-Side Caching

[0271] By calculating the difference between what’s
known on the Client and a new result set to be transmitted
by the Server, Server-Client communication is limited. To
this end, the protocol sends information to the Server about
which result sets are still in mermory on the Client. Whenever

Apr. 6, 2006
21

the Server (re-) sends a result set to the Client, it subtracts
strings that are on the Client already. Client-Side “Keep
Alive” Protocol

[0272] In order to allow the Server to send updates
(updated result sets) to the Client, the Client sends a NOP
package to the Server on a regular basis. This is different
from the regular way in which results are received, where
the Server tells the Client that a result set is not complete by
sending 2 Server-side NOP and the Client simply waits for
the remaining results.

Transmission of Dependency Data

[0273] A mechanism by which dependencies are sent to
the Server and the mechanism by which the Server includes
dependency data for transmission to the Service.

BLOB Communication

[0274] The QuestObjects protocol allows the Client to
directly retrieve binary large objects from a Service. This is
done through a separate Channel,

Welcome Messages

[0275] When registering, the Client tells the server
whether it is capable of displaying Server or Service-
generated messages. A “Welcome Message” sent to the
Client by Server and/or Service has the “mustDisplay-
ToUser” attribute. If this attribute is false, then the client
may ignore the message.

Dialog Messages

[0276] Servers and Services may send meaningful (tex-
tual) messages for display by the Client. Client sends
optional language information to the Server at regjstration,
allowing Server or Service to return appropriate messages.
Clients are not aware of possible server-side messages.
Messages carry one of the following types: Information
Only; Warning; Danger; Fatal Error.

License Agreement

[0277] A Service can force a client to ask the user to agree
1o a license agreement before a session becomes active.

Incremental Diffed Query String

[0278] A Client may perform a DIFF on its query string so
it only sends incremental difference to the Server.

Conditional DIFFing

[0279] To reduce processor load, a diff is only performed
over a certain package size.

Additional Optional Features—QuestObjects Server/Ser-
vice

Automatic Server Discovery

[0280} A mechanism by which a client can discover Ser-
vices using a DHCP-like mechanism such as UDDI or
Rendezvous.

Password Security

[0281] Each Server has au optional name/password regis-
try.

MOO000092

US 2006/0075120 Al

Inter-Server Dependencies

[0282] Dependency values are known on each Server and
" Server-side controllers exchange the actual dependency
data, even for sessions on different servers.

Server Hopping

[0283] Two Servers can exchange their cache for a specific
Chanrel, allowing them to synchronize their result set for a
particular session that was moved from one Server to
another.

Service Determines Cost of Query

[0284] A Service sends the cost of each query to the Server
s0 it can be smart about caching the most expensive queries.

Client Session Influences Cache

[0285] The Server more likely caches a result set if any
client session that used the result set is still alive.

Auto-Update Queries for “Pushing™ Services

[0286] An auto-updating query is sent to the Service once
until the reply was sent to the Client and the auto-update
interval has passed.

Smart Auto-Complete on Server

[0287] If results are ordered in a known way, a Server may
send a new result set to the Client if the query matches a
previous “more global” query. In this case, the Service is not
aware that a more specific query was performed.

Request Management

{0288] The QuestObjects server has a configurable request
manager that manages the Joad of incoming client requests.
By limiting the numberof request than can be executed in
parallel, and queuing requests that could not be immediately
performed, the request manager helps to ensure that the
QuestObjects server remains responsive in high-load situa-
tions and that the server does not overload the content-
source being queried with many simultaneous queries.

Unified Query Cache

[0289] In order to improve performance on recurring
queries and to limit the Joad imposed on the content-sources
being queried, the QuestObjects server caches results to user
queries by storing them in cache that is common to all users.
Each user has a view into the cache on the query that he/she
performed. If more than one user performs the same query,
there will be one result set stored in the cache and each of
these users will only have a separate view on the query.
Result sets are stored in the cache until they either expire,
based on a result set expiration lifetime defined in each
channel configuration file, or are evicted from the cache if it
is full, using a least-recently-used cache algorithm.

Additional Uses and Applications

[0290] As a technology, QuestObjects™ has surprisingly
broad potential. Applications include a wide range of mar-
kets including implementation on “connected devices” such
as PDAs, set top boxes and cell phones. Other applications
include those listed below. In applying the QuestObjects
technology, existing applications may make use of enhanced
functionality, including: Improved user friendliness;
Improved speed of data entry; Improved quality of data
entry; Quicker access to relevant data; Increased security of

Apr. 6, 2006

data entry; Increased security of data retrieved; Better con-
trol over usage patterns; Guarantee over strings displayed
and used; and the ability Easily deliver and charge for
content.

Auto-Complete, Type-Ahead:

[0291] 1na typical application, users enter data into a field
(entry field, cell phone, PDA) that automatically completes
information typed. A client application can implement mul-
tiple QuestObjects™ components (called Questlets™ that
possibly have multiple ways of querying the server using
Quester™ instances, or QuestFields™ in specific situations)
that share a connection to one or more QuestObjects™
servers. Multiple Questers™ can depend on each other for
the data they retrieve. Depending on the client technology
used, a Questlet™ can copy values to and from existing
(web) forms or application windows.

Popup-Lists:

[0292] A QuestObjects™-enabled popup-list dynamically
displays data that corresponds to a single query in the
content engine. The associated Quester™. can take values
from another QuestField™ so that the popup-list displays
appropriate data that is continuously updated to reflect
dependent data.

Look-Up, Finding Simple Reference Data (Dictionary, The-
saurus, Addresses, etc)

[0293] A (possibly invisible) QuestField™ returns a string
with optional XML-formatted metadata. This XML.-format-
ted metadata could be data displayed in a separate area of the
Questlet™. A return string or its metadata could also contain
a URL to data that is to be displayed. Depending on the
client platform, data displayed could easily be in any mul-
timedia format (image, sound, movie, streaming or not).

Usage Histories (URLs, Words Previously Used, etc.)
{0294] As an authenticated user uses QuestObjects™, the

- service tier stores usage histories. These are not only useful

for doing statistics and invoicing, but can also be used for
separate Questlets™ or Quester™ instances that disclose the
usage history to the user or to an application that uses
QuestObjects™ internally. In this scenario, a web browser
could automatically store URLs visited in a QO service, so
that the user has persistent access to the browser history,
regardless of the workstation (or connected device) on
which the browser is used.

Spell-Checking on the Fly

[0295] Since QuestObjects™ only transfers modifications
to documents over the network, it can efficientty keep track
of modifications made to text blocks. Dedicated spell-
checking Questlets™ can be created that perform spell
checking on-the-fly on any platform that supports QuestO-
bjects™, including web browsers.

On-the-fly Verification of Credit Card, Bank Numbers etc.

[02906] Due to its inherent security features, QuestOb-
jects™ technology can be used to check the validity of credit
card (or similar) information while a user is entering data.

. The verification can take place before the entire web page is

submitted to the server, or before database transactions are
committed in a client/server system.

MOO000093

US 2006/0075120 A1

Decision Support Systems, Sensor Control Systems

[0297] QuestObjects™ services (content channels) con-
tinuously receive increasingly accurate information from
client systems. This continuous nature (combined with the
secure and fast communication protocol) allow decision
support systems to immediately respond with appropriate
actions to be taken by the client.

Verified and Guaranteed Display of Advertisements

[0298] Using pushing QuestObjects™ technology, Quest-
lets™ provide a way to deliver content to client systems.
Given certification of the client Questiet™, the content
provider (service) knows exactly what part of the content
was viewed and used.

Real-Time News Setvices

[0299] The pushing nature of QuestObjects™ allows real-
time delivery of news to any client that supports the efficient
QuestObjects™ protocol.

Composition of Ultra-Secure Documents (Continuously
Backed up on the Server)

[0300] A QuestObjects™ service automatically receives
each and every modification to client data. This provides a
highly secure way of updating critical documents, where
each modification is present on the server within a minimum
amount of time. Persistent Questers™ can be restored auto-
matically after recovery of a lost connection or after reboo-
ting a crashed client.

[0301] The preceding detailed description illustrates soft-
ware objects and methods of a system implementing the
present invention. By providing a simple and standardized
interface between Client components and any number of
Content Engines that accept string-based queries, the present
invention gives content publishers, web publishers and
software developers an attractive way to offer unprecedented
interactive, speedy, up-to-date and controlled access to con-
tent without the need to write an access mechanism for each
content source.

[0302] In addition to acting as a standardized gateway to
any content engine, the present invention can intelligently
cache query results, disiribute Services over a network of
Servers, validate user and other client input, authorize user
access and authenticate client software components as
needed. These and other optional services are provided by
the present invention without requiring additional work on
the part of software developers or content publishers. Pub-
lishers can also keep track of usage statistics, on a per-user
basis as required allowing flexible billing of content access.
Content Access Modules allow software developers and
vendors of Content Engines such as database vendors and
search engine vendors to create simplified ways for devel-
opers and implementers of such content engines to disclose
information through the present invention.

[0303] End users of the present invention experience an
unprecedented level of user-friendliness accessing informa-
tion that is guaranteed to be up-to-date while being effi-
ciently cached for speedy access as the number of simulta-
NEeous users grows.

[0304] The present invention can be implemented on any
client and server system using any combination of operating
systems and programming languages that support asynchro-

Apr. 6,2006

nous network connections and preferably but not necessarily
preemptive multitasking and multithreading. The interface
of the present invention as it appears to the outside world
(i.e. programmers and developers who provide access to end
users and programmers who provide Content Access Mod-
ules to Content Engines used by content publishers) is
independent of both the operating systems and the program-
ming languages used. Adapters can be built allowing the
tiers of the system to cooperate even if they use a different
operating system or a different programming language. The
protocol of the present invention can be implemented on top
of networking standards such as TCP/I P. It can also take
advantage of inter-object communication standards such as
CORBA and DCOM. The object model of the present
invention can be mapped to most other programming Jan-
guages, including Java, C++, C#, Objective C and Pascal.

[0305] Third-party vendors of software development and
database management tools can create components that
encapsulate the present invention so that users of those tools
can access its functionality without any krowledge of the
underlying protocols and server-side solutions. For example,
a tool vendor can add an ‘auto-complete field” to the toolbox
of the development environment allowing developers to
simply drop a Questlet into their application. In order to
function cormrectly, the auto-complete field would only need
a reference to the QuestObjects Server and one or more
QuestObjects Services, but it would not require any addi-
tional programming,.

[0306] The present invention may be conveniently imple-
mented using a conventional general purpose or a special-
ized digital computer or microprocessor programmed
according to the teachings of the present disclosure. Appro-
priate software coding can readily be prepared by skilled
programmers based on the teachings of the present disclo-
sure, as will be apparent to those skilled in the software art.

[0307] In some embodiments, the present invention
includes a computer program product which is a storage
medium (media) having instructions stored thereon/in which
can be used to program a computer to perform any of the
processes of the present invention. The storage medium can
include, but is not limited to, any type of disk including
floppy disks, optical discs, DVD, CD-ROMSs, microdrive,
and magneto-optical disks, ROMs, RAMs, EPROMs,
EEPROMs, DRAMs, VRAMS, flash memory devices, mag-
netic or optical cards, nanosystems (including molecular
memary ICs), or any type of media or device suitable for
storing instructions and/or data,

{0308] The foregoing description of the present invention
has been provided for the purposes of illustration and
description. It is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Many muodifica-
tions and variations will be apparent to the practitioner
skilled in the art. The embodiments were chosen and
described in order to best explain the principles of the
invention and its practical application, thereby enabling
others skilled in the art to understand the invention for
various embodiments and with various modifications that
are sujted to the particular use contemplated. It is intended
that the scope of the invention be defined by the following
claims and their equivalence.

MOO000094

US 2006/0075120 A1

What is claimed is:
1. A system for session-based searching at a client for
content at a server, comprising:

a communication protocol that provides an asynchronous
session connection between a client and a server, and
allows the client to send, as part of the same session, a
plurality of consecutive query strings to query the
server for content;

a client that transmits to the server within the session a
plurality of queries to retrieve content from the server,
wherein each of the plurality of queries are consecutive
and form an increasingly focused query string for
refrieving content from the server, and wherein each
subsequent one of the plurality of queries extends the
query string by one or more additional characters; and

a server that receives queries from the client, and in
response to each increasingly focused query, automati-
cally matches the increasingly focused query string
against the content of the server, and returns increas-
ingly relevant content to the client, for further use by
the client within the same session.

2. The system of claim 1 further comprising a web
browser including a web-based interface accessible at the
client for creating queries, wherein the plurality of queries
are entered into the web-based interface by a user to form an
increasingly focused query string for retrieving content from
the server.

3. The system of claim 1 wherein the client and the server
communicate via the Internet using a hypertext transfer
protocol.

4, The system of claim 1 wherein each of the plurality of
queries are a single additional character to be added to the
increasingly focused query string.

5. The system of claim 1 wherein each of the plurality of
queries are a plurality of additional characters to be added to
the increasingly focused query string.

6. The system of claim 1 further comprising a server
repository for storing content information and for returning
increasingly relevant content to the client in response to
automatically matching the increasingly focused query
string against the content of the server.

7. A method for session-based searching at a client system
far content at a server system, comprising the steps oft

providing a communication protocol that provides an
asynchronous session connection between a client and
a server, and allows the client to send, as part of the
same session, a plurality of consecutive query strings to
query the server for content;

transmitting from the client to the server within the
session a plurality of queries to retrieve content from
the server, wherein each of the plurality of queries are
consecutive and form an increasingly focused query
string for retrieving content from the server, and
wherein each subsequent one of the plurality of queries
extends the query string by one or more additional
characters; and

receiving at the server queries from the client, and in
response to each increasingly focused query, automati-
cally matching the increasingly focused query string
against the content of the server, and returning increas-

Apr. 6, 2006

ingly relevant content to the client, for further use by
the client within the same session.

8. The method of claim 7 further comprising receiving
input at a web browser inchiding a web-based interface
accessible at the client, wherein the plurality of queries are
entered into the web-based interface by a user to form an
increasingly focused query string for retrieving content from
the server.

9. The method of claim 7 wherein the client and the server
communicate via the Internet using a hypertext transfer
protocol.

10. The method of claim 7 wherein each of the plurality
of queries are a single additional character to be added to the
increasingly focused query string.

11. The method of claim 7 wherein each of the plurality
of queries are a plurality of additional characters to be added
to the increasingly focused query string.

12. The method of claim 7 further comprising providing
a server repository for storing content information and for
returning increasingly relevant content to the client in
response to automatically matching the increasingly focused
query string against the content of the server.

13. A system for asynchronous providing of information,
comprising:

a server;
a database of content information coupled to said server;

a communication protocol that provides an asynchronous
session connection between a client and the server, and
allows the client to send, as part of the same session, a
plurality of consecutive queries to query the server for
content, wherein each of the plurality of queries form
an increasingly focused query string for retrieving
content from the database, and wherein each subse-
quent one of the plurality of queries extends the query
string by one or more additiopal characters; and

wherein said server receives queries from the client, and
in response to each jncreasingly focused query, auto-
matically matches the increasingly focused query string
against the database of content, and returns increas-
ingly relevant content to the client, for further use by
the client within the same session.

14. A people-searching system, comprising:

a server configured to receive requests from clients for
people-searching content;

a database of biographic or other people-searching con-
tent information coupled to the server;

a communication protoco} that provides an asynchronous
session connection between a client and the server, and
allows the client to send, as part of the same session, a
plunality of queries to query the server for content,
wherein each of the plurality of queries are consecutive
and form an increasingly focused query string for
retrieving content from the server, and wherein each
subsequent one of the plurality of queries extends the
query string by one or more additional characters; and

wherein the server receives queries from the client and in
response to each increasingly focused query string, the
query string being any of the first letters of a person last
name, first name, or other personal information, auto-
matically matches the query string against the database

MOO000085

US 2006/0075120 Al
25

of content, and returns increasingly relevant content to
the client, for further use by the client within the same
session.
15. A system for searching for product-related informa-
tion, comprising:

a server configured to receive requests from clients for
product-related information;

a database of product-related information or other music
content information coupled to said server,

a communication protocol that provides an asynchronous
session connection between a client and the server, and
allows the client to send, as part of the same session, a
plurality of queries to query the server for content,
wherein each of the plurality of queries are consecutive
and form an increasingly focused query string for
retrieving content from the server, and wherein each
subsequent one of the plurality of queries extends the
query string by one or more additional characters; and

wherein the server receives queries from the client and in
response to each increasingly focused query string,
automatically matches the query string against the
database of product-related information or other con-
tent information, and returns increasingty relevant con-
tent to the client, for further use by the client within the
same session.

16. The system of claim 15, wherein the product-related
information is music content information and includes any
of music title, artist name, and other music information.

17. A system for searching for documents in full-text
databases, comprising:

a server configured to receive requests from clients for
locations of documents including the full-text of those
documents and metadata associated with those docu-
ments;

a database coupled to said server, that contains a full-text
word index of said documents;

a communication protocol that provides an asynchronous
session connection between a client and the server, and
allows the client to send, as part of the same session, a
plurality of queries to query the server for content,
wherein each of the plurality of queries are consecutive
and form an increasingly focused query string for
retrieving content from the server, and wherein each
subsequent one of the plurality of queries extends the
query string by one or more additional characters; and

wherein said server is capable of receiving the increas-
ingly focused query string from the client, said query
string being any of the first letters of one or more

Apr. 6, 2006

indexed words with optional Boolean search operators,
and as the query string is being extended, applying the
query string against the database, and returning increas-
ingly appropriate document Jocations to the client.
18. The system of claim 17 wherein each document is
identified by a URL and wherein the full-text database
contains a full-text index of a website on the Internet or on
an intranet, and wherein the full-text index includes words
found on web pages and in rich documents linked on the
website,
19. A system for suggesting database records, comprising;

a server configured to recejve requests from clients for
content;

a database of content information coupled to said server;

a communication protocol that provides an asynchronous
session connection between a client and the server, and
allows the client to send, as part of the same session, a
plurality of queries to query the server for content,
wherein each of the plurality of queries are consecutive
and form an increasingly focused query string for
retrieving content from the server, and wherein each
subsequent one of the plurality of queries extends the
query string by one or more additional characters; and

wherein said server is capable of applying the increas-
ingly focused query string against the database as it is
begin extended, and suggesting increasingly appropri-
ate content or search criteria to the client, for further
use by the client within the same session.
20. A method of suggesting database records, comprising
the steps of:

providing a database of content information coupled to a
server;

accepting at the server requests from a client, via a
communication protocol that provides an asynchronous
session connection between a client and the server, and
allows the client 1 send, as part of the same session, a
plurality of queries to query the server for content,
wherein each of the plurality of queries are consecutive
and form an increasingly focused query string for
retrieving content from the server, and wherein each
subsequent one of the plurality of queries extends the
query string by one or more additional characters; and

applying the increasingly focused query string against the
database as it is begin extended, and suggesting
increasingly appropriate content or search criteria to the
client, for further use by the client within the same
session.

i

MOO000096

EXHIBIT C

Case4:11-cv 1054-PJH Document92-3 Filed03, ,12 Page2of 3

Wiiliam Hassebrock

From: William Hassebrock [whassebrock@venturecatalyst.net] on behalf of William Hassebrock
[william.hassebrock@venturaverde.com]

Sent: Thursday, September 04, 2008 11:33 PM

To: *ericschmidi@google.com’

Subject: Voice from the Past...

Categories: 1-Priarity

Hi, Eric,

} hope you will recall our occasional interaction way back in the late 70s when | was President of the Princeton Club of
Northern California and you were a grad student at Berkeley. Like you, | have spent my career trying to stay balanced on
the bleeding edge of technology. | have been an entrepreneur, a venture capitalist, and now, as a "venture catalyst’, {
assist startups write business plans, find investors, and achieve fraction.

My purpose in writing now is to let you know that for the past few years | have been working closely with a small software
development firm that has invented an extraordinary new Internet search technology. | believe this technology could be of
considerable interest to Google not only for your core search business but also for your new partnership with Verizon.

Briefly, this patent-pending technology, called QuestObjects, creates a powerful, ultra-thin client-server relationship
between an individual field on a website, called a QuestField, and a remote server. One of our users refered to a
QuestField as a universal Google Suggest on steroids.

A QuestField is a tightly integrated, end-to-end solution enabling any browser-based website or handheld device to
perform incredibly fast search, retrieval and display of information from any remote database, including legacy databases.
It is, in essence, a kind of miniature Citrix-like application that can be added to any website in a matter of hours with
virtually no programming required — and its potential for handheld devices is perhaps even greater than its potential for
websites.

The reason the world does not yet know about this technology, which | believe has the potential to revolutionize the user
experience for both browsers and handheld devices, is because the company, MasterObjects, is quite small, is composed
entirely of a few brilliant techies with littie management or marketing experience, and is located in a small townin The
Netherlands. Nevertheless, the company has scored a few major coups. For instance, Hewlett Packard, Siemens and
several other corporations have been using the technology on their intranet sites for several years.

At this time, however, the only place the public can see the technology in action is on Princeton’s website, a relationship
that | helped to arrange. Although the implementation on the Princeton website is relatively simple, it will give you an idea
of the power of the technology: http://www.princeton.edwmainftools/az/a xmi?section=web.

Princeton is delighted with this enhancement to its website's search capability, but the QuestObjects technology is
capable of much more as explained on the MasterObjects website: www.masterobjects.com.

MasterObjects has been working hard to create a stand-alone company for a number of years, but it has now decided that
it needs a major partner/champion/godparent 1o help the technology get out of the lab and into the marketplace. For many
reasons, most of them obvious, Google is at the top of our list of the small number of companies who might be possible
suitors. Therefore, | thought | would alert you to MasterObjects and this extraordinary new technology.

If you at all intrigued, | would be pleased to arrange a teleconference for you or members of your team to speak with Mark
Smit, the founder and CEO of MasterObjects. He can give you a remarkable demonstration of the power of the technology
and tell you more about the company itself.

There is a good chance you already know or know of two other Silicon Valley pioneers who have been advising
MasterObjects. Mark Medearis, of Heller Ehrman/Venture Law Group, is the company's corporate legal counsel. Marty
Fliesler, of Fliesler Meyer, serves on the board and has been responsible for the company'’s IP strategy. You would
certainly be welcome to speak with either Mark or Marty about the potential of MasterObjects.

Many thanks for allowing me to infroduce you to MasterObjects, Eric. Please let me know if you would like to learn more.
1

Case4:11-cv .054-PJH Document92-3 Filed03, 12 Page3of 3

Cordially,
- Bill

William M. Hassebrock ‘68
President

Venture Catalyst Partners
616 Carolina Street

San Francisco, CA 94107

office: 1-415-821-7870
mobile: 1-415-235-3650
fax: 1-415-704-3375

Email: whassebrock@venturecatalyst.net

